Mechanism Design, Implementation Theory, and Higher Order Uncertainty

Ritesh Jain August 26, 2021

Institute of Economics, Academia Sinica

- Basic Environment:
 - Agents: $I = \{1, 2\}.$
 - Payoff types: $\Theta_1 = \Theta_2 = \{\alpha, \beta\}$
 - Alternatives: $X = \{A, B, C\}$.
- Preferences: The following table displays the preferences

	$U_{1,\alpha}$	$U_{1,\beta}$	$U_{2,\alpha}$	$U_{2,\beta}$
A	2	0	2	2
В	1	4	1	1
С	0	9	0	-8

Information: There is p ∈ Δ(Θ) which is assumed to be uniform, that is p = {1/4, 1/4, 1/4, 1/4}. Interim beliefs are described by Bayes rule. In this setting, for every i ∈ I, (θ_i, θ_j) ∈ Θ, p_i(θ_j|θ_i) = 1/2.

- Basic Environment: $I = \{1, 2\}$, $\Theta_1 = \Theta_2 = \{\alpha, \beta\}$, and $X = \{A, B, C\}$
- Preferences: The following table displays the preferences

	$U_{1,\alpha}$	$U_{1,\beta}$	$U_{2,\alpha}$	$U_{2,\beta}$
A	2	0	2	2
В	1	4	1	1
С	0	9	0	-8

- α : $A \succ^1_{\alpha} B \succ^1_{\alpha} C$ and $A \succ^2_{\alpha} B \succ^2_{\alpha} C$
- β : At β , 2 dislike C more relative to α , 1's preferences reverse: $C \succ^{1}_{\beta} B \succ^{1}_{\beta} A$.

- Basic Environment: $I = \{1, 2\}, \Theta_1 = \Theta_2 = \{\alpha, \beta\}$, and $X = \{A, B, C\}$
- Preferences:
 - α : $A \succ^1_{\alpha} B \succ^1_{\alpha} C$ and $A \succ^2_{\alpha} B \succ^2_{\alpha} C$
 - β: At β, 2 dislike C more relative to α, 1's preferences reverse:
 C ≻¹_β B ≻¹_β A.
- Information: There is p ∈ Δ(Θ) which is assumed to be uniform, that is p = {1/4, 1/4, 1/4, 1/4}. Interim beliefs are described by Bayes rule. In this setting, for every i ∈ I, (θ_i, θ_j) ∈ Θ, p_i(θ_j|θ_i) = 1/2.

The following social choice function maximizes ex-ante utilitarian welfare:

- 1. **Ex-ante**: No asymmetric information between the planner (we) and the agents.
- 2. **Interim**: Once every agent learns its type we have *asymmetric information* between the planner and players.

Two perspectives:

- A physical entity with a well defined utility function. For ex. Auctioneer.
- Planner refers to the society I
 - In this interpretation, society is treated separately from its individual members.
 - SCF referents societies objective from an ex-ante perspective. For ex. design of constitutions.

Key take away:

Ex-ante and Interim stage creates information asymmetry.

- 1. Can planner design a game/contract that provides agents incentives to reveal the truth?
- 2. Agents know that their announcement affects the decision \implies the problem is non-trivial
- 3. Many senders and one receiver problem:
 - Receiver designs a mechanism and commits to it
 - senders send messages via the mechanism.
 - · receiver selects an outcome for each message profile

Mechanism:

•
$$\mathcal{M} = (\prod_{i \in I} M_i, g)$$

• M_i : Messages for each agent and $g: M \to X$

Definition

A SCF f is weakly-implementable by a mechanism \mathcal{M} if there exists a Bayes Nash Equilibrium $\sigma = (\sigma_1, \sigma_2)$, such that for every $(\theta_1, \theta_2) \in \Theta$, it holds that

$$g(\sigma_1(\theta_1), \sigma_2(\theta_2)) = f(\theta_1, \theta_2)$$
(1)

Direct Mechanism:

- $M_i = \Theta_i$, for every $i \in I$
- *g* = *f*

Weak-Implementation:

- Focus on direct mechanisms
- Focus on truth-telling strategies

f	α	β
α	А	В
β	С	В

- 1. $\sigma_i^t(\theta_i) = \theta_i$: Truth-telling is an equilibrium $\implies f$ is incentive compatible.
- 2. f is weakly implementable.

