Ch. 3 More Models and Properties

Chang-Yeop Lee

The Ohio State University

June 4, 2024

Review

Goal: Rationalize random choice data $\rho(x, A)$

- Pref-based: Attach μ on each pref orderings
- Random utility: Add randomness on utility values

Review

Goal: Rationalize random choice data $\rho(x, A)$

- Pref-based: Attach μ on each pref orderings
- Random utility: Add randomness on utility values

Proposition 1.9, 1.12 Followings are equivalent for finite X :

- ρ is represented by a distribution over preferences
- $\rho \sim R U$
- $\rho \sim A R U$

Review

Goal: Rationalize random choice data $\rho(x, A)$

- Pref-based: Attach μ on each pref orderings
- Random utility: Add randomness on utility values

Proposition 1.9, 1.12 Followings are equivalent for finite X :

- ρ is represented by a distribution over preferences
- $\rho \sim R U$
- $\rho \sim A R U$

Main axioms of $\rho \sim \mathrm{RU}$ (of finite X)

- Regularity: Necessary but limitedly sufficient $(|X| \leq 3)$
- Supermodularity: Additional property if $|X|=4$
- Block-Marshack: Necessary and sufficient

Preview

Takeaway - Add more structure on RU (parameterize)
Main questions on parametric approaches

1. Characterization: Which data patterns that model allows?
2. Identification: Unique data interpretations?
3. Comparative Statics: Meaning of parameter values?
ex.) risk preference, inattention

Preview

Takeaway - Add more structure on RU (parameterize)
Main questions on parametric approaches

1. Characterization: Which data patterns that model allows?
2. Identification: Unique data interpretations?
3. Comparative Statics: Meaning of parameter values? ex.) risk preference, inattention

This week: Study ARU model

Outline

1. i.i.d. ARU
2. Fechnerian Model
3. Logit Model

3-1. Logit (or Luce) Model
3-2. Mixed Logit
3-3. Nested Logit
3-4. Perturbed Utility

i.i.d. ARU

Definition (i.i.d ARU) $\rho \sim$ i.i.d. $\operatorname{ARU}(v, \epsilon)$ if $\rho \sim \operatorname{ARU}(v, \epsilon)$ where for all $x, y \in X, \epsilon(x)$ and $\epsilon(y)$ are i.i.d..

i.i.d. ARU

Definition (i.i.d ARU) $\rho \sim$ i.i.d. $\operatorname{ARU}(v, \epsilon)$ if $\rho \sim \operatorname{ARU}(v, \epsilon)$ where for all $x, y \in X, \epsilon(x)$ and $\epsilon(y)$ are i.i.d..

Examples: Logit (T1EV), Probit (Normal)

i.i.d. ARU

Definition (i.i.d ARU) $\rho \sim$ i.i.d. $\operatorname{ARU}(v, \epsilon)$ if $\rho \sim \operatorname{ARU}(v, \epsilon)$ where for all $x, y \in X, \epsilon(x)$ and $\epsilon(y)$ are i.i.d..

Examples: Logit (T1EV), Probit (Normal)

Binary choice: If $\rho \sim$ i.i.d. $A R U$, then $\exists v$ and F such that

$$
\begin{aligned}
\rho(x, y) & =\mathbb{P}(v(x)+\epsilon(x) \geq v(y)+\epsilon(y)) \\
& =\mathbb{P}(\epsilon(y)-\epsilon(x) \leq v(x)-v(y))=F(v(x)-v(y))
\end{aligned}
$$

where $F(\cdot)$: CDF of $\eta \equiv \epsilon(y)-\epsilon(x)$ (Fechnerian)
$|X|>2$? Not trivial $-\rho(x, A)=\mathbb{E}_{\epsilon(x)}\left[\prod_{y \in A \backslash\{x\}} \Phi(v(x)-v(y)+\epsilon(x))\right]$

