Epistemic Experiments: Utilities, Beliefs, and Irrational Play

Paul J. Healy (OSU)

A pet project:

- **2010:** Tenure. First attempt at 2×2 games.
- 2013: Redo experiment on pencil & paper
- 2014: Present at Pitt
- 2015: Add centipede games
- 2016: Add no-elicitation benchmark
- **2017:** Add sequential-move 2×2 games
- 2019: "I'm never presenting this again."
- 2020: COVID writing retreat, 1st draft
- 2023: Present at Pitt

The Standard Approach

Standard game theory experiment:

1. Interesting game form

The Standard Approach

- 1. Interesting game form
- 2. Baseline theory/assumptions:
 - Selfish prefs, "Rational" behavior (eg, backwards induction)

- 1. Interesting game form
- 2. Baseline theory/assumptions:
 - Selfish prefs, "Rational" behavior (eg, backwards induction)
- 3. Observe deviations

- 1. Interesting game form
- 2. Baseline theory/assumptions:
 - Selfish prefs, "Rational" behavior (eg, backwards induction)
- 3. Observe deviations
- 4. Posit alternative theory

- 1. Interesting game form
- 2. Baseline theory/assumptions:
 - Selfish prefs, "Rational" behavior (eg, backwards induction)
- 3. Observe deviations
- 4. Posit alternative theory
- 5. New treatments to test comparative statics

Alternative "Solution Concepts"

- 1. Nash with Altruism, Inequality Aversion
- 2. Reputation-building/Gang of Four
- 3. Level-k (wrong beliefs)
- 4. QRE (noisy equilibrium play)

Why not measure these things directly???

Why not measure these things directly???

(Yes, eliciting these things might change behavior. I'll get to that.)

Why not measure these things directly???

(Yes, eliciting these things might change behavior. I'll get to that.)

OK... but then what exactly should we measure?

Why not measure these things directly???

(Yes, eliciting these things might change behavior. I'll get to that.)

OK... but then what exactly should we measure?

We need a framework that encompasses all such theories

...a level playing field in which no theory is the null hypothesis

The Observable Experiment: (I, S, X, π)

- 1. Players: $i \in I = \{1, 2\}$
- 2. Strategies: $s_i \in S_i$ Ex: when to Take
- 3. Outcomes: $(x_1, x_2) \in X$ Ex: (\$6.40, \$1.60)
- 4. Outcome function: $\pi(s_1, s_2) \in X$

i's Private Information: $\omega_i = (u_i, s_i, \vec{p}_i)$

- 1. Utility: $u_i(x_1, x_2)$
 - Non-selfish, but consequentialist
- 2. Chosen Strategy: $s_i \in S_i$
 - Mixing is only in beliefs (Aumann)
- 3. Beliefs
 - First-order: $p_i^1(u_{-i}, s_{-i})$
 - Second-order: $p_i^2(p_{-i}^1, u_{-i}, s_{-i})$
 - Hierarchy: $\vec{p}_i = (p_i^1, p_i^2, p_i^3, \ldots)$

Example: Nash Equilibrium

Players are in a (selfish) Nash equilibrium at $\omega = (\omega_1, \dots, \omega_n)$ if:

- 1. Utility: $u_i(x_i, x_{-i}) = x_i$ ("selfish")
- 2. Beliefs: correct beliefs about u_{-i} , s_{-i} .
- 3. Strategy: $s_i \in \arg \max_{s'_i} \left[\sum_{(u_{-i}, s_{-i})} p_i^1(u_{-i}, s_{-i}) u_i(\pi(s'_i, s_{-i})) \right]$

Players are in a (selfish) Nash equilibrium at $\omega = (\omega_1, \dots, \omega_n)$ if:

- 1. Utility: $u_i(x_i, x_{-i}) = x_i$ ("selfish")
- 2. Beliefs: correct beliefs about u_{-i} , s_{-i} .
- 3. Strategy: $s_i \in \arg \max_{s'_i} \left[\sum_{(u_{-i}, s_{-i})} p_i^1(u_{-i}, s_{-i}) u_i(\pi(s'_i, s_{-i})) \right]$
 - Player *i* is **rational** at $\omega_i = (u_i, s_i, \vec{p}_i)$ if this is true
 - Let R_i be those (p_i^1, u_i, s_i) where *i* is rational
 - *i*'s belief that -i is rational is $p_i^2(R_{-i})$
 - Can define common knowledge of rationality, etc.

