Equilibrium Participation in Public Good Economies

Paul J. Healy

Ohio State

PET'07 Nashville

1 / 22

P.J. Healy (OSU) Equil. Participation PET'07

Previous Work

• The need for a mechanism

- Voluntary contributions typically inefficient
- Misrevelation of preferences
- Mechanisms as part of a larger game
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE

Participation decision after the mechanism

- Renegotiation (Maskin & Moore '99, e.g.)
- Jackson & Palfrey '01
- $g\left(heta
 ight) =a$, but then players move to $h\left(a, heta
 ight)$
- This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01'
 - $g\left(heta
 ight) =a$, but then players move to $h\left(a, heta
 ight)$
 - This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01:
 - $g\left(heta
 ight) =a$, but then players move to $h\left(a, heta
 ight)$
 - This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Paltrey '01:
 - $g(\theta) = a$, but then players move to $h(a, \theta)$
 - This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Paltrey '01:
 - $g\left(heta
 ight) =a$, but then players move to $h\left(a, heta
 ight)$
 - This paper....

Previous Work

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in *n*
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01:
 - $g\left(heta
 ight) =a$, but then players move to $h\left(a, heta
 ight)$
 - This paper....

3 / 22

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01:
 - $g\left(\theta\right)=a$, but then players move to $h\left(a,\theta\right)$
 - This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01:
 - $g\left(heta
 ight) = a$, but then players move to $h\left(a, heta
 ight)$
 - This paper..

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01: $g(\theta) = a$, but then players move to $h(a, \theta)$
 - This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01: $g(\theta) = a$, but then players move to $h(a, \theta)$
 - This paper...

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - ullet Shinohara '07: Prop.C.S. \Longrightarrow Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01: $g(\theta) = a$, but then players move to $h(a, \theta)$
 - This paper...

Previous Work

- The need for a mechanism
 - Voluntary contributions typically inefficient
 - Misrevelation of preferences
- Mechanisms as part of a larger game:
- Participation decision before the mechanism
 - Saijo & Yamato '99: Participation drops in n
 - Dixit & Olson '00: MSNE Pr(efficient) drops in n
 - Shinohara '07: Prop.C.S. ⇒ Efficient coalitions are strict NE
- Participation decision after the mechanism
 - Renegotiation (Maskin & Moore '99, e.g.)
 - Jackson & Palfrey '01: $g(\theta) = a$, but then players move to $h(a, \theta)$
 - This paper...

PET'07

3 / 22

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all.
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

The Current Paper

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

4 / 22

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- Economy with 1 private, 1 public good
- (Unspecified) mechanism selects an allocation
- Allocation defines the participation game
- Possible models of the participation decision:
 - Full enforcement: chosen allocation is realized
 - No enforcement: voluntary contribution game
 - This paper: either contribute as requested or not at all
- An allocation satisfies equilibrium participation (EP) if it is a NE for all agents to participate
 - Property of allocations, not mechanisms
 - Provides a constraint on mechanisms

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1 = \omega_2 = 8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1 = \omega_2 = 8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1=\omega_2=8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1 = \omega_2 = 8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1=\omega_2=8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1 = \omega_2 = 8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- 2 agents, 1 pvt good $x = (x_1, x_2)$, 1 pub good y
- Constant marginal cost c'(y) = 6
- Endowments of pvt good only: $\omega_1 = \omega_2 = 8$
- For any (x, y), define $t_i = \omega_i x_i$

•
$$u_i(x_i, y) = \begin{cases} x_i + 10y & \text{if } y \le 1/2 \\ x_i + 4y + 3 & \text{if } y \in [1/2, 1] \\ x_i + 1y + 6 & \text{if } y \ge 1 \end{cases}$$

- Individual optimum: $y^* = 1/2$
- PO: $y^o = 1$ and $\sum_i (\omega_i x_i) = 6$