- 1. $\sigma_i^t(\theta_i) = \theta_i$: Truth-telling is an equilibrium $\implies f$ is incentive compatible.
- 2. f is weakly implementable.

but....

- $\sigma'_1(\theta_1) = \theta_1$ and $\sigma'_2(\theta_2) = \beta$ is also an equilibrium.
- σ' undermines the planners goal.
- σ' : Always B is selected.

- 1. $\sigma_i^t(\theta_i) = \theta_i$: Truth-telling is an equilibrium $\implies f$ is incentive compatible.
- 2. f is weakly implementable.

but....

- $\sigma'_1(\theta_1) = \theta_1$ and $\sigma'_2(\theta_2) = \beta$ is also an equilibrium.
- σ' undermines the planners goal.
- σ' : Always B is selected.

Definition

A SCF *f* is *fully*-Bayesian implementable by a mechanism \mathcal{M} if for (*a*) BNE exists and (*b*) every Bayes Nash Equilibrium $\sigma = (\sigma_1, \sigma_2)$ and for every $(\theta_1, \theta_2) \in \Theta$, it holds that

$$g(\sigma_1(\theta_1), \sigma_2(\theta_2)) = f(\theta_1, \theta_2)$$
(2)

Solution: Indirect Mechanism:

g	α	β
α	А	В
β	С	В
α'	В	Α
β'	В	С

Two Equilibrium.

• $\hat{\sigma}^t$: Truthtelling

•
$$\hat{\sigma}_1(\alpha) = \alpha', \hat{\sigma}_1(\beta) = \beta'$$
 and $\hat{\sigma}_2(\alpha) = \beta, \hat{\sigma}_2(\beta) = \alpha$

Augmented Revelation Principle: Mookherjee and Reichelstein (1990)

- Start with a direct mechanism: $M = \Theta$, g = f
- 'Augment' it
 - $\hat{M}_i = \Theta_i \cup \mathbb{C}$, \mathbb{C} is some countable set
 - Extend g to \hat{M} such that no bad equilibrium remains.
- Implementation theory: provides condition on *f* that ensure that such an augmentation is possible.

Goal: To provide a brief overview of this literature by minimizing the details.

- 1. **Incomplete Information**: Assymetric information (*a*) among the players and (*b*) between the players and the planner.
- 2. **Complete Information**: No Asymmetric information among the players but between the players and the planner

2.1 For every $(heta_1, heta_2)\in (\Theta_1,\Theta_2)$, it holds that

$$p(\theta_2|\theta_1) = p(\theta_1|\theta_2) = 1$$

2.2 Every $(\theta_1, \theta_2) \in (\Theta_1, \Theta_2)$ is common knowledge among the agents

- Simplest non-trivial set up to analyze the implementation problem.
- Conceptually, extension to general information structures is similar.
- My view: complete information and I
 3 is a tool to develop conceptual grip at this literature.

- Simplest non-trivial set up to analyze the implementation problem.
- Conceptually, extension to general information structures is similar.
- My view: complete information and *I* ≥ 3 is a *tool* to develop conceptual grip at this literature. But can't escape the Bayesian setup.

- Simplest non-trivial set up to analyze the implementation problem.
- Conceptually, extension to general information structures is similar.
- My view: complete information and I ≥ 3 is a *tool* to develop conceptual grip at this literature. But can't escape the Bayesian setup.
- Information structure matters: Palfrey and Srivastava (1987) provide interesting examples.

- Basic Environment: I, Θ , and $X = \{A, B, C\}$
- Preferences: $\theta \in \Theta$: $u_i^{\theta} : X \to \mathbb{R}$
- Complete Information: For every θ ∈ Θ: Everyone knows θ, everyone know that everyone knows θ and so on...
- Example: $\Theta = \{(\alpha, \alpha), (\beta, \alpha), (\alpha, \beta), (\beta, \beta)\}$
- \mathcal{M} is a game form and (\mathcal{M}, θ) is game of complete information.
 - $NE(\mathcal{M}, \theta)$: Set of Nash equilibria at θ .

