Epistemic Experiments: Utilities, Beliefs, and Irrational Play

P.J. Healy

PJ Healy (OSU)

Motivation

Question:

How do people play games??

E.g.: Do people play equilibrium? If not, why not?

Current methodology:

- Observe strategy choices
- Identify likely phenomena
- Iter the standard model to generate new solution concepts
- Test/horserace solution concepts

Rather than assuming these alterations, we can *measure* them.

How? Copious amounts of elicitation!

The Problem

Elicitation bumps us into two insurmountable obstacles:

- Contamination
 - Elicitation changes game play, and vice-versa.
- Onsequentialism
 - People care about more in a game than just its outcomes.

More on this later...

How to pick what we should elicit?

Behavioral game theory: many informed guesses (see above)

Epistemic game theory: provides a structured framework for answers.

• Very clear about what players know and don't know.

The Epistemic Framework

In the lab, experimenter chooses a game form: $(I, (S_i)_{i \in I}, \pi)$.

- $I = \{1, 2\}$ players
- S_i strategy set
- $\pi: S \to X$ outcome function
 - Typical outcome: x = (\$10, \$5).

Each player *i* arrives to the lab with a private *state*: $\omega_i = (u_i, s_i, \tau_i)$.

- $u_i: X \to \mathbb{R}$ utility for *outcomes*
- s_i chosen *pure* strategy
- $\tau_i = (p_i^1, p_i^2, \ldots)$ hierarchy of beliefs
 - $p_i^1(u_j, s_j)$ (marginals: $p_i^{1u}(u_j)$ and $p_i^{1s}(s_j)$)
 - $p_i^2(u_j, s_j, p_j^1)$ (marginal: $p_i^{2p}(p_j^1)$)
 - $p_i^3(u_j, s_j, p_j^1, p_j^2)$,

• ...
$$\Rightarrow p_i(u_j, s_j, \tau_j) = p_i(\omega_j)$$

Rationality

Definition: Player *i* is **rational** in state $\omega_i = (u_i, s_i, \tau_i)$ if s_i maximizes $\sum_{s_i} p_i^{1s}(s_i)u_i(s_i, s_j)$ (\leftarrow expected utility given u_i, p_i^{1s})

Player *i* believes *j* is rational at ω_i if $p_i(\omega_j)$ puts probability 1 on $\{\omega_j : j \text{ is rational}\}$

("Belief" = probability one)

Theorem: Rationality & Common Belief in Rationality \Leftrightarrow Rationalizability

Theorem: Mutual belief in $[\sigma, \text{ rationality}, \& \text{ utility}] \Rightarrow \sigma$ is Nash equil.

イロン イ理 とく ヨン ト ヨン・

"Epistemic experiments":

In each game, elicit:

1 u_i over *outcomes*

2 $p_i^{1u}(u_j)$ ("best guess of u_j ")

At each decision node, elicit from both players:

- Is s_i (complete plan)
- $\ \, {\it o} \ \, p_i^{2p}(p_j^{1s}) \ \, (\ \, {\rm ``best \ guess \ of \ } p_j^{1s"}) \ \,$
- $p_i(\{j \text{ is rational}\})$ ("weighted value theory").

Contamination?

Does elicitation contaminate game play? PROBABLY! Does game play contaminate elicitation?? PROBABLY!

• Embrace it! This is a *fully contaminated* experiment!

Empirically, I think it actually doesn't matter:

• Strategy choices in popular games (e.g. PD) match previous studies

Elicitation Mechanisms

Eliciting cardinal utility index in a game What is $u_i(\$15,\$5)$?

	Option A	vs.	Option B
Q0:	(\$15,\$5)	VS.	0% chance of (\$20,\$20)
Q1:	(\$15,\$5)	VS.	1% chance of (\$20,\$20)
		÷	
Q62:	(\$15,\$5)	VS.	62% chance of (\$20,\$20)
Q63:	(\$15,\$5)	VS.	63% chance of (\$20,\$20)
Q64:	(\$15,\$5)	VS.	64% chance of (\$20,\$20)
		:	
Q100:	(\$15,\$5)	VS.	100% chance of (\$20,\$20)

 $u(\$15,\$5) = 0.63 \underbrace{u(\$20,\$20)}_{\to 100} + 0.37 \underbrace{u(\$0,\$0)}_{\to 0} = 63.$

PJ Healy (OSU)

2017 9/62

Notes and Caveats

Utility

- Elicit $u_i(\$15,\$5)$, e.g.
- u_i captures non-selfish preferences.
- *u_i* captures risk aversion.