Properties of i.i.d. ARU

Proposition 3.10 Suppose ρ has two i.i.d representation with positive density $\left(v_{1}, \epsilon_{1}\right),\left(v_{2}, \epsilon_{2}\right)$ and let F_{i} be a cdf of $\epsilon_{1}-\epsilon_{2}$. If the range of v_{1} is a nontrivial interval, then there exists $\alpha>0$ and β such that

$$
\begin{aligned}
v_{2} & =\alpha v_{1}+\beta, \text { and } \\
F_{2}(t) & =F_{1}\left(\alpha^{-1} t\right), \text { for all } t \in\left\{v_{2}(x)-v_{2}(y) \mid x, y \in X\right\}
\end{aligned}
$$

Implication: v has a unique representation in positive affine transformation

- ϵ distribution may not be unique (but diff. in ϵ is!)

Violation of i.i.d.

Blue Bus and Red Bus Suppose $X=\{t, b b, r b\}$ and $\rho(t, b b)=$ $\rho(t, r b)=\rho(b b, r b)=1 / 2$.

Violation of i.i.d.

Blue Bus and Red Bus Suppose $X=\{t, b b, r b\}$ and $\rho(t, b b)=$ $\rho(t, r b)=\rho(b b, r b)=1 / 2$.
i.i.d. ARU $\quad \rho$ represented by $v(t)=v(b b)=v(r b)$

Predicts $\rho(t, X)=\rho(b b, X)=\rho(r b, X)=1 / 3$

Violation of i.i.d.

Blue Bus and Red Bus Suppose $X=\{t, b b, r b\}$ and $\rho(t, b b)=$ $\rho(t, r b)=\rho(b b, r b)=1 / 2$.
i.i.d. ARU $\quad \rho$ represented by $v(t)=v(b b)=v(r b)$

Predicts $\rho(t, X)=\rho(b b, X)=\rho(r b, X)=1 / 3$
Intuition
$\rho(t, X)=1 / 2$ and $\rho(r b, X)=\rho(b b, X)=1 / 4$

Correcting i.i.d.

Solution 1: Return to random preference ex.) Assign $\mu=0.25$ to all of the following orderings

$$
\begin{aligned}
& t \succ b b \succ r b \\
& t \succ r b \succ b b \\
& b b \succ r b \succ t \\
& r b \succ b b \succ t
\end{aligned}
$$

Then we have $\rho(t, X)=0.5 \rho(r b, X)=\rho(b b, X)=0.25$.

Correcting i.i.d.

Solution 1: Return to random preference ex.) Assign $\mu=0.25$ to all of the following orderings

$$
\begin{aligned}
& t \succ b b \succ r b \\
& t \succ r b \succ b b \\
& b b \succ r b \succ t \\
& r b \succ b b \succ t
\end{aligned}
$$

Then we have $\rho(t, X)=0.5 \rho(r b, X)=\rho(b b, X)=0.25$.
Solution 2: Non-identical ϵ
ex.) $\epsilon(t) \in\{-1,1\}$ and $\epsilon(r b), \epsilon(b b) \in\{-10,10\}$ each with uniform probability

Correcting i.i.d.

Solution 1: Return to random preference ex.) Assign $\mu=0.25$ to all of the following orderings

$$
\begin{aligned}
& t \succ b b \succ r b \\
& t \succ r b \succ b b \\
& b b \succ r b \succ t \\
& r b \succ b b \succ t
\end{aligned}
$$

Then we have $\rho(t, X)=0.5 \rho(r b, X)=\rho(b b, X)=0.25$.
Solution 2: Non-identical ϵ
ex.) $\epsilon(t) \in\{-1,1\}$ and $\epsilon(r b), \epsilon(b b) \in\{-10,10\}$ each with uniform probability

Solution 3: Allow correlation on ϵ

1. i.i.d. ARU
2. Fechnerian Model
3. Logit Model

3-1. Logit (or Luce) Model
3-2. Mixed Logit
3-3. Nested Logit
3-4. Perturbed Utility