Definition

A SCF *f* is Nash implementable by a mechanism \mathcal{M} provided that for every $\theta \in \Theta$, it holds that

$$\bigcup_{m \in NE(\mathcal{M},\theta)} g(m) = f(\theta)$$
(3)

At every state $\theta \in \Theta$,

- $NE(\mathcal{M}, \theta)$ unique in outcomes.
- Multiple equilibria not ruled out.

Definition *f* satisfies Maskin monotonicity provided that for every $(\theta, \theta') \in \Theta \times \Theta$

$$\forall i \in I, L_i(f(\theta), \theta) \subseteq L_i(f(\theta), \theta') \implies f(\theta) = f(\theta')$$

Definition *f* satisfies Maskin monotonicity provided that for every $(\theta, \theta') \in \Theta \times \Theta$

$$orall i \in I, L_i(f(heta), heta) \subseteq L_i(f(heta), heta') \implies f(heta) = f(heta')$$

Lower contour set:

$$L_i(f(\theta), \theta) = \{ x \in X | u_i^{\theta}(x) \le u_i^{\theta}(f(\theta)) \}.$$

$$L_i(f(\theta), \theta') = \{x \in X | u_i^{\theta'}(x) \le u_i^{\theta'}(f(\theta))\}.$$

Definition

f satisfies Maskin monotonicity provided that for every $(\theta,\theta')\in\Theta\times\Theta$

$$\forall i \in I, L_i(f(\theta), \theta) \subseteq L_i(f(\theta), \theta') \implies f(\theta) = f(\theta')$$

Definition

f satisfies No Veto Power (NVP) provided that for every $\theta \in \Theta$ if there is an alternative $x \in X$ such that $|\{i \in I | x \in argmaxu_i(z, \theta)\}| \ge I - 1$, then $f(\theta) = x$

Theorem

- 1. If f is Nash implementable, then f satisfies Maskin monotonicity
- I ≥ 3. If f satisfies Maskin monotonicity and No Veto Power, then f is Nash implementable

- Maskin Monotonicity
 - becomes restrictive with the size of $\boldsymbol{\Theta}.$
 - I ≥ 2, X ≥ 3 and Θ is large. If f satisfies MM, then f is constant or dictatorial.
- NVP
 - not necessary but is consider 'mild'.
 - NVP is vacuous in economic environments.
 - NVP is restrictive when I = 2.

Maskin's Theorem: Suppose $I \ge 3$. Maskin monotonicity is necessary and 'almost' sufficient for Nash implementation.

Maskin's Theorem: Suppose $I \ge 3$. Maskin monotonicity is necessary and 'almost' sufficient for Nash implementation.

- 'almost': No mathematical content.
- Unfortunate language used in this literature. I try to avoid it. Let the reader decide whether the gap in the characterization is small or not.

Literature

Bayesian Implementation:

- Bayesian Monotonicity: Postlewaite and Schmeidler (1986) Palfrey and Srivastava (1987), Palfrey and Srivastava (1989a), Jackson (1991).
- Augmented Revelation Principal: Mookherjee and Reichelstein (1990)

Nash Implementation:

- Full Characterization: Moore and Repullo (1990), Dutta and Sen (1991), Sjöström (1991).
- Full characterization for Bayesian Implementation: Open Problem.
 - Issue: Characterization will involve information structure.
 - Jackson (1991): Bayesian Monotonicity + Bayesian No Veto Power not enough.

- Information structure matters.
 - Complete Information: Pareto Efficiency is Nash Implementable in complete information environments
 - Incomplete Information: Exante, Interim, Ex-post are not (Palfrey and Srivastava (1987)).
- Full Bayesian implementation is restrictive in static games

Solution \setminus Game form	Static	Extensive
BNE	\checkmark	SPNE, Sequential
Refinement	Undominated, Trembling Hand	NA

Use stage game mechanisms + Equilibrium Refinement

Subgame Perfect Implementation:

- Theory: Moore and Repullo (1988), Abreu and Sen (1990).
- Experiments: Fehr et al. (2021), Aghion et al. (2018).

Equilibrium Refinements:

- Players do not play weakly dominated strategies.
- Palfrey and Srivastava (1991), Palfrey and Srivastava (1989b).

Key take away:

- 1. Maskin monotonicity and Bayesian monotonicity can be avoided
- 2. Any incentive compatible social choice function is implementable
- 3. Augmented Revelation Mechanisms: required

Jackson's critique: Jackson (1992)

- Any *f* is implementable if players do not play weakly dominated strategies.
- Implementing mechanism must be 'bad' if f is not dictatorial.