Problem: Game theory assumes a utility over strategies $U_i(s_i, s_j)$

Game: $(I, (S_i, U_i)_i)$

Solution: assume consequentialism:

$$U_i(s_i,s_j) = u_i(\pi(s_i,s_j))$$

Is consequentialism reasonable??

Violating consequentialism:

	L	R
Т	\$5, \$5	\$5, \$5
В	\$100, \$5	\$5, \$5

$$U_1(T,L)
eq U_1(B,R)$$
, but $\pi(T,L)=\pi(B,R).$

Thus, $U_i(s_i, s_j) \neq u_i(\pi(s_i, s_j))$.

Claim: Cannot elicit $U_i(s_i, s_j)$. Must assume consequentialism.

Messy Solution: Elicit $u_i(\pi(s_i, s_j))$ in the *context* of the game.

<ロ> (日) (日) (日) (日) (日)

Redefining Rationality

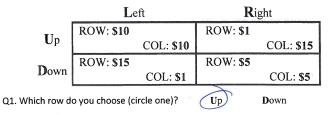
Definition: Player *i* is **rational** in state $\omega_i = (u_i, s_i, \tau_i)$ if s_i maximizes $\sum_{s_i} p_i^{1s}(s_j) u_i(\pi(s_i, s_j))$

Thus, "rational" means

- EU-maximizing, and
- 2 consequentialism

"Irrational" \Rightarrow "Non-EU" or "Non-consequentialist"

Design Summary


3 experiments

- Five 2×2 game forms $n_1 = 150$
 - One-shot play w/ elicitation. Paper & pencil.
- **②** Same five game forms, but now sequential-move. $n_2 = 64$
 - One-shot play w/ elicitation. Paper & pencil.

Solution Centipede game forms (4 payoff treatments, btwn-subject) $n_3 = 226$

Play 4 times w/ feedback. Elicitation in last 2. Study last.

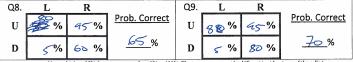
GAME #3

For each of the cells, what is your probability value of those payments (from 0-100)?

L R Q3. O2. 80 % \leq % U Q5. 80 D 95 % % preferred.

(Please use multiples of 5% e.g. 0%, 5%, 10%,..., 95%, 100%) <u>Remember</u>: A higher value means more preferred. \$20-\$20 gets 100%, \$0-\$0 gets 0%.

What are your 2 best guesses of the Column player's ranking of the 4 cells? 1=Best,4=Worst


Q6.	Prob. Correct	Q7.	Prob. Correct
1. 02 2. UL 3. 04 4. DI	<u> </u>	1. UL 2. DE 3. UR 4. DL	35%

(Based on their probability values. Write "UL", "UR", "DL", and "DR" in the blanks. UL = Up-Left, UR = Up-Right, DL = Down-Left, DR = Down-Right.)

2×2 Game Forms

What are your 2 best guesses of the Column player's ranking of the 4 cells? 1=Best,4=Worst				
Q6.	Prob. Correct	Q7.	Prob. Correct	
1. 02 2. UL 3. 04 4. DL	<u>60</u> %	1. UL 2. DR 3. UR 4. DL	35%	
(Based on their probability values, Write "UL", "UR", "DL", and "DR" in the blanks. UL = Up-Left, UR = Up-Right, DL = Down-Left, DR = Down-Right.)				

What are your *two* most likely guesses for the Column player's probability values of the four cells? And what are your probabilities that each guess is correct?

(Use multiples of 5% for your guesses, from 0% to 100%. The two guesses must be different in at least one of the cells.)

Q10. What is your probability belief that the Column player will play Left? 35 % (Please a multiple of 5%)

What are your *two* most likely guesses about the Column player's belief that *you* will play Up? And what are your probabilities that each guess is correct?

Q1	1. <u>Guess #1</u>	Prob. Correct	Q12. <u>Guess #2</u>	Prob. Correct
	35 %	<u>80</u> %	80_%	25%

(Use multiples of 5% for your guesses. The two guesses must be different.)

