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Overconfidence

Observations from the literature:

• Overconfidence is robust
“Perhaps the most robust finding in the psychology
of judgement is that people are overconfident.”
(DeBondt & Thaler, 1995)

“No problem in judgement and decision making is
more prevalent and more potentially catastrophic
than overconfidence.” (Plous, 1993)

• Overconfidence can explain many phenomena
• Negotiation delays, excessive litigation, excessive market entry

(& failure), excessive stock trading (& volatility),
overinvestment by CEOs, initiation & prolonging of wars.



Problems with Overconfidence

1 Vague, subjective survey questions

2 Varying definitions of overconfidence
• Overplacement: You think you’re better than everyone else.
• Overestimation: You think you’re better than you really are.
• Overprecision: You underestimate the noise in your info.

3 Underconfidence can be observed
• Underestimation: Lichtenstein & Fischhoff, 1977; Erev,

Wallsten & Budescu, 1994; Griffn & Tversky, 1992.
• Underplacement: Kruger, 1999; Moore & Small, 2007;

Windschitl, Kruger & Simms, 2003.

4 Results apparently sensitive to task difficulty and the
definition of overconfidence

• Moore & Kim, 2003; Moore & Small, 2007.

“The difficulty effect is one of the most consistent
findings in the calibration literature...”
(Griffin & Tversky, 1992)



This Paper

Three contributions:

1 Clearly define three distinct notions of overconfidence

2 Directly & cleanly test the difficulty (‘hard-easy’) effect

3 Show that over/underconfidence can be ‘rationalized’

Be careful:

• Over/underconfidence is a statistical bias

• We don’t need a behavioral bias to generate it

• Over/underconfidence still exists & has consequences!!



Preview of Experimental Results

• Before a task:
• Slight overplacement by men, underplacement by women
• No over/underestimation

• After an easy task:
• Overplacement (ranking self higher than others)
• Underestimation (under-guessing own score)

• After a difficult task:
• Underplacement
• Overestimation



Overplacement Model: Example

• Several firms building a new type of product

• Each has prior expected per-unit cost of $10

• Production begins, actual cost of firm j is $6

• Firm j believes $10 was wrong for 2 reasons:

1 $10 was an overestimate of the industry average
2 Firm j is better (cheaper) than the average

• Thus, Ej [Ck |cj = $6] = $8, e.g.

• If cj < $10 for all j , all exhibit overplacement

• If cj > $10, j exhibits underplacement

• Easy ⇒ overplacement, Difficult ⇒ underplacement



Overestimation Model: Example

• Now firms get private, unbiased signal first (prototype)

• j ’s prototype cost is $6

• j believes the prior ($10) was wrong because:

1 $10 was too high for the industry average
2 Firm j is better (cheaper) than average
3 Firm j ’s signal error was favorable (negative)

• Ej [Cj |sj = $6] = $7 < Ej [Ck |sj = $6] = $8

• For econometrician, same ranking in expectation

• Easy ⇒ underestimation, Difficult ⇒ overestimation



The Experiment

• 59 subjects from CMU & Pittsburgh area

• Each subject takes 18 trivia quizzes with 10 questions each

• 6 topics: Geography, history, movies, music, science, sports

• 3 difficulty levels: Easy, Medium, Hard

• Difficulty in randomized blocks: [EHM] [MEH] [MHE] ...

• Topics randomized uniformly

Example

What is the capital of Australia? Who painted the Sistine Chapel?
Who was the first MVP of the NBA?



Reports & Incentives

• r % on the quiz pays $25 r
100

• 3 time stages/period: Ex-Ante, Interim, & Ex-Post

• 5 belief elicitations per period:

Ex-Ante Interim Ex-Post

• Elicit entire belief distribution
• p (0), p (1), . . ., p (10)
• Subjects drag slider bars
• ‘Other’ is a randomly selected previous participant

• Paid via quadratic scoring rule: 1 + 2 p(x) − ∑
10

k=0 p(k)2



Reports & Incentives



Manipulations

Do subjects manipulate their predictions & performance?

• Avg $ on Quiz: $12.18, Two self-predictions: $2.39

• Best manipulation: $2.54 and $4.00, resp.