- Suppose a PO & IR mechanism selects $(y, t_1, t_2) = (1, 3, 3)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$ in NE
- **Solution** Either in (pay t_i) or out (pay nothing):

$$\begin{array}{c|cccc}
t_1 \setminus t_2 & 3 & 0 \\
3 & 12, 12 & 10, 13 \\
0 & 13, 10 & 8, 8
\end{array}$$

PSNE: only 1 contributor $\implies y = 1/2$

- Suppose a PO & IR mechanism selects $(y, t_1, t_2) = (1, 3, 3)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$ in NE
- **Solution** Either in (pay t_i) or out (pay nothing):

$$\begin{array}{c|cccc}
t_1 \setminus t_2 & 3 & 0 \\
3 & 12, 12 & 10, 13 \\
0 & 13, 10 & 8, 8
\end{array}$$

PSNE: only 1 contributor $\implies y = 1/2$

- Suppose a PO & IR mechanism selects $(y, t_1, t_2) = (1, 3, 3)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$ in NE
- **Solution** Either in (pay t_i) or out (pay nothing):

$$\begin{array}{c|cccc}
t_1 \setminus t_2 & 3 & 0 \\
3 & 12, 12 & 10, 13 \\
0 & 13, 10 & 8, 8
\end{array}$$

PSNE: only 1 contributor $\implies y = 1/2$

- Suppose a PO & IR mechanism selects $(y, t_1, t_2) = (1, 3, 3)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$ in NE
- **3** Either in (pay t_i) or out (pay nothing):

$$\begin{array}{c|cccc}
t_1 \setminus t_2 & 3 & 0 \\
3 & 12, 12 & 10, 13 \\
0 & 13, 10 & 8, 8
\end{array}$$

PSNE: only 1 contributor $\implies y = 1/2$

- A different PO mechanism selects $(y, t_1, t_2) = (1, 6, 0)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$
- \odot Either in (pay t_i) or out (pay nothing):

$$\begin{array}{cccc}
t_1 \setminus t_2 & 0 & 0 \\
6 & 9, 15 & 9, 15 \\
0 & 8, 8 & 8, 8
\end{array}$$

Unique NE outcome: full contribution, y = 1

An Example

- A different PO mechanism selects $(y, t_1, t_2) = (1, 6, 0)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$
- \odot Either in (pay t_i) or out (pay nothing):

$$\begin{array}{cccc}
t_1 \setminus t_2 & 0 & 0 \\
6 & 9, 15 & 9, 15 \\
0 & 8, 8 & 8, 8
\end{array}$$

Unique NE outcome: full contribution, y = 1

PET'07

7 / 22

An Example

- A different PO mechanism selects $(y, t_1, t_2) = (1, 6, 0)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$
- **Solution** Either in (pay t_i) or out (pay nothing):

$$t_1 \setminus t_2 = 0 = 0$$
 $6 = 9, 15 = 9, 15$
 $0 = 8, 8 = 8, 8$

Unique NE outcome: full contribution, y = 1

7 / 22

An Example

- A different PO mechanism selects $(y, t_1, t_2) = (1, 6, 0)$
- If agents can't opt out, allocation stands
- ② If agents can freely adjust t_i , get $y^* = 1/2$
- **③** Either in (pay t_i) or out (pay nothing):

$$\begin{array}{c|cccc} t_1 \backslash t_2 & 0 & 0 \\ 6 & 9,15 & 9,15 \\ 0 & 8,8 & 8,8 \end{array}$$

Unique NE outcome: full contribution, y = 1

7 / 22

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- $\mathcal{Z}(e)$ = feasible allocations
- SCC: maps e into subsets of $\mathcal{Z}\left(e\right)$ Example: $\mathcal{IR}\left(e\right) = \left\{\left(x,y\right) : \left(x_{i},y\right) \succeq_{i} \left(\omega_{i},0\right) \ \forall i\right\}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- $\mathcal{Z}(e)$ = feasible allocations
- SCC: maps e into subsets of $\mathcal{Z}(e)$ Example: $\mathcal{IR}(e) = \{(x,y) : (x_i,y) \succeq_i (\omega_i,0) \ \forall i \}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