Q13. What is your probability belief that the Column player will be *consistent*? <u>65</u>%

PJ Healy (OSU)

Centipede Game Forms

"I am indifferent between this outcome and a _____% chance of us both getting \$30. (Please answer below for each game outcome.)"

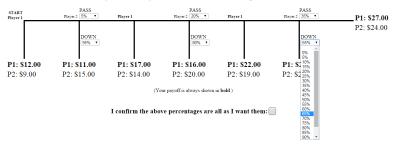
(Your payoff is always shown in **bold**.)

	Ranking:	1 (Best)	2	3	4	5	6	7 (Worst)
			P1: \$21.00	P1: \$16.00	P1: \$22.00	P1: \$11.00	P1: \$17.00	P1: \$12.00
Payoffs:	P2: \$24.00	P2: \$25.00	P2: \$20.00	P2: \$19.00	P2: \$15.00	P2: \$14.00	P2: \$9.00	

I confirm the rankings of these outcomes (from best to worst) are as I want them:

(日) (周) (三) (三)

Centipede Game Forms


(Your payoff is always shown in **bold**.)

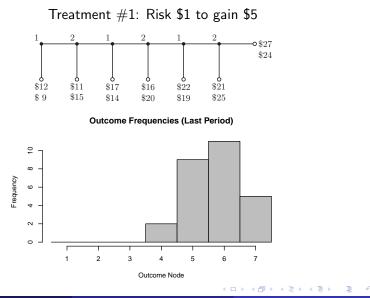
You're about to choose PASS. (you plan to choose DOWN at step #5). Play will continue, with Player 2 choosing next. CONFIRM & SUBMIT

PJ Healy (OSU)

(日) (同) (三) (三)

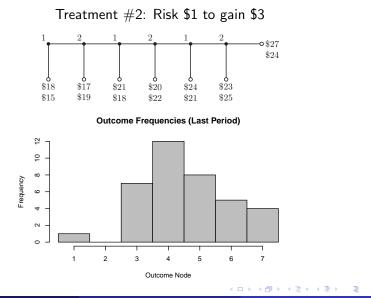
Centipede Game Forms

For each step remaining for Player 2, indicate how likely you think it is they will choose PASS or DOWN, if that step is reached.


(日) (同) (三) (三)

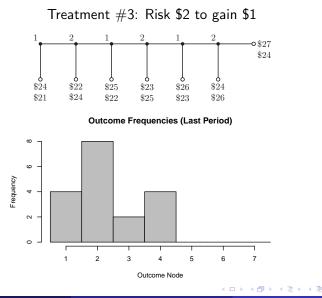
Results, Part 1: The Importance of Utilities

The Centipede Game Form


PJ Healy (OSU)

3 🕨 🖌 3

PJ Healy (OSU)


2017 20 / 62

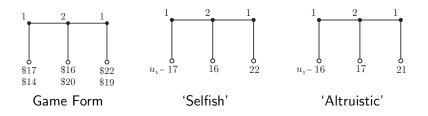
PJ Healy (OSU)

Epistemics

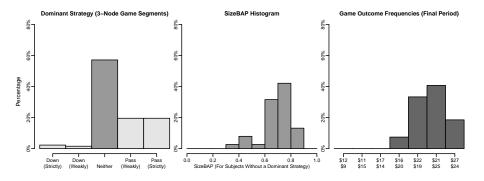
2017 21 / 62

PJ Healy (OSU)

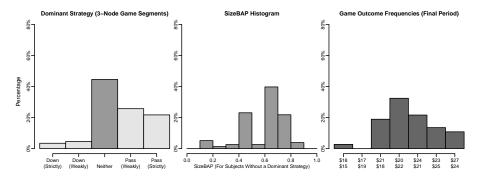
Epistemics

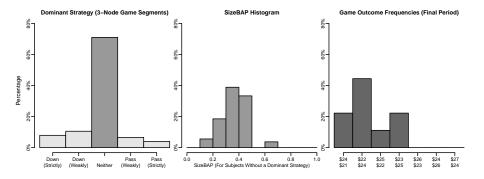

2017 22 / 62

Why Is This Happening?


Why do payoffs have such a drastic impact on outcomes?

Turn to elicitation data for answers...