Psychometric choice metrics

Figure 1.1. An S-shaped psychometric function.
Discrete choice predicts with the step choice rule:

$$
\rho(x, y)=\mathbf{1}(x>y)+0.5 * \mathbf{1}(x=y)
$$

Stylized facts from the lab: S-shaped ρ
Causes of randomness: Decision/discrimination errors

Fechnerian Representation

Definition(Fechnerian) ρ has a Fechnerian representation if $\exists v: X \rightarrow$ \mathbb{R} and $\exists F: D \rightarrow[0,1]$ such that

$$
\rho(x, y)=F(v(x)-v(y))
$$

where $D \equiv\{v(x)-v(y) \mid x, y \in X\}$ and F : strictly increasing and symmetric at 0 .

Other Psychometric Patterns

Examples of non-Fechnerian: Not monotonic in value diff.

Figure 3.3. Examples of F that is not Fechnerian.

Fechnerian-Axioms

Axiom(Quadraple Condition) For any $x, y, w, z \in X, \rho(x, y) \geq$ $\rho(w, z)$ if and only if $\rho(x, w) \geq \rho(y, z)$

Axiom(Richness) If $\rho(x, y) \leq \alpha \leq \rho(z, y)$, then there exists $w \in X$ such that $\rho(w, y)=\alpha$.

Fechnerian-Axioms

Axiom(Quadraple Condition) For any $x, y, w, z \in X, \rho(x, y) \geq$ $\rho(w, z)$ if and only if $\rho(x, w) \geq \rho(y, z)$

Axiom(Richness) If $\rho(x, y) \leq \alpha \leq \rho(z, y)$, then there exists $w \in X$ such that $\rho(w, y)=\alpha$.

Relationship with other models

- i.i.d. ARU: More general (Equivalent with finite X)
- RU: Less general

Theorem 3.21 (Debreu 1958) Suppose ρ satisfies richness. Then, it has a continuous Fechnerian representation if and only if it satisfies Quadraple Condition. Moreover, if $\left(v_{1}, F_{1}\right)$ and $\left(v_{2}, F_{2}\right)$ both represent ρ, then there exists $\alpha>0$ and β such that
(i) $v_{2}=\alpha v_{1}+\beta$
(ii) $F_{2}(\alpha t)=F_{1}(t)$

Only if part:

$$
v(x)-v(y) \geq v(w)-v(z) \Leftrightarrow v(x)-v(w) \geq v(y)-v(z)
$$

If part: Use richness for all binary relations
cf.) Non-richness: Replace richness with acyclicity

Acyclicity

Axiom (Acyclicity) For all n, sequences $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$, and bijections $f, g:\{1, \cdots, n\} \rightarrow\{1, \cdots, n\}$,
$\rho\left(x_{k}, y_{k}\right) \geq \rho\left(x_{f(k)}, y_{f(k)}\right)$ for $1 \leq k<n \Rightarrow \rho\left(x_{n}, y_{n}\right) \leq \rho\left(x_{f(n)}, y_{f(n)}\right)$

Violation of acyclicity: Cycle of $x_{1}, \cdots, x_{\tilde{n}}$ and $y_{1}, \cdots, y_{\tilde{n}}$ such that

$$
\begin{aligned}
\rho\left(x_{k}, x_{k+1}\right) & \geq \rho\left(y_{k}, y_{k+1}\right), \forall 1 \leq k<\tilde{n} \text { and } \\
\rho\left(x_{\tilde{n}}, x_{1}\right) & \geq \rho\left(y_{\tilde{n}}, y_{1}\right)
\end{aligned}
$$

Outline

1. i.i.d. ARU
2. Fechnerian Model
3. Logit Model

3-1. Logit (or Luce Model)
3-2. Mixed Logit
3-3. Nested Logit
3-4. Perturbed Utility