• Easy quiz avg. score: 8.86/10
• 11/492 (2.2%) scores in {0, 1} from 9 different subjects

• All quizzes:
• 23/1476 (1.6%) predict in {0, 1, 9, 10} & are correct

Smaller manipulations??



Result 1: Test Differences

Result
Scores are (1) low on hard quizzes, (2) above average on medium
quizzes, and (3) high on easy quizzes. Subjects perceive these
differences.

Dependant
Variable Score E (Self|Interim)

Easy 8.864 8.644

(83.48) (79.68)
Medium 5.925 5.930

(55.80) (54.67)
Difficult 0.693 1.503

(6.53) (13.86)

Shifts in interim beliefs are smaller than shifts in scores



Result 2: Ex-Ante Overconfidence

Result
No ex-ante over/underestimation.

• E [Self|Ex-Ante]− Score ≈ 0 (p-val 0.581)

• No effect by gender

Result
Men exhibit slight overplacement, women slight underplacement

• Period 1 median: Men: 0.436 Women: -0.148
(p-vals 0.008, 0.090)

• All periods: Men: 0.126 Women: -0.058
(p-vals < 0.001, 0.006)

• Pooled across genders: 0.020 (p-val 0.022)

• Magnitudes are small tiny (n = 1, 476)

• (Niederle & Vesterlund 2007)



Result 3: Over/underplacement

Result
Subjects exhibit overplacement after easy quizzes and
underplacement after difficult quizzes.

Dependant E (Self|Interim) Score
Variable −E (Other|Interim) −E (Other|Ex-Post)

Easy 0.385 0.369

(4.02) (3.58)
Medium -0.221 -0.284

(-2.30) (-2.76)
Difficult -1.448 -1.660

(-15.12) (-16.14)



Result 3: Over/underplacement
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Result 4: Over/underestimation

Result
Subjects exhibit underestimation after easy quizzes and
overestimation after difficult quizzes.

Dependant E (Self|Interim)
Variable −Score

Easy -0.219

(-3.98)
Medium 0.006

(0.10)
Difficult 0.810

(14.69)



The Basic Pattern

Score
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Overprecision

• Actual scores are highly bimodal: Pr{0, 10} = 0.498

• Ex-ante beliefs are not:
• Avg pi{0, 10} = 0.164 (< uniform)
• Last period: Avg pi{0, 10} = 0.247 (> uniform)

• Thus, overprecision



Other Results

• Time Trend/Learning:
• No block effects =⇒ no (obvious) time trend

• Subjects’ over/underplacement is usually wrong
• 44.5% exhibit interim overplacement after easy quizzes...

of those, 35.6% were correct.
• 63.2% exhibit interim underplacement after hard quizzes...

of those, 39.5% were correct.

• Underplacement is larger in magnitude



The Basic Model

• Players simultaneously perform a task (quiz)

• Player i ’s score is xi , a realization of Xi

• Players believe E [Xi ] = E [Xj ] = S

• Example: Xi = S + Li

• ‘Simplicity’ (S) has mean µ
• ‘Luck’ (Li ) has mean zero

• Players see xi , report beliefs about Xj

Definition
Overplacement: E [Xj |xi ] < xi

Underplacement: E [Xj |xi ] > xi



The Basic Intuition

• Suppose Xi = S + Li with S ∼ N (µ, σ2

S ) and Li ∼ N (0, σ2

L).

• In this case Bayes’s rule implies

E [S |xi ] =

[
σ2

L

σ2

L + σ2

S

]

︸ ︷︷ ︸

α

µ +

[
σ2

S

σ2

L + σ2

S

]

︸ ︷︷ ︸

1−α

xi

• But this means

E [Xj |xi ] = E [S + Lj |xi ]

= E [S |xi ] + E [Lj |xi ]
︸ ︷︷ ︸

0

= (α) µ + (1− α) xi

• Thus, E [Xj |xi ] is between µ and xi .



The Basic Intuition

• Whenever E [Xj |xi ] is between µ and xi we have:

• Higher-than-expected score =⇒ overplacement

• Lower-than-expected score =⇒ underplacement



Discrete Scores

• Suppose agents take a 10-question quiz

• xi ∈ {0, 1, . . . , 10}

• Subjects believe Xi ∼ binom(10, p) with p ∼ beta(β1, β2)

• Then µ = 10
β1

β1+β2
and

E [Xj |xi ] =

[
β1 + β2

β1 + β2 + 10

]

︸ ︷︷ ︸

α

µ +

[

1−
β1 + β2

β1 + β2 + 10

]

︸ ︷︷ ︸

1−α

xi

• xi > µ =⇒ E [Xj |xi ] < xi (overplacement)
xi < µ =⇒ E [Xj |xi ] > xi (underplacement)



Robustness

Does Bayes’s rule always imply ‘betweenness’:

E [S |Xi = xi ] = α µ + (1− α) xi ?