Bottom line: Preferences matter a LOT


- Let p be probability Player 2 plays Pass
- Selfish Player 1: Pass if $p \in [1/6, 1]$.
 - SizeBAP = 5/6.
- Altruist Player 1: Dominant Strategy to pass $(p \ge 0)$
 - SizeBAP = 1.
 - Not a centipede game!
- Selfish Player 1: Pass if 1/6 of players are Altruists

(日) (同) (三) (三)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

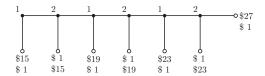

• • = • • = •

Image: Image:

None of these are complete-information centipede games!

Not really testing backwards induction.

Treatment #4: Risk (Almost) Everything to Gain \$4

э

Treatment #4: Risk Everything to Gain 4

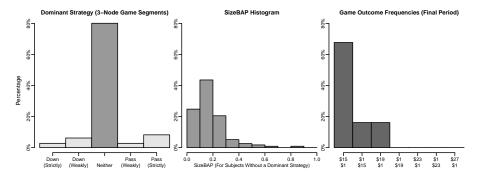


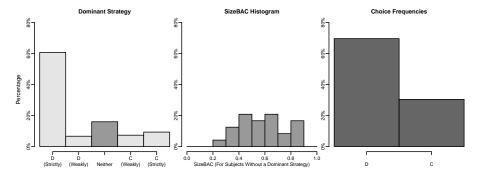
Image: Image:

▶ < ∃ ▶ < ∃</p>

Results, Part 1: The Importance of Utilities

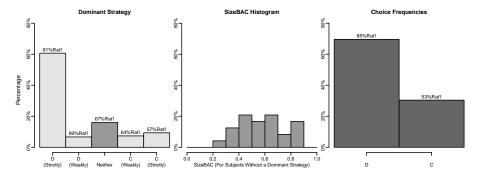
The Prisoners' Dilemma Game Form

PJ Healy (OSU)


- E > - E >

The Prisoners' Dilemma: Action Choices

	35%	65%
26%	\$10,10	^{\$} 1,15
74%	^{\$} 15,1	\$5,5


Why do 30% of people cooperate?

The Prisoners' Dilemma: Preferences

Can social preferences explain cooperation in the PD?

The Prisoners' Dilemma: Preferences

Preferences can only explain 53% of the cooperation!

- Only 60% when C is dominant!
- Failure of consequentialism? $U_i(C,C) \neq u_i(\$10,\$10)$

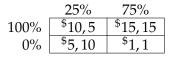
PJ Healy (OSU)

Sequential-Move PD

What about sequential-move PD?

	67%	33%
38%	\$10,10	^{\$} 1,15
	0%	100%
62%	^{\$} 15,1	^{\$} 5,5

- Play C after C: 7 of 8 rational (88%)
- Play D after C: 3 of 4 rational (75%)
- Play C after D: N/A
- Play D after D: 18 of 18 rational (100%)
- Irrationality disappears when strategic uncertainty is removed
- Strategic uncertainty even causes dominance violations (!?)
- Only 2 preference reversals (out of 30) between elicitation and choice


Results, Part 2: Rationality

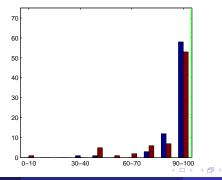
Iterated Dominance

${\sf Elicited\ utility}\equiv{\sf Selfish}$

PJ Healy (OSU)

• = • • =

Why do 25% of Column players play Left?

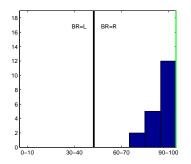

PJ Healy (OSU)

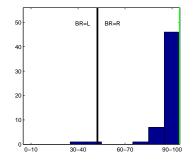
2017 37 / 62

э

	25%	75%
100%	^{\$} 10,5	^{\$} 15,15
0%	^{\$} 5,10	^{\$} 1,1

Row's actual % Up Col's p(U) & Row's guess

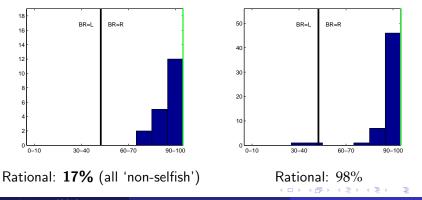

PJ Healy (OSU)