Players are in a (selfish) Nash equilibrium at $\omega = (\omega_1, \dots, \omega_n)$ if:

- 1. Utility: $u_i(x_i, x_{-i}) = x_i$ ("selfish")
- 2. Beliefs: correct beliefs about u_{-i} , s_{-i} .
- 3. Strategy: $s_i \in \arg \max_{s'_i} \left[\sum_{(u_{-i},s_{-i})} p_i^1(u_{-i},s_{-i}) u_i(\pi(s'_i,s_{-i})) \right]$
 - Player *i* is **rational** at $\omega_i = (u_i, s_i, \vec{p}_i)$ if this is true
 - Let R_i be those (p_i^1, u_i, s_i) where *i* is rational
 - *i*'s belief that -i is rational is $p_i^2(R_{-i})$
 - Can define common knowledge of rationality, etc.
 - Aumann (1995): Nash equil. does not require c.k. of rationality
 - Rationality & c.k. of rationality \Rightarrow IESDS

Players are in an Altruistic Nash equilibrium at $\omega = (\omega_1, \dots, \omega_n)$ if:

- 1. Utility: $u_i(x_i, x_{-i}) = x_i + \alpha x_{-i}$
- 2. Beliefs: correct beliefs about u_{-i} , s_{-i} .
- 3. Strategy: $s_i \in \arg \max_{s'_i} \left[\sum_{(u_{-i}, s_{-i})} p_i^1(u_{-i}, s_{-i}) u_i(\pi(s'_i, s_{-i})) \right]$
 - Player *i* is **rational** at $\omega_i = (u_i, s_i, \vec{p}_i)$ if this is true
 - Let R_i be those (p_i^1, u_i, s_i) where *i* is rational
 - *i*'s belief that -i is rational is $p_i^2(R_{-i})$
 - Can define common knowledge of rationality, etc.
 - Aumann (1995): Nash equil. does not require c.k. of rationality
 - Rationality & c.k. of rationality \Rightarrow IESDS

Example: Level-*k*

Level-1:

- 1. Utility: selfish
- 2. Beliefs: u_{-i} selfish, s_{-i} uniformly distributed
- 3. Strategy: s_i is rational, given utility & beliefs

Level-*k* > 1:

- 1. Utility: selfish
- 2. Beliefs: u_{-i} selfish, s_{-i} is Level-k 1 strategy
- 3. Strategy: s_i is rational, given utility & beliefs

How To Measure Cardinal Utility

- Elicit $u_i(x_1, x_2)$ for each cell
 - or, for each terminal node
- How?
 - Let $\bar{x} = (\$20, \$20)$, $\underline{x} = (\$0, \$0)$
 - "I'm indifferent between (\$3, \$0) and getting \overline{x} w/ prob. p^* "

$$u_i(\$3,\$0) = p^* \underbrace{u_i(\overline{x})}_{=1} + (1-p^*) \underbrace{u_i(\underline{x})}_{=0}$$
$$= p^*$$

		Option B
(\$3,\$0)	or	(\$20,\$20) w/ prob 1%
(\$3,\$0)	or	(\$20,\$20) w/ prob 2%
•	•	:
(\$3,\$0)	or	(\$20,\$20) w/ prob <i>q%</i>
(\$3,\$0)	or	(\$20,\$20) w/ prob q + 1%
(\$3,\$0)	or	(\$20,\$20) w/ prob q + 2%
(\$3,\$0)	or	(\$20,\$20) w/ prob $q + 3\%$
•	:	:
(\$3,\$0)	or	(\$20,\$20) w/ prob 99%
(\$3,\$0)	or	(\$20,\$20) w/ prob 100%
	: (\$3,\$0) (\$3,\$0) (\$3,\$0) (\$3,\$0) : (\$3,\$0) (\$3,\$0) (\$3,\$0)	: : (\$3,\$0) or : : (\$3,\$0) or

Choose Option A or Option B (single switch point q)