Logit Model

Definition (Logit Choice) If ρ is a logit, then there exists $v: X \rightarrow \mathbb{R}$ such that

$$
\rho(x, A)=\frac{e^{v(x)}}{\sum_{x^{\prime} \in X} e^{v\left(x^{\prime}\right)}}
$$

Definition (Luce Representation) ρ has a Luce representation if there exists $w: X \rightarrow \mathbb{R}_{++}$such that

$$
\rho(x, A)=\frac{w(x)}{\sum_{x^{\prime} \in X} w\left(x^{\prime}\right)}
$$

Two models are equivalent if $v(x)=\log (w(x))$

Logit-Axioms

Properties allowing inferences on X from $A \subset X$

Logit-Axioms

Properties allowing inferences on X from $A \subset X$

Axiom (Luce IIA) For all $x, y \in A \cap B, \rho$ satisfies IIA if

$$
\frac{\rho(x, A)}{\rho(y, A)}=\frac{\rho(x, B)}{\rho(y, B)}
$$

Allows predictions from binary menu choices

Logit-Axioms

Properties allowing inferences on X from $A \subset X$

Axiom (Luce IIA) For all $x, y \in A \cap B, \rho$ satisfies IIA if

$$
\frac{\rho(x, A)}{\rho(y, A)}=\frac{\rho(x, B)}{\rho(y, B)}
$$

Allows predictions from binary menu choices

Axiom (Luce's Choice Axiom) Let $\rho(A, B) \equiv \sum_{x \in A} \rho(x, B)$. Then, $\forall x \in A \subseteq B$,

$$
\rho(x, B)=\rho(x, A) \rho(A, B)
$$

where $\rho(A, B) \equiv \sum_{x \in A} \rho(x, B)$

Properties of Logit

Theorem 3.5 The followings are equivalent:
(i) ρ has a logit representation
(ii) ρ has a Luce representation with $w(x)=\exp \{v(x)\}$
(iii) ρ satisfies Luce's IIA and positivity
(iv) ρ satisfies Luce's choice axiom and positivity

Mixed Logit

Idea: Bus example solution $1 \Rightarrow$ Allow randomness over $v(x)$
Definition (Mixed Logit) ρ has a mixed logit representation if

$$
\rho(x, A)=\int \frac{e^{v(x)}}{\sum_{x^{\prime} \in A} e^{v\left(x^{\prime}\right)}} d \mu(v)
$$

ρ under mixed logit: Expected choice probabliity over $v(x)$
If ρ has a mixed logit representation, it is also RU representable
Caveat) Mixed logit \neq Logit

Mixed Logit-Generalizations

Proposition 3.15 If $\rho \sim R U$, then there is a sequence $\rho^{n} \sim$ mixed logit such that $\rho^{n}(x, A) \rightarrow \rho(x, A)$ for all $x \in X$ and $A \subseteq \mathcal{A}$.

Mixed Logit-Generalizations

Proposition 3.15 If $\rho \sim R U$, then there is a sequence $\rho^{n} \sim$ mixed logit such that $\rho^{n}(x, A) \rightarrow \rho(x, A)$ for all $x \in X$ and $A \subseteq \mathcal{A}$.

Step 1
For any $\succsim \in \mathcal{P}$, assign utility function v
Step 2

$$
\text { Define } \rho_{v}^{n}=\frac{e^{n v(x)}}{\sum_{x^{\prime} \in A} e^{n v\left(x^{\prime}\right)}} \text { and } \rho^{n}=\sum_{v} \rho_{v}^{n} \mu(v)
$$

Step 3 Let $\rho_{v}^{*} \equiv \mathbf{1}\left(x=\operatorname{argmax}_{x^{\prime} \in A}\left(v\left(x^{\prime}\right)\right)=\lim _{n \rightarrow \infty} \rho_{v}^{n}\right.$. Thus,

$$
\rho(x, A)=\sum_{v} \rho_{v}^{*} \mu(v)=\sum_{v} \lim _{n \rightarrow \infty} \rho_{v}^{n} \mu(v)=\lim _{n \rightarrow \infty} \rho^{n}(x, A)
$$

Nested Logit

Solution 3 of the bus example

Figure 3.1. A nested decision problem.