Literature Surveys:

- 1. Papers: Maskin and Sjöström (2002), Jackson (2001), and Palfrey (2002)
- 2. Book: Palfrey et al. (2020)

Higher Order Uncertainty

- 1. Equilibrium: Strategy profile is common knowledge \implies no strategic uncertainty.
- 2. Information Structure is common knowledge \implies no 'structural' uncertainty.

- 1. $\theta \in \Theta$ is common knowledge. What if θ is 'almost' common knowledge?
- 2. Two views:
 - weak: Nature announces θ to everyone simultaneously but with an error (Monderer and Samet, 1989)
 - strong: Nature announces θ to everyone sequentially but with an error (Rubinstein, 1989)
- 1. $\theta \in \Theta$ is common knowledge. What if θ is 'almost' common knowledge?
- 2. 'almost' common knowledge
 - weak: Everyone knows θ with high probability, everyone knows that everyone knows θ with high probability and so on... (Monderer and Samet, 1989)
 - strong: Everyone knows θ with high probability, everyone knows that everyone knows θ with high probability and so on upto some finite but large k. (Rubinstein, 1989)

Chung and Ely (2003)

- Robustness: Full implementation is required on all models *nearby* complete information in the sense of (Monderer and Samet, 1989).
- Result: Suppose players do not play weakly dominated strategies and implementation is required to be robust: *Maskin monotonicity is necessary*.
- The positive implementation results with refinement purely driven by complete information assumption.

Aghion et al. (2012)

- Robustness: Full SPNE-implementation is required on all models *nearby* complete information in the sense of (Monderer and Samet, 1989).
- Result: Maskin monotonicity is necessary.
- The positive implementation results with extensive form games purely driven by complete information assumption.

Chung and Ely (2003)

• The positive implementation results with refinement purely driven by complete information assumption.

Aghion et al. (2012)

- Robustness: Full SPNE-implementation is required on all models *nearby* complete information in the sense of (Monderer and Samet, 1989).
- Result: Maskin monotonicity is necessary.
- The positive implementation results with extensive form games purely driven by complete information assumption.

Chung and Ely (2003)

• The positive implementation results with refinement purely driven by complete information assumption.

Aghion et al. (2012)

- Robustness: Full SPNE-implementation is required on all models *nearby* complete information in the sense of (Monderer and Samet, 1989).
- Result: Maskin monotonicity is necessary.
- The positive implementation results with extensive form games purely driven by complete information assumption.

Fun fact: Aghion et al. (2012) only QJE in the literature!

Oury and Tercieux (2012)

- Relax the full implementation requirement to weak implementation, that is, mechanism design.
- Strengthen the robustness requirement to strong
- Implementing equilibrium must be robust to small deviations from the information structure (complete information here).
- This requirement is called continuous implementation

Result:

- if *f* is continuously implementable, then it must be fully implementable in rationalizable strategies.
- rationalizability:
 - Complete information: Bernheim (1984), Pearce (1984)
 - Incomplete Information: Battigalli and Siniscalchi (2003), and Dekel et al. (2007)

Oury and Tercieux (2012)

• This requirement is called continuous implementation

Result:

- if *f* is continuously implementable, then it must be fully implementable in rationalizable strategies
- revelation principle is not robust to higher order uncertainty
- Mechanism design + Higher order uncertainty ⇒ implementation in rationalizable strategies

- 1. Equilibrium: Strategy profile is common knowledge \implies no strategic uncertainty.
- 2. Information Structure is common knowledge \implies no 'structural' uncertainty.

Takeaway: if we want to relax (2) we need to relax (1).