One row randomly selected for payment

Row#	aaaaOption Aaaaa	OR	Option B
1	(\$3,\$0)	or	(\$20,\$20) w/ prob 1%
2	(\$3,\$0)	or	(\$20,\$20) w/ prob 2%
:	•	:	÷
q	(\$3,\$0)	or	(\$20,\$20) w/ prob <i>q%</i>
<i>q</i> + 1	(\$3,\$0)	or	(\$20,\$20) w/ prob <i>q</i> + 1%
q + 2	(\$3,\$0)	or	(\$20,\$20) w/ prob q + 2%
q + 3	(\$3,\$0)	or	(\$20,\$20) w/ prob $q + 3\%$
:	:	:	:
99	(\$3,\$0)	or	(\$20,\$20) w/ prob 99%
100	(\$3,\$0)	or	(\$20,\$20) w/ prob 100%

If you lie, you get the less-preferred option on some rows I.C. as long as subject respects **statewise dominance** in rows

Issue 1: Consequentialism

- Elicit *u_i*(\$15, \$5), e.g.
- *u_i* captures non-selfish preferences.
- *u_i* captures risk aversion.

Problem: Game theory: utility over *strategies*: $U_i(s_i, s_j)$ We elicit: utility over *outcomes*: $u_i(\pi(s_i, s_j))$ **Solution:** Assume <u>consequentialism</u>:

$$U_i(\mathbf{s}_i,\mathbf{s}_j)=u_i(\pi(\mathbf{s}_i,\mathbf{s}_j))$$

Is consequentialism reasonable?? Is it even testable??

Example violating consequentialism:

	Nice	Mean	
Foolish	\$5, \$5	\$5, \$5	
Wise	\$100, \$5	\$5, \$5	

 π (Foolish, Nice) = π (Wise, Mean), but, intuitively U_1 (Foolish, Nice) $\neq U_1$ (Wise, Mean).

But how could you possibly observe that??

Claim: Cannot elicit $U_i(s_i, s_j)$. Must assume consequentialism.

Messy Solution: Elicit $u_i(\pi(s_i, s_j))$ in the *context* of the game.

2. Strategies: s_i

- Easy. Just play the game.
- Complete contingent plan
 - "When will you Take?"
- Can re-elicit this at each node
 - Even when not active

3. Beliefs:
$$p_i^1(u_{-i}, s_{-i})$$
, $p_i^2(p_{-i}^1, u_{-i}, s_{-i})$, ...

Measure before the game:

1. Best guess of $u_{-i}(x_1, x_2)$ at each terminal node

Measure at every node:

- 1. Probability of each s_{-i} (call that $p_i^1(s_{-i})$)
- 2. Best guess of $p_{-i}^1(s_i)$
- 3. Probability -i is rational

My Wish List:

- 1. Entire distribution over u_{-i}
- 2. Correlation between u_{-i} and s_{-i}
- 3. Correlation between p_{-i}^1 and s_{-i}

Issue 2: Contamination

Does elicitation contaminate game play? PROBABLY! Does game play contaminate elicitation?? PROBABLY!

- I embrace it! This is a *fully contaminated* experiment!
 - Necessary evil for the methodology
 - · Intuitively: provides an upper bound on rationality

Empirically, I think it probably doesn't matter:

- In five 2 \times 2 games, play w/out elicitation was the same in 4 of 5
- Behavior pretty similar to previous papers

Screenshot: Eliciting Strategies

Screenshot: Belief of Rationality

Example Observation

SUBJECT 316 (F		1	2	1	2	
\$24 \$21	2 \$22 \$24	1 \$25 \$22	2 \$23 \$25	\$26 \$23	\$24 \$26	\$27 \$24
1 20%	2 <mark>60</mark> %	1 109	% 2 4 5%	1 5%	2 4	<mark>0%_</mark> 80
80%	40%	90%	55%	95%	60%	90
 70 80	80 70	70 80	 80 75	 75 85	85 80	P1Rat: 45%
1	2 55%	1 309	% 2 45 %	1 20%	2 3	0% 80
	45%	70%	55%	80%	70%	90
70 80	80 70	70 80	 80 75	 75 85	85 80	P1Rat: 45%

Example Observation

1 - - - - - - - - - - - - - - -	2 	20% 80% 70 80	2 20% 80% 80 75	1 10% 90% 75 85	2 5 95% 85 80	%80 90 P1Rat: 40%
1 1 1 70 80	2 	1 1 1 1 7 0 80	2 40% 60% 80 75	1 75 85	2 1 85% 85 80	5% 80 90 P1Rat: N/A
1 1 1 70 80	2 1 80 70	1 1 1 70 80	2 80 75	<u>1</u> - - - - - - - - - - - - - - -		80 90