Epistemics

	25%	75%
100%	^{\$} 10,5	^{\$} 15,15
0%	^{\$} 5,10	^{\$} 1,1

Col's $p(U) \mid \text{Play L}$

Col's $p(U) \mid \mathsf{Play} \ \mathsf{R}$



イロト イ団ト イヨト イヨト

	25%	75%
100%	^{\$} 10,5	^{\$} 15,15
0%	^{\$} 5,10	^{\$} 1,1

Col's $p(U) \mid \text{Play L}$

Col's $p(U) \mid \mathsf{Play} \mathsf{R}$

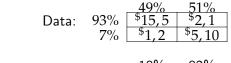
PJ Healy (OSU)

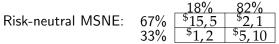
Epistemics

2017 40 / 62

The sequential-move experiment:

	6%	94%
100%	^{\$} 10,5	^{\$} 15,15
	-%	-%
0%	^{\$} 5,10	^{\$} 1,1

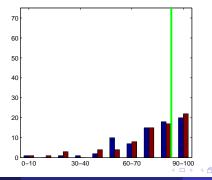

- Play L: 1 of 2 are rational
- Play R: 29 of 29 are rational
- Again, irrationality disappears when uncertainty is removed


Results, Part 2: Rationality

Asymmetric Coordination

 ${\sf Elicited\ utility}\equiv{\sf Selfish}$

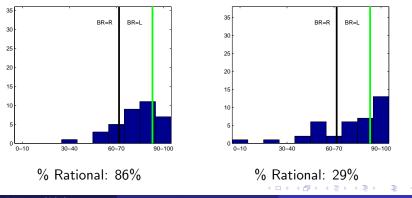
PJ Healy (OSU)



Why are 51% of COL playing Right?

	49%	51%
93%	^{\$} 15,5	^{\$} 2,1
7%	\$1,2	^{\$} 5,10

Row's actual % Up Col's p(U) & Row's guess

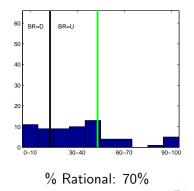

PJ Healy (OSU)

Epistemics

	49%	51%
93%	^{\$} 15,5	^{\$} 2,1
7%	\$1,2	^{\$} 5,10

Col's $p(U) \mid \text{Play L}$

 $\mathsf{Col's}\ p(U) \mid \mathsf{Play}\ \mathsf{R}$



PJ Healy (OSU)

Epistemics

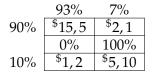
	49%	51%
93%	^{\$} 15,5	^{\$} 2,1
7%	\$1,2	^{\$} 5,10

Row's $p(L) \mid \mathsf{Play} \ \mathsf{U}$

PJ Healy (OSU)

Epistemics

э


	49%	51%
93%	^{\$} 15,5	\$2,1
7%	\$1,2	\$5,10

Overall, 38% irrational.

- Betting against their beliefs.
- Over-optimism in strategies, not beliefs.
- Non-EU regret aversion?

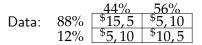
(Non-EU may be non-consequentialism)

Asymmetric Coordination - Sequential Move

- Play L after U: 26 of 26 (100%) Rational
- Play R after U: 0 of 2 (0%) Rational
- Play L after D: N/A
- Play R after D: 3 of 3 (100%) Rational

Removing strategic uncertainty removes irrationality.

Results, Part 2: Rationality


Asymmetric Matching Pennies

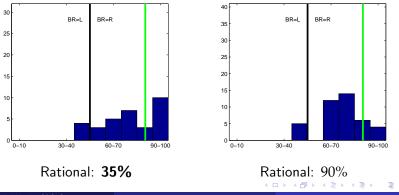
 ${\sf Elicited\ utility}\equiv{\sf Selfish}$

PJ Healy (OSU)

2017 49 / 62

No pure strategy Nash Equil.