Chambers & Healy (2008):

• Bayes’s rule implies nothing in general

• If f (S) and f (Li ) are symmetric & quasiconcave then yes

• Counter-examples with highly bimodal beliefs (compare: data)



Overestimation

• Add an ‘intermediate’ stage

• Agents have performed the task, but don’t know their score

• Agents receive a noisy signal (Yi) of their score, with

E [Yi |xi ] = xi

• Example: Yi = Xi + ui



Overestimation

• Define overestimation as xi < E [Xi |yi ] ?

• Problem: Results depend on realization of yi

E[X|y] xy

E[X|y]x y



Overestimation

• Solution: expected overestimation

• Compare xi to researcher’s expectation of subject’s
expectation of Xi

EYi
[ E [Xi |yi ]

︸ ︷︷ ︸

i ’s expectation

|xi ]

︸ ︷︷ ︸

researcher’s expectation

Definition
Overestimation in expectation: xi < EYi

[E [Xi |yi ] |xi ]
Underestimation in expectation: EYi

[E [Xi |yi ] |xi ] < xi



Normal Priors

• Yi = Xi + Ui , all normally distributed with E [Ui ] = 0

• E [Xi |yi ] = ᾱµ + (1− ᾱ)yi

EYi
[E [Xi |yi ]|xi ] = EYi

[ᾱµ + (1− ᾱ)yi |xi ]

= ᾱµ + (1− ᾱ)E [Yi |xi ]

= ᾱµ + (1− ᾱ)xi

• On average, i ’s expectation of his score is between µ and xi

• Lower-than-expected score =⇒ overestimation in expectation
Higher-than-expected score =⇒ underestimation in
expectation



Summary of Predictions

Task Relative Absolute
Difficulty Performance Performance

Unexpectedly Easy Overplacement Underestimation
Unexpectedly Difficult Underplacement Overestimation



Model Extensions

Multi-Dimensional Signals

• The contents of the test might provide 2nd signal

• Let Ri = S + Qi with E [Qi ] = 0.

• Then E [Ri ] = µ

• A very extreme Ri could reverse the results
“I did well, but the final was just a copy of the midterm!”

• Like Yi , econometrician doesn’t observe Ri

• On average, 2nd signal reinforces µ

• Magnitude of shifts is smaller
• (See paper for normal example)



Model Extensions

Ability and Prior Overconfidence

• Agnostic about its source (learned, bias, . . . ?)

• Xi = S + Li + Ai with E [Ai ] 6= 0

• Xi = S + L̂i + E [Ai ], with E [L̂i ] = 0

• Easy tasks increase overplacement

• Difficult tasks decrease overplacement

• ‘Luck’ has higher variance, increasing shift magnitudes



Non-Bayesian Updating

People aren’t perfect Bayesians (Grether, etc.)

• Only need betweenness, not Bayes’s rule

• Non-Bayesians can exhibit betweenness

• Predictions are ‘robust’ in this respect



Model vs. Data

• Data are consistent with basic predictions

• Betweenness satisfied 64.8% of the time

• Betweenness or reversing (also sufficient): 80.1%

• Interim expected score closer to mean than actual score

• Learning/experience should reduce the effect
• Each quiz is different
• Data for last 3 quizzes has same pattern, smaller magnitudes
• Subjects do get slightly better at predicting scores
• No overconfidence with repetitive tasks

(Kahneman & Riepe 1992) or expertise (bridge: Keren 1987;
horses: Hausch et al 1981; weather: Murphy & Winkler 1984)



Other Models

Van den Steen (AER 2004) and Santos-Pinto & Sobel (AER 2005)

• Set of choices X = {x1, x2, . . . , xN}

• Different objective functions/beliefs of success fi (x)

• x∗
i 6= x∗

j , but both think they’re right & other is wrong

• No inference from others’ choices

• Predicts overplacement, not underplacement or
over/underestimation

• Task difficulty not relevant



Other Models

Zabojnik (ET 2004)

• Can either produce & consume or test your ability

• Payoff is convex in ability

• High test results ⇒ high opportunity cost to testing

• Asymmetric testing ⇒ overestimation on average

• Predicts overplacement, not underplacement or
over/underestimation

• Task difficulty not relevant



Other Models

Dubra & Krishna (2008)

• Takes our idea to the extreme

• “Given population-level overconfidence data, is there any
signaling model that could rationalize the data?”