Centipede Treatments

Design Details

- OSU subject pool
- Custom software, ORSEE recruiting
- Between-subjects treatment (LO vs HI vs ALL)
- Play 4 periods. Elicitation only in last 2
 - Random rematching with feedback
- Only one game or elicitation is paid
- \$19 average
- # subjects:

CENT-LO	CENT-HI	CENT-ALL
54	36	62

Results

CENT-LO: "Risk \$1 to gain \$5"

CENT-LO: "Risk \$1 to gain \$5"

Outcome Frequencies (Last Period)

Outcome Node

CENT-LO: "Risk \$1 to gain \$5"

Outcome Frequencies (Last Period)

Outcome Node

What do we learn from elicitation?

- 1. There are altruists who prefer Pass even if opponent will Take
 - Many people will give up \$1 to give \$6
- 2. Selfish people know that altruists are common
- 3. Early nodes: Selfish people Pass, knowing altruists Pass back
- 4. Later nodes: Selfish people Take. Altruists keep Passing

CENT-LO: "Risk \$1 to gain \$5"

Outcome Frequencies (Last Period)

Outcome Node

The Unit of Analysis: 3-Node Segments

SizeBAP: A measure of the temptation to Pass

- Let *p* = subjective prob. next mover will Pass
- Selfish: Pass is BR if $p \in [1/6, 1]$
 - SizeBAP for this u_1 is 5/6. Very likely to Pass.
- Altruist: Pass is BR if $p \in [0, 1]$ (strict Dom.Strat.)
 - SizeBAP for this u_1 is 1. Guaranteed to Pass.
- SizeBAP is a statistic for u_i (and nothing else)

Pooling All 3-Node Segments

Selfish SizeBAP \approx 0.833

CENT-HI

Selfish SizeBAP \approx 0.333

CENT-ALL

Selfish SizeBAP \approx 0.22, 0.18, 0.15

Verifying the Story: CENT-LO

CENT-LO:

- 1. Altruists exist
 - Pass is DomStrat in 43.7% of segments
- 2. Altruists pass
 - 89.7% of the time
 - + 43.7% \times 89.7% = 39.2% overall chance of Pass from altruists
- 3. Non-altruists believe Pass is reasonably likely
 - 54.8% have Pr(Pass) > 39.2% (median = 40%)
 - Self-similarity hides direct belief in altruism
- 4. Non-altruists BR to that belief
 - 83.8% play BR, given p_i^1 and u_i

Verifying the Story: CENT-HI

CENT-HI:

- 1. Altruists don't exist
 - Pass is DomStrat in 8.9% of segments
- 2. Altruists pass but they're very rare
 - Small sample: 6 out of 9
 - * $8.9\% \times 66.6\% = 5.9\%$ overall chance of Pass
- 3. Non-altruists believe Pass is reasonably <mark>un</mark>likely
 - Median = 20%
 - · Self-similarity hides direct belief in altruism
- 4. Non-altruists BR to that belief
 - **58.5%** play BR, given p_i^1 and u_i
 - Beliefs only elicited for those that Pass, which is a small sample

Verifying the Story: CENT-ALL

CENT-ALL:

- 1. Altruists don't exist
 - Pass is DomStrat in 8.7% of segments
- 2. Altruists pass but they're very rare
 - Small sample: 2 out of 12
 - + $8.7\% \times 16.67\% =$ 1.45% overall chance of Pass
- 3. Non-altruists believe Pass is reasonably <mark>un</mark>likely
 - Median = 17.5%
 - · Self-similarity hides direct belief in altruism
- 4. Non-altruists BR to that belief
 - 38.3% play BR, given p_i^1 and u_i
 - Beliefs only elicited for those that Pass, which is a small sample

Belief in Rationality & Backward Induction

- Does common belief in rationality \Rightarrow backwards induction?
- Depends how people react to surprises (Reny 1993)
 - RCSBR: continue to believe in rationality after surprises
 - (Surprises \Rightarrow belief in irrationality) \Rightarrow Surprises!
- Surprise: Pr(Take)=100%, Pr(Rational)=100%, but then Pass

Belief in Rationality & Backward Induction

- Does common belief in rationality \Rightarrow backwards induction?
- Depends how people react to surprises (Reny 1993)
 - RCSBR: continue to believe in rationality after surprises
 - (Surprises \Rightarrow belief in irrationality) \Rightarrow Surprises!
- Surprise: Pr(Take)=100%, Pr(Rational)=100%, but then Pass
- CENT-LO: Pr(Take) never near 100%
 - It's not a game of complete information!