PET'07

8 / 22

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- Z(e) = feasible allocations
- SCC: maps e into subsets of $\mathcal{Z}\left(e\right)$ Example: $\mathcal{IR}\left(e\right) = \left\{\left(x,y\right) : \left(x_{i},y\right) \succeq_{i} \left(\omega_{i},0\right) \ \forall i\right\}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- $\mathcal{Z}(e)$ = feasible allocations
- SCC: maps e into subsets of $\mathcal{Z}(e)$ Example: $\mathcal{IR}(e) = \{(x,y) : (x_i,y) \succeq_i (\omega_i,0) \ \forall i \}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- $\mathcal{Z}(e) = \text{feasible allocations}$
- SCC: maps e into subsets of $\mathcal{Z}(e)$ Example: $\mathcal{IR}(e) = \{(x,y) : (x_i,y) \succeq_i (\omega_i,0) \ \forall i\}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- $\mathcal{Z}(e) = \text{feasible allocations}$
- SCC: maps e into subsets of $\mathcal{Z}\left(e\right)$ Example: $\mathcal{IR}\left(e\right) = \left\{\left(x,y\right) : \left(x_{i},y\right) \succeq_{i} \left(\omega_{i},0\right) \ \forall i\right\}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

P.J. Healy (OSU) Equil

- Allocations: $(x, y) \in \mathbb{R}^{n+1}_+$
- $t_i = \omega_i x_i$, $T = \sum_i t_i$, $T_{-i} = T t_i$
- PG production function: F(T)
- Economy: $e = (\{\succeq_i, \omega_i\}_{i=1}^n, F) \in \mathcal{E}$
- $\mathcal{Z}(e) = \text{feasible allocations}$
- SCC: maps e into subsets of $\mathcal{Z}\left(e\right)$ Example: $\mathcal{IR}\left(e\right) = \left\{\left(x,y\right) : \left(x_{i},y\right) \succeq_{i} \left(\omega_{i},0\right) \ \forall i\right\}$
- Mechanism: $\Gamma = (S, g)$ where $g : S \to \mathcal{Z}(e)$

8 / 22

Kolm Triangle

• Let $\omega = (1/2, 1/2)$ and F(T) = T

Kolm Triangle: Drop-Out Points

10 / 22

Kolm Triangle: Equilibrium Participation

• Equilibrium Participation (EP): $(x,y) \succeq_i (\omega_i, y^{(-i)}) \ \forall i$

11 / 22

Kolm Triangle: EP Fails

• Equilibrium Participation: $(x, y) \succeq_i (\omega_i, y^{(-i)}) \ \forall i$

Kolm Triangle: The EP Set

• $\mathcal{EP}_i(e) = \{ (x, y) : (x, y) \text{ satisfies EP for } i \}$ and $\mathcal{EP}(e) = \bigcap_i \mathcal{EP}_i(e)$

EP: General Definition

Definition

Given any allocation $(x, y) \in \mathcal{Z}(e)$, for each i define

$$x^{(-i)} = \omega_{i}$$

$$y^{(-i)} = \begin{cases} F(T_{-i}) & \text{if } t_{i} \geq 0, T_{-i} \geq 0, \& y \geq F(T_{-i}) \\ 0 & \text{if } T_{-i} < 0 \\ y & \text{otherwise} \end{cases}$$

The allocation (x, y) satisfies **equilibrium participation** (**EP**_i) for i if $(x, y) \succeq_i (x^{(-i)}, y^{(-i)})$. The allocation (x, y) satisfies **equilibrium participation** (**EP**) if it satisfies EP_i for every i.