• Our paper: uncertainty about difficulty, score serves as the
signal

• Their paper: Signal could come from anywhere, observed or
not

• Mostly negative results: “almost everything can be
rationalized”



Conclusion

What we have accomplished:

• Clear definitions of ‘overconfidence’

• Experiment that compiles disperse results

• Simple explanation of the source of overconfidence



The End



Updating Toward the Signal
with Christopher P. Chambers



The Setting

• X = some random variable of interest

• Z = X + ε̃ = noisy signal of X

• ε̃ may depend on X

• E [ε̃|X = x ] = 0 ∀x

• Care about E [X |Z = z ]

• Often assumed that E [X |z ] = αz + (1− α)E [X ]

• When is this appropriate? Is it robust?



Assumptions

• Assume all r.v.’s are real-valued and have cts densities & finite
means

• Consider families of error terms E

• Questions: What conditions on X and E guarantee

E [X |z ] = αz + (1 − α)E [X ] ? (1)

Does (1) imply anything about X or E?

• Relevant properties of r.v.’s:
• Symmetric: symmetric density about the mean
• Quasiconcave: quasiconcave density (unimodal)



Definitions

Definition
X updates toward the signal w.r.t E (UTS-E) if ∀ε̃ ∈ E , ∀z
∃α ∈ [0, 1] s.t.

E [X |Z = z ] = αz + (1− α)E [X ]. (2)

Definition
X updates in the direction of the signal w.r.t E (UDS-E) if
equation (2) holds with α ≥ 0 ∀ε̃ ∈ E .

Definition
X satisfies mean reinforcement with respect to E (MR-E) if
∀ε̃ ∈ E

E [X |z = E [X ]] = E [X ] (3)



Definitions

UTS:

 E[X|z] z

UDS:

 E[X|z]z

MR:

=E[X|z]z=



Error Terms

All error terms are continuous, mean-zero, and satisfy sym. dep.:

Definition
ε̃ satisfies symmetric dependence if, for almost every ε, a ∈ R,

fε̃(ε|X = E [X ] + a) = fε̃(ε|X = E [X ] − a).

If X is symmetric, sym.dep. gives a symmetric joint distribution:
(Wlog, assume throughout that E [X ] = 0)

f (x , ε) = fX (x) fε̃(ε|x)

= fX (−x) fε̃(ε| − x)

= f (−x , ε)



Visualizing the Conditions
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The Normal-Normal Case
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If X ∼ N (0, 2) and ε̃ ∼ N (0, 1) then E [X |z = 2] = 1.6. UTS!



Visualizing the Conditions
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Visualizing the Conditions

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

X

ε
f(x,ε)z = 2

Here, E [X |z = 2] < 2 (or E [ε̃|z = 2] > 0)



MR: Sufficient Conditions

Proposition

If X is symmetric and ε̃ is symmetric then X satisfies MR-{ε̃}

Proof.
See pictures...
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UDS: Sufficient Conditions

X symmetric, ε̃ symmetric 6⇒ X UDS-{ε̃}.

Example

Let fX (x) =

{
1

3

(

1− |x |
3

)

if x ∈ [−3, 3]

0 otherwise

and ε̃ ∼ (−2, 1

2
; 2, 1

2
). Then E [X |z ] = −z , so UDS fails.

To get UDS, need another restriction on errors:

Proposition

If X is symmetric and ε̃ is symmetric and quasiconcave then X
satisfies UDS-{ε̃}



UTS: Sufficient Conditions

X symmetric, ε̃ sym & q.c. 6⇒ X UTS-{ε̃}.

Example

Let fε̃ (ε) =

{
1

3

(

1− |ε|
3

)

if ε ∈ [−3, 3]

0 otherwise

and X = (−2, 1

2
; 2, 1

2
). Then E [X |z ] = 2z , so UTS fails.