- $S_i^{\mathcal{M},\theta}$: set of rationalizable strategies for i
- $S^{\mathcal{M},\theta} = S_1^{\mathcal{M},\theta} \times S_2^{\mathcal{M},\theta} \dots \times S_l^{\mathcal{M},\theta}$: set of rationalizable strategy profiles
- $S_i^{\mathcal{M},\theta}$: Iterated elimination of never best responses

$$\mathcal{S}_{i}^{\mathcal{M}, heta} = igcap_{k\geq 1} \mathcal{S}_{i,k}^{\mathcal{M}, heta}$$

When k = 0, let $\mathcal{S}_{i,0}^{\mathcal{M},\theta} = M_i$

Never Best Response

- Step *k* = 1
 - *m_i* is never a 1-best response if there is no belief λ_i ∈ Δ(*M*_{-i}) such that *m_i* is a best response to λ_i.
 - Remaining strategies: $S_{i,0}^{\mathcal{M},\theta}$, for every *i*
- Step *k* = 2
 - *m_i* is never a 2-best response if there is no belief λ_i ∈ Δ(S^{M,θ}_{i,1}) such that *m_i* is a best response to λ_i.
- Iterate!

When k = 0, let

$$\mathcal{S}_{i,0}^{\mathcal{M},\theta} = M_i$$

When $k \geq 1$, let

$$\mathcal{S}_{i,k}^{\mathcal{M},\theta} = \left\{ m_i \in \mathcal{S}_{i,k-1}^{\mathcal{M},\theta} \middle| \begin{array}{c} \exists \lambda_i \in \Delta(\mathcal{S}_{-i,k-1}^{\mathcal{M},\theta}) \text{ such that} \\ m_i \in \underset{m'_i \in \mathcal{M}_i}{\operatorname{argmax}} \sum_{\substack{m_{-i} \in \mathcal{S}_{-i,k-1}^{\mathcal{M},\theta}}} \lambda_i(m_{-i}) u_i(g(m_i,m_{-i}),\theta) \end{array} \right\}$$

Definition

A mechanism \mathcal{M} implements an SCF f in rationalizable strategies if for every $\theta \in \Theta$,

1. $\mathcal{S}^{\mathcal{M},\theta} \neq \emptyset$

2.
$$\bigcup_{m\in \mathcal{S}^{\mathcal{M},\theta}} g(m) = f(\theta)$$

Definition

f satisfies Maskin monotonicity^{*} provided that there exists a partition P_f of Θ such that f is measurable with respect to P_f for every $(\theta, \theta') \in \Theta \times \Theta$

$$\forall \hat{\theta} \in P(\theta), \exists i \in I, \ L_i(f(\theta), \hat{\theta}) \subseteq L_i(f(\theta), \theta') \implies \theta' \in P(\theta)$$

- 1. Maskin monotonicity ^ \implies Maskin monotonicity
- 2. Maskin monotonicity \Rightarrow Maskin monotonicity*: Jain (2021).
 - Condorcet rule on Condorcet domain (Healy and Peress (2015)).

Theorem

 $I \ge 3$, f satisfies Maskin monotonicity^{*} and NWA^{*}, then f is implementable in rationalizable strategies.

Full characterization:

- *I* ≥ 3: Xiong (2021), strict Group Monotonicity**
- $I \ge 2$: Jain et al. (2021), Iterated monotonicity (IM)
- IM endogenize the Partition that appears in *MM*^{**} and strict Group Monotonicity^{**}.

Basic Set up

• Basic Environment:

- Agents: $I = \{1, 2, ..., I\}.$
- Payoff types: Θ_i and $\Theta = \prod_{i \in I} = \Theta$
- Alternatives: X.
- Preferences:
 - $u_i: X \times \Theta \to \mathbb{R}$, expected utility
- Information:

•
$$T = \prod_{i \in I} T_i$$

• $T_i = (T_i, \hat{\theta}_i, \hat{\pi}_i)$, where $\hat{\theta}_i : T_i \to \Theta_i$, and $\hat{\pi}_i : T_i \to \Delta(\Theta_{-i})$
• $T = \prod_{i \in I} T_i$

The largest type space \mathcal{T}^* : Universal type space

- Nice topological structure
- The idea of closeness can be defined using metric spaces
- Topology on types: Dekel et al. (2005), Chen et al. (2010), and Chen et al. (2017)

Baseline type space $\overline{\mathcal{T}}$:

- Bayesian Implementation: fixed type space $\overline{\mathcal{T}}$, classical literature
- Local Robust: implementation on all type spaces nearby $\overline{\mathcal{T}}$
 - Oury and Tercieux (2012) \implies Interim Rationalizable implementation
- Global: implementation on all type spaces \mathcal{T} :
 - Bergemann and Morris \implies ex-post version of rationalizability