EP vs. NE and IR

• $\mathcal{NE}(e) = \{(x, y) : (x, y) \text{ is a PSNE outcome of the VCM} \}$

Theorem

$$\mathcal{NE}\left(e\right)\subseteq\mathcal{EP}\left(e\right)\ \forall e$$

• $\mathcal{IR}(e) = \{(x,y) : (x,y) \succeq_i (\omega,0) \ \forall i\}$

Theorem

If preferences are monotonic, then $\mathcal{EP}\left(e\right)\subseteq\mathcal{IR}\left(e\right)$

Proof.

$$(x,y) \succeq_i (\omega, y^{(-i)}) \succeq_i (\omega, 0)$$

Theorem

There are economies in which no PO point is the equilibrium outcome of an induced participation game (thus, $\mathcal{PO}(e) \cap \mathcal{EP}(e) = \emptyset$)

- Fix n > 2, let F(T) = T, $\omega_i = 1/n$, and $u_i(x,y) = \begin{cases} \frac{3}{2n}y + x_i & \text{if} \quad y \le 1\\ \frac{1}{2n}y + \frac{1}{n} + x_i & \text{if} \quad y \ge 1 \end{cases} \quad \forall i$
- Note: MRS < MC everywhere
- PO: (x^o, y^o) : $y^o = \sum_i t_i^o = 1$
- If $t_i^o > 0$ then $v^{o(-i)} = 1 t_i^o < 1$, so

$$u_i(x^o, y^o) = \frac{3}{2n} + \omega_i - t_i^o$$
$$u_i(\omega, y^{o(-i)}) = \frac{3}{2n} (1 - t_i^o) + \omega_i$$

Theorem

There are economies in which no PO point is the equilibrium outcome of an induced participation game (thus, $\mathcal{PO}\left(e\right)\cap\mathcal{EP}\left(e\right)=\emptyset$)

- Fix $n \ge 2$, let F(T) = T, $\omega_i = 1/n$, and $u_i(x,y) = \begin{cases} \frac{3}{2n}y + x_i & \text{if } y \le 1\\ \frac{1}{2n}y + \frac{1}{n} + x_i & \text{if } y \ge 1 \end{cases} \quad \forall i$
- Note: MRS < MC everywhere
- PO: $(x^o, y^o) : y^o = \sum_i t_i^o = 1$
- If $t_i^o > 0$ then $y^{o(-i)} = 1 t_i^o < 1$, so

$$u_i(x^o, y^o) = \frac{3}{2n} + \omega_i - t_i^o$$
$$u_i(\omega, y^{o(-i)}) = \frac{3}{2n} (1 - t_i^o) + \omega_i$$

Theorem

There are economies in which no PO point is the equilibrium outcome of an induced participation game (thus, $\mathcal{PO}\left(e\right)\cap\mathcal{EP}\left(e\right)=\emptyset$)

- Fix $n \ge 2$, let F(T) = T, $\omega_i = 1/n$, and $u_i(x,y) = \begin{cases} \frac{3}{2n}y + x_i & \text{if } y \le 1\\ \frac{1}{2n}y + \frac{1}{n} + x_i & \text{if } y \ge 1 \end{cases} \quad \forall i$
- Note: MRS < MC everywhere
- PO: (x^o, y^o) : $y^o = \sum_i t_i^o = 1$
- If $t_i^o > 0$ then $y^{o(-i)} = 1 t_i^o < 1$, so

$$u_i(x^o, y^o) = \frac{3}{2n} + \omega_i - t_i^o$$
$$u_i(\omega, y^{o(-i)}) = \frac{3}{2n} (1 - t_i^o) + \omega_i$$

Theorem

There are economies in which no PO point is the equilibrium outcome of an induced participation game (thus, $\mathcal{PO}\left(e\right)\cap\mathcal{EP}\left(e\right)=\emptyset$)

- Fix $n \ge 2$, let F(T) = T, $\omega_i = 1/n$, and $u_i(x,y) = \begin{cases} \frac{3}{2n}y + x_i & \text{if } y \le 1\\ \frac{1}{2n}y + \frac{1}{n} + x_i & \text{if } y \ge 1 \end{cases} \quad \forall i$
- Note: MRS < MC everywhere
- PO: (x^o, y^o) : $y^o = \sum_i t_i^o = 1$
- If $t_i^o > 0$ then $y^{o(-i)} = 1 t_i^o < 1$, so

$$u_i(x^o, y^o) = \frac{3}{2n} + \omega_i - t_i^o$$
$$u_i(\omega, y^{o(-i)}) = \frac{3}{2n} (1 - t_i^o) + \omega_i$$