Belief in Rationality & Backward Induction

- Does common belief in rationality \Rightarrow backwards induction?
- Depends how people react to surprises (Reny 1993)
 - RCSBR: continue to believe in rationality after surprises
 - (Surprises \Rightarrow belief in irrationality) \Rightarrow Surprises!
- Surprise: Pr(Take)=100%, Pr(Rational)=100%, but then Pass
- CENT-ALL: Very few surprises since everyone Takes!
 - Unsurprisingly, surprises are rare

Prisoners Dilemma

- New treatment: SIM
- + Five 2 \times 2 games without feedback, random matching
- Elicitation in every game
- Pencil & paper
- *n* = 150

30.4% play C.

Why???

			С	D						
		C \$1	0, \$10	\$1, \$15						
		D \$	15, \$1	\$5, \$5						
The Prisoners' Dilemma Game Form										
				$BR_i(p_i^{1s})$	$ u_i) = C$ $s_i = D$	BR _i (p ^{1s}	$ u_i) = D$			
Pref. Type	$BR_i(C)$	$BR_i(D)$	% Subj.	s _i = C	$s_i = D$	s _i = C	$s_i = D$			
Selfish	D	D	68.0%	-	-	18	79			
Cond. Coop.	С	D	19.7%	15	5	3	6			
Reverse	D	С	2.7%	1	2	0	1			
Uncond. Coop.	С	С	9.5%	8	6	-	-			

			С	D			
		C \$1	0, \$10	\$1, \$15			
		D \$	15, \$1	\$5, \$5			
	The P	risoners	' Dilemn	na Game	Form		
				BR _i (p ^{1s}	$ u_i) = C$ $s_i = D$	BR _i (p ^{1s}	$ u_i) = D$
Pref. Type	$BR_i(C)$	BR _i (D)	% Subj.	$s_i = C$	$s_i = D$	s _i = C	$s_i = D$
Selfish	D	D	68.0%	-	-	18	79
Cond. Coop.	С	D	19.7%	15	5	3	6
Reverse	D	С	2.7%	1	2	0	1
Uncond. Coop.	С	С	9.5%	8	6	-	-

Only 53% of cooperation (C) is rational

Failure of consequentialism or dominance

Iterated Dominance

A Dominance-Solvable Game Form

- Row players: 100% play U
 - 71 of 75: U is a dominant strategy
 - 4 of 75: U is a best response
- Column players: 25% play L
 - Why???

A Dominance-Solvable Game Form

				$BR_i(p_i^{1s} u_i) = L$		$BR_i(p_i^{1s} u_i) = R$	
Pref. Type	BR _i (U)	BR _i (D)	% Subj.	$s_i = L$	$s_i = R$	$s_i = L$	$s_i = R$
Selfish	R	L	91.9%	0	0	14	53
DomStrat L	L	L	5.4%	3	1	-	-
DomStrat R	R	R	2.7%	-	-	1	1
Reversed	L	R	0%	0	0	0	0

Violation of consequentialism and/or EU Conjecture: avoiding (\$1, \$1), despite stated preferences. Strategic uncertainty.

Sequential-Move DomSolv

SEQ treatment: n = 60

Irrationality disappears when strategic uncertainty is removed

Coordination

Asymmetric Coordination

- Row: 93% play U
- Col: 49.3% play L
 - Why??? Beliefs?

Asymmetric Coordination

An Asymmetric Coordination Game Form

				$BR_1(p_1^{1s} u_1) = U$		$BR_1(p_1^{1s} u_1)=D$	
Row's Type	$BR_1(L)$	$BR_1(R)$	% Subj.	$S_1 = U$	$S_1 = D$	$S_1 = U$	$S_1 = D$
Selfish	U	D	95.8%	43	2	20	3
DomStrat U	U	U	4.2%	3	0	-	-
				$BR_2(p_2^{1S} u_2) = L$		$BR_2(p_2^{1s} u_2) = R$	
Col's Type	$BR_2(U)$	$BR_2(D)$	% Subj.	$