Nested Logit

Solution 3 of the bus example

Figure 3.1. A nested decision problem.

Nested logit: Sequential application of logit model

- $\rho(r b, X)=\rho_{1}($ bus, $X) \rho_{2}(r b$, bus $)$
- ρ_{1}, ρ_{2} : Choice probability of each characteristic

Nested Logit-Prediction

Choice probability: BWI of each characteristic choices
Step 1 Logit model between lower-level characteristics
Compute inclusive value of lower-level characteristics

$$
V(A)=\mathbb{E}\left[\max _{x \in A} v(x)+\epsilon(x)\right]=\log \left(\sum_{x \in A} \exp v(x)\right)
$$

Step 2 Choice among higher-level characteristics

 Use the inclusive value for non-random value choiceDefinition (Nested Logit) Suppose $x \in B_{i} \in \mathcal{B} . \rho$ is represented by a nested logit model if $\exists v$ such that

$$
\rho(x, A)=\frac{e^{V\left(B_{i}\right)}}{\sum_{B_{j} \in \mathcal{B}} e^{V\left(B_{j}\right)}} \times \frac{e^{v(x)}}{\sum_{x^{\prime} \in B_{i}} e^{v\left(x^{\prime}\right)}}
$$

Model Choice

Pros: Allows structural correlation within the nest

Model Choice

Pros: Allows structural correlation within the nest

Cons: Requires (subjective) judgment on the structures

- Empirical: Gul, Natenzon, and Pesendorfer's (2014)
- Axiomatic: Fudenberg, lijima, and Strzalecki (2014), Kovach and Tserenjigmid (2022)

Perturbed Utility

Definition (Perturbed Utility) ρ has a PU representation if for each $A \in \mathcal{A}$,

$$
\rho(\cdot, A)=\underset{p \in \Delta(A)}{\operatorname{argmax}} \sum_{x \in A} v(x) p(x)-c(p)
$$

where $c: \Delta(X) \rightarrow(-\infty, \infty]$ is a cost function of implementing p.

Interpretation of $c(p)$
(i) Individual makes costly but controllable mistakes (trembling hands)
(ii) Individual probabilitically attends on alternative x (RI)

Relationship between PU and Logit

Literature often assumes an entropy (attention) cost function:

$$
c(p) \equiv-\sum_{x \in X} p(x) \log (x)
$$

Proposition 3.36 The followings are equivalent:
(i) ρ has a logit representation with utility v
(ii) ρ has a PU representation with utility v and Entropy cost

Not only that, ρ has logit representation if $\rho \sim$ i.i.d. ARU with T1EV errors

$$
\Phi(x)=\exp \{\exp \{-\epsilon(x)\}\}
$$

Summary

1. i.i.d. ARU model

- Generalization from pairwise comparison
- Unique to affine transformation
- Fails to consider menu dependence

2. Logit model

- Satisfies IIA and Luce Axiom
- Mixed/Nested Logit: Allows correlation
- Rationalizable with entropy attention cost

Appendix

Debreu, G. (1958): "Stochastic Choice and Cardinal Utility", ECMA, 26(3), 440^{-}D444. 45, 176, 177
Fudenberg, D., P. Strack, and T. Strzalecki (2015): "Stochastic Choice and Optimal Sequential Sampling," arXiv preprint arXiv:1505.03342. Gul, F., P. Natenzon, and W. Pesendorfer (2014): "Random Choice as Behavioral Optimization," ECMA, 82(5), 1873-1912 Kovach, M., and G. Tserenjigmid (2022a): "Behavioral foundations of nested stochastic choice and nested logit," JPE, 130(9), 2411-2461.
Luce, D. (1959): Individual choice behavior. John Wiley