 \mathcal{M}^{Aug} and $M_i = \Theta_i \cup \mathbb{C}, \ \theta \in M \implies g(m) = f(\theta)$

$\mathbb{C}\setminus Robustness$	Robust	Interim- \mathcal{T}	Comp Info- \mathcal{T}^{CI}
No Restriction	BM(2011, GEB)	OT(2012, ECTA)	BMT(2012, JET)
	KS(2020, WP)	KSS(2020,WP)	Xiong(2021,WP)
	work in progress	work in progress	JKL(2021,WP)
			Jain (2021,GEB)
Finite-Virtual	BM (2009,TE)	AM(1992,WP)	AM(1992, ECTA)
Finite-Exact			CKSX(2021, GEB)
Direct	BM(2009,ReS)		HM (2012, TE)
Direct	OP(2019, AER)	OP(2019, AER)	OP(2019, AER)

BM:Bergemann-Morris; BMT:Bergemann-Morris-Tercieux; OT: Oury -Tercieux; KS: Kunimoto-Saran; KSS: Kunimoto-Saran-Serrano; AM: Abreu-Matsushima; HM: Healy-Mathevet; OP: Ollar-Penta; CKSX: Chen-Kunimoto-Sun-Xiong; JKL: Jain-Korpela-Lombardi. \mathcal{M}^{Aug} and $M_i = \Theta_i \cup \mathbb{C}, \ \theta \in M, g(m) = f(\theta)$

$\mathbb{C} \setminus Robustness$	Robust	Interim- \mathcal{T}	Comp Info- \mathcal{T}^{CI}
No Restriction	BM(2011, GEB)	OT(2012, ECTA)	BMT(2012, JET)
	KS(2020, WP)	KSS(2020,WP)	Xiong(2021,WP)
	work in progress	work in progress	JKL(2021,WP)
			Jain (2021,GEB)
Finite-Virtual	BM (2009,TE)	AM(1992,WP)	AM(1992, ECTA)
Finite-Exact			CKSX(2021, GEB)
Direct	BM(2009,RES)		HM (2012, TE)
Direct	OP(2017, AER)	OP(2017, AER)	OP(2017, AER)

Oury and Tercieux (2012); Abreu and Matsushima (1992); and Ollár and Penta (2017).

- Rationalizability is more than a solution concept
- It is a tool to perform robust equilibrium analysis.
- Battigalli and Siniscalchi (2003): 'tractable way to implement robust Bayesian Nash analysis'
- This is just the tip of the ice-berg. Many other frameworks on which Maskin (1999) has been studied.
- Almost all models follows the same basic insight.
- Single valued rules: What about $F : \Theta \to 2^X \setminus \{\emptyset\}$?

- Abreu, D. and Matsushima, H. (1992). Virtual implementation in iteratively undominated strategies II: Incomplete information. Princeton University working paper.
- Abreu, D. and Sen, A. (1990). Subgame perfect implementation: A necessary and almost sufficient condition. Journal of Economic theory, 50(2):285–299.
- Aghion, P., Fehr, E., Holden, R., and Wilkening, T. (2018). The role of bounded rationality and imperfect information in subgame perfect implementation—an empirical investigation. <u>Journal of the European</u> <u>Economic Association</u>, 16(1):232–274.
- Aghion, P., Fudenberg, D., Holden, R., Kunimoto, T., and Tercieux, O. (2012). Subgame-perfect implementation under information perturbations. The Quarterly Journal of Economics, 127(4):1843–1881.

References ii

- Battigalli, P. and Siniscalchi, M. (2003). Rationalization and incomplete information. Advances in Theoretical Economics, 3(1).
- Bergemann, D., Morris, S., and Tercieux, O. (2011). Rationalizable implementation. Journal of Economic Theory, 146(3):1253–1274.
- Bernheim, B. D. (1984). Rationalizable strategic behavior. Econometrica: Journal of the Econometric Society, pages 1007–1028.
- Chen, Y.-C., Di Tillio, A., Faingold, E., and Xiong, S. (2010). Uniform topologies on types. <u>Theoretical Economics</u>, 5(3):445–478.
- Chen, Y.-C., Di Tillio, A., Faingold, E., and Xiong, S. (2017). Characterizing the strategic impact of misspecified beliefs. <u>The Review</u> of Economic Studies, 84(4):1424–1471.
- Chung, K.-S. and Ely, J. C. (2003). Implementation with near-complete information. Econometrica, 71(3):857–871.