Proposition

If X is symmetric and quasiconcave and ε̃ is symmetric,
quasiconcave, and independent of X then X satisfies UTS-{ε̃}.



Summary of Results

Family of Error Terms Prior Condition

Sym Sym ⇒ MR
Sym Sym 6⇒ UDS
Sym QC Sym ⇒ UDS
Sym QC Sym 6⇒ UTS
Sym QC Ind∗ Sym QC ⇒ UTS



MR: Necessary Conditions 1

Let E2pt = {ε̃ ∼ (−y , p; y , 1− p) : y ∈ R}.

Proposition

Pick any E with E2pt ⊆ E .
If X satisfies MR-E then X is symmetric.

Proof.

1 Pick any y > 0 and let ε̃ ∼ (−y , 1

2
; y , 1

2
).

2 z = 0 means x ∈ {−y , y}.

3 Thus, E [X |z = 0] ∝ −yfX (−y ) + yfX (y ).

4 MR-E means −y fX (−y ) + y fX (y ) = 0 for every y > 0.

5 Thus, fX (y ) = fX (−y ), so X is symmetric.



UDS: An Impossibility Result

Can we get the stronger concept of UDS?

Proposition

If E2pt ⊆ E then there does not exist an X such that X UDS-E .



MR: Necessary Conditions 2

Let EU = {ε̃ ∼ U [−y , y ] : y ∈ R}.

Proposition

Pick any E with EU ⊆ E .
If X satisfies MR-E then X is symmetric.



UTS: Necessary Conditions

Proposition

Pick any E with EU ⊆ E .
If X satisfies UTS-E then X is symmetric and quasiconcave.

Proof (Sketch).

• UTS-E ⇒ MR-E ⇒ X symmetric. X

• For quasiconcavity, see pictures...
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Summary of Results

Family of Error Terms Prior Condition

Sym Sym ⇒ MR
Sym Sym 6⇒ UDS
Sym QC Sym ⇒ UDS
Sym QC Sym 6⇒ UTS
Sym QC Ind∗ Sym QC ⇒ UTS

E2pt ⊆ E Sym ⇐ MR

E2pt ⊆ E 6 ∃ ⇐ UDS

EU ⊆ E Sym ⇐ MR

EU ⊆ E Sym QC ⇐ UTS



Characterizations

Can form various ‘iff’ statements:

1 If E2pt ⊆ E and all ε̃ ∈ E are symmetric then

X Symmetric ⇔ MR−E

2 If EU ⊆ E and all ε̃ ∈ E are symmetric & q.c. then

X Symmetric ⇔ MR−E ⇔ UDS−E

3 If EU ⊆ E and all ε̃ ∈ E are symmetric, q.c., & indep. then

X Sym & Q.C. ⇔ UTS−E



Interpretations

• If you want UTS, assume symmetry & q.c. of X & ε̃.
• Don’t need normal distributions...

• If you have a normal prior, UTS is fairly robust to changes in ε̃.

• If you have a normal prior, e.g., assuming UTS means
assuming sym. & q.c. of ε̃.

• If you don’t use a sym. & q.c. prior then there is some
uniformly distributed ε̃ and some z such that UTS fails.

• Econometrics: posterior mean = estimate of X . UTS ⇒ a
‘well behaved’ estimate.



On the Robustness of Good News and Bad News
with Christopher P. Chambers



Milgrom 1981

• Milgrom (1981) “Good News and Bad News” Bell Journal

• Z = X + ε̃

• Consider two signals z ′ > z

• Want monotonicity of the posterior distributions

Theorem (Milgrom 1981)

f (z |x) satisfies strict MLRP iff z ′ > z implies that
F (·|z ′) >FOSD F (·|z) for all non-degenerate priors on X

• Note: allows all priors (X ) but fixes an error term (ε̃).



Our Result

• Suppose we fix a prior and allow the error to vary.

Theorem
Let X be a non-degenerate bounded random variable. There exists
a noise term ε̃ that is symmetric, quasiconcave, and independent of
X and two real numbers z ′ > z for which F (·|z) >FOSD F (·|z ′).

• With freedom in the error term you can always reverse the
Milgrom result!

• Where should our models have more freedom: in the prior or
in the error?



THE END
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