- $u_i(x,y) = v_i(y) t_i$
- Feasibility: $t_i \ge c(y) c(y^{(-i)}) = \int_{y^{(-i)}}^{y} c'(y) dy$
- EP: $t_i \le v_i(y) v_i(y^{(-i)}) = \int_{v^{(-i)}}^{y} v_i'(y) dy$
- Thus:

$$\int_{y^{\left(-i\right)}}^{y}c'\left(y\right)dy\leq t_{i}\leq\int_{y^{\left(-i\right)}}^{y}v_{i}'\left(y\right)dy$$

17 / 22

- $u_i(x,y) = v_i(y) t_i$
- Feasibility: $t_i \ge c\left(y\right) c(y^{(-i)}) = \int_{y^{(-i)}}^{y} c'\left(y\right) dy$
- EP: $t_i \le v_i(y) v_i(y^{(-i)}) = \int_{y^{(-i)}}^{y} v_i'(y) dy$
- Thus:

$$\int_{y^{(-i)}}^{y} c'(y) \, dy \le t_i \le \int_{y^{(-i)}}^{y} v_i'(y) \, dy$$

17 / 22

- $u_i(x,y) = v_i(y) t_i$
- Feasibility: $t_i \ge c(y) c(y^{(-i)}) = \int_{y^{(-i)}}^{y} c'(y) dy$
- EP: $t_i \le v_i(y) v_i(y^{(-i)}) = \int_{y^{(-i)}}^{y} v_i'(y) dy$
- Thus:

$$\int_{y^{(-i)}}^{y} c'(y) \, dy \le t_i \le \int_{y^{(-i)}}^{y} v_i'(y) \, dy$$

17 / 22

- $u_i(x, y) = v_i(y) t_i$
- Feasibility: $t_i \geq c\left(y\right) c(y^{(-i)}) = \int_{y^{(-i)}}^{y} c'\left(y\right) dy$
- EP: $t_i \le v_i(y) v_i(y^{(-i)}) = \int_{v^{(-i)}}^{y} v_i'(y) dy$
- Thus:

$$\int_{y^{(-i)}}^{y} c'(y) \, dy \le t_i \le \int_{y^{(-i)}}^{y} v_i'(y) \, dy$$

17 / 22

• $\int_{y^{(-i)}}^{y}c'\left(y\right)dy\leq\int_{y^{(-i)}}^{y}v_{i}'\left(y\right)dy\Longrightarrow$ a big transfer is needed for PO

• Especially true for large n

• $\int_{y^{(-i)}}^{y}c'\left(y\right)dy\leq\int_{y^{(-i)}}^{y}v_{i}'\left(y\right)dy\Longrightarrow$ a big transfer is needed for PO

• Especially true for large n

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y=0

19 / 22

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

- ullet Hypothesis: $\mathcal{EP}\left(e\right)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y=0

19 / 22

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

19 / 22

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

19 / 22

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

- ullet Hypothesis: $\mathcal{EP}\left(e\right)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

19 / 22

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

19 / 22

- Hypothesis: $\mathcal{EP}(e)$ 'shrinks' as economy 'grows'
- Counter-example:
 - Pick (x, y) with y > 0 and $t_2 = \cdots = t_n = 0$ satisfying EP
 - Add new agent n+1, set $t_{n+1}=0$
 - EP still satisfied
 - Repeat
- Fundamental discontinuity
 - Constant y > 0 for any finite n
 - Continuum economy: 1 contributor is negligible, y = 0

19 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, ..., R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i / R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} \left(x_{i,r}',y'\right) \Leftrightarrow \left(R\,x_{i,r},y\right) \succeq_{i} \left(R\,x_{i,r}',y'\right)$
- Agents care about x_i/ω_i