- Dekel, E., Fudenberg, D., and Morris, S. (2005). Topologies on types. Harvard Institute of Economic Research Discussion Paper, (2093).
- Dekel, E., Fudenberg, D., and Morris, S. (2007). Interim correlated rationalizability. Theoretical Economics.
- Dutta, B. and Sen, A. (1991). A necessary and sufficient condition for two-person nash implementation. <u>The Review of Economic Studies</u>, 58(1):121–128.
- Fehr, E., Powell, M., and Wilkening, T. (2021). Behavioral constraints on the design of subgame-perfect implementation mechanisms. <u>American</u> <u>Economic Review</u>, 111(4):1055–91.
- Healy, P. J. and Peress, M. (2015). Preference domains and the monotonicity of condorcet extensions. Economics Letters, 130:21–23.

- Holmström, B. and Myerson, R. B. (1983). Efficient and durable decision rules with incomplete information. <u>Econometrica</u>: Journal of the Econometric Society, pages 1799–1819.
- Jackson, M. O. (1991). Bayesian implementation. <u>Econometrica: Journal</u> of the Econometric Society, pages 461–477.
- Jackson, M. O. (1992). Implementation in undominated strategies: A look at bounded mechanisms. <u>The Review of Economic Studies</u>, 59(4):757–775.
- Jackson, M. O. (2001). A crash course in implementation theory. <u>Social</u> choice and welfare, 18(4):655–708.
- Jain, R. (2021). Rationalizable implementation of social choice correspondences. Games and Economic Behavior, 127:47–66.

- Jain, R., Korpella, V., and Lombardi, M. (2021). An iterative approach to rationalizable implementation. Technical report, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Maskin, E. (1999). Nash equilibrium and welfare optimality. <u>The Review</u> of Economic Studies, 66(1):23–38.
- Maskin, E. and Sjöström, T. (2002). Implementation theory. <u>Handbook</u> of social Choice and Welfare, 1:237–288.
- Mookherjee, D. and Reichelstein, S. (1990). Implementation via augmented revelation mechanisms. <u>The Review of Economic Studies</u>, 57(3):453–475.
- Moore, J. and Repullo, R. (1988). Subgame perfect implementation. Econometrica: Journal of the Econometric Society, pages 1191–1220.

References vi

- Moore, J. and Repullo, R. (1990). Nash implementation: a full characterization. <u>Econometrica: Journal of the Econometric Society</u>, pages 1083–1099.
- Ollár, M. and Penta, A. (2017). Full implementation and belief restrictions. American Economic Review, 107(8):2243–77.
- Oury, M. and Tercieux, O. (2012). Continuous implementation. Econometrica, 80(4):1605–1637.
- Palfrey, T. R. (2002). Implementation theory. <u>Handbook of game theory</u> with economic applications, 3:2271–2326.
- Palfrey, T. R. and Srivastava, S. (1987). On bayesian implementable allocations. The Review of Economic Studies, 54(2):193–208.
- Palfrey, T. R. and Srivastava, S. (1989a). Implementation with incomplete information in exchange economies. <u>Econometrica: Journal</u> of the Econometric Society, pages 115–134.

- Palfrey, T. R. and Srivastava, S. (1989b). Mechanism design with incomplete information: A solution to the implementation problem. Journal of Political Economy, 97(3):668–691.
- Palfrey, T. R. and Srivastava, S. (1991). Nash implementation using undominated strategies. <u>Econometrica</u>: Journal of the Econometric Society, pages 479–501.
- Palfrey, T. R., Srivastava, S., and Postlewaite, A. (2020). <u>Bayesian</u> implementation. CRC Press.
- Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection. <u>Econometrica</u>: Journal of the Econometric Society, pages 1029–1050.
- Postlewaite, A. and Schmeidler, D. (1986). Implementation in differential information economies. Journal of Economic Theory, 39(1):14–33.

Sjöström, T. (1991). On the necessary and sufficient conditions for nash implementation. Social Choice and Welfare, 8(4):333–340.

Xiong, S. (2021). Rationalizable implementation: Social choice function.