- - /

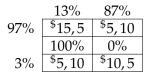

		33%	67%
Risk-neutral \$ MSNE:	50%		
	50%	\$5,10	\$10,5

Asymmetric Matching Pennies

	44%	56%
88%	^{\$} 15,5	^{\$} 5,10
12%	^{\$} 5,10	^{\$} 10,5

Col's $p(U) \mid \text{Play L}$

Col's $p(U) \mid \mathsf{Play} \mathsf{R}$



PJ Healy (OSU)

Epistemics

2017 51 / 62

Asymmetric Matching Pennies

G4: Asym. Matching Pennies

25%Rat'l	96%Rat'l
\$15,5	^{\$} 5,10
100%Rat'l	N/A
\$5,10	\$10,5

Non-consequentialism for those that played L (small %)

ΡJ	Healy	(OSU)

Results, Part 2: Cross-Game Correlation

Image: Image:

% of irrational players in game i who were also irrational in game j:

		% Irrat in Game <i>j</i>				
		DomSolv	SymCoor	PD	AsymMP	AsymCoor
Game <i>i</i>	% Irrat.	11%	3%	24%	29%	37%
DomSolv	11%		0%	19%	40%	47%
SymCoor	3%	0%		60%	20%	0%
PD	24%	8%	9%		30%	44%
AsymMP	29%	15%	2%	25%		45%
AsymCoor	37%	13%	0%	28%	34%	

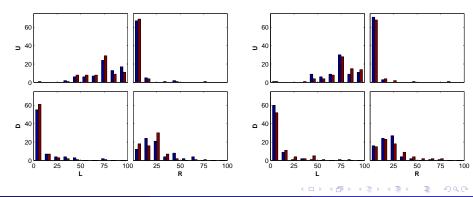
Results, Part 3: Robustness Check

Symmetric Coordination

3 🕨 🖌 3

Robustness Check: A Super Easy Game

	97%	3%
97%	^{\$} 15,15	^{\$} 1,1
3%	\$2,2	^{\$} 5,5

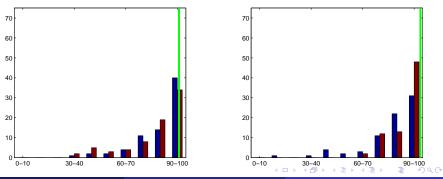

.

Symmetric Coordination - Utilities

	97%	3%
97%	\$15,15	\$1,1
3%	\$2,2	^{\$} 5,5

Col's $u_i(\cdot)$ & Row's belief

PJ Healy (OSU)


017 57 / 62

Symmetric Coordination - Beliefs

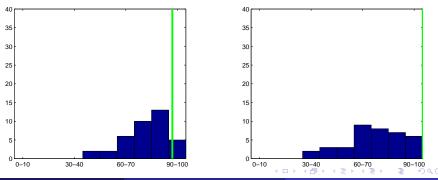
	97%	3%
97%	\$15,15	^{\$} 1,1
3%	\$2,2	^{\$} 5,5

Row's actual % Up Col's p(U) & Row's guess

Col's actual % Left Row's p(L) & Col's guess

PJ Healy (OSU)

Epistemics


2017 58 / 62

Symmetric Coordination - Rationality

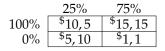
	97%	3%
97%	^{\$} 15,15	^{\$} 1,1
3%	\$2,2	^{\$} 5,5

Row's % rational Col's belief of rationality

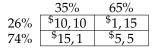
Col's % rational Row's belief of rationality

PJ Healy (OSU)

2017 59 / 62


Summary

- Non-selfish preferences in *some* games
 - Seems to be where we'd expect them
 - Can drive the behavior of selfish types
 - Respect for Bayesian games
 - Why not measure utilities after every experiment?
- Overall rationality: 79%
 - Is that high or low?
 - Rises to 90% for second-movers
 - Strategic uncertainty drives irrationality
 - Irrationality may be non-consequentialism
 - Irrationality may be non-EU
 - Story seems to vary by game :(
- WARNING: reliability of elicitation procedure.
 - See 2010 and 2011 data


The End.

・ロト ・聞ト ・ヨト ・ヨト

Game Forms & Raw Choice Data

G1: Dominance Solvable

G3: Prisoners' Dilemma

	99%	1%
96%	^{\$} 15,15	\$1,1
4%	\$2,2	\$5,5

G2: Sym. Coordination

	44%	56%
88%	^{\$} 15,5	\$5,10
12%	\$5,10	\$10,5

G4: Asym. Matching Pennies

	49%	51%
93%	\$15,5	^{\$} 2,1
7%	\$1,2	\$5,10

G5: Asymmetric Coordination

*11 missing actions (1.5% of data), all in later games.

PJ Healy (OSU)