20 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, ..., R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i / R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} \left(x_{i,r}',y'\right) \Leftrightarrow \left(R\,x_{i,r},y\right) \succeq_{i} \left(R\,x_{i,r}',y'\right)$
- Agents care about x_i/ω_i

20 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, ..., R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i/R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} \left(x_{i,r}',y'\right) \Leftrightarrow \left(R\,x_{i,r},y\right) \succeq_{i} \left(R\,x_{i,r}',y'\right)$
- Agents care about x_i/ω_i

20 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, \dots, R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i/R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} \left(x_{i,r}',y'\right) \Leftrightarrow \left(R\,x_{i,r},y\right) \succeq_{i} \left(R\,x_{i,r}',y'\right)$
- Agents care about x_i/ω_i

20 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, \dots, R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i / R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} \left(x_{i,r}',y'\right) \Leftrightarrow \left(R\,x_{i,r},y\right) \succeq_{i} \left(R\,x_{i,r}',y'\right)$
- Agents care about x_i/ω_i

20 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, \dots, R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i / R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} \left(x_{i,r}',y'\right) \Leftrightarrow \left(R\,x_{i,r},y\right) \succeq_{i} \left(R\,x_{i,r}',y'\right)$
- Agents care about x_i/ω_i

20 / 22

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, \ldots, R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i / R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} (x'_{i,r},y') \Leftrightarrow (R \, x_{i,r},y) \succeq_i (R \, x'_{i,r},y')$
- Agents care about x_i/ω_i

- Can 1 agent provide equivalent PGs in large vs. small societies?
- Milleron '72: Splitting economies:
- Types $i \in \{1, ..., n\}$
- Replicates $r \in \{1, ..., R\}$
- Agent = (i, r)
- $\omega_{i,r} = \omega_i / R$, so $\sum_i \sum_r \omega_{i,r} = \sum_i \omega_i$
- $\bullet \ (x_{i,r},y) \succeq_{i,r} (x'_{i,r},y') \Leftrightarrow (R \, x_{i,r},y) \succeq_i (R \, x'_{i,r},y')$
- Agents care about x_i/ω_i

20 / 22

Theorem

If preferences are monotonic (strictly in the private good) and continuous and the production function is continuous, then $\{(x,y):(x,y) \text{ satisfies EP}\}$ shrinks to $\{(\omega,0)\}$ as an economy is infinitely split.

Proof.

As economy is split, budget constraints (ω_i/R) shrink so each agent becomes 'small' in production. By continuity, $\left|y^{(-i)}-y\right| \to 0$, but $\left|t_i/\omega_i\right| \not\to 0$ for some i. By strict monotonicity in the private good and continuity of preferences i must prefer to opt out for large enough R.

Also true for replica economies with crowding in PG

◆□ → ◆□ → ◆□ → ◆□ → ◆○ ○

Small economies:

- Can try to use large, asymmetric transfers, though unfair
- Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - Always need enforcement to realize allocations $\neq (\omega, 0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

P.J. Healy (OSU)

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - Always need enforcement to realize allocations $\neq (\omega, 0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

22 / 22

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - Always need enforcement to realize allocations $\neq (\omega, 0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

22 / 22

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - ullet Always need enforcement to realize allocations $eq (\omega,0)$
- Casual evidence:
 - Kvoto protocol
 - Condo associations & eviction power

22 / 22

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - ullet Always need enforcement to realize allocations $eq (\omega,0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

22 / 22

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - Always need enforcement to realize allocations $\neq (\omega, 0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

22 / 22

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - Always need enforcement to realize allocations $\neq (\omega, 0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

PET'07

22 / 22

- Small economies:
 - Can try to use large, asymmetric transfers, though unfair
 - Often need enforcement to realize allocations $\neq (\omega, 0)$
- Large (splitting) economies
 - Always need enforcement to realize allocations $\neq (\omega, 0)$
- Casual evidence:
 - Kyoto protocol
 - Condo associations & eviction power

22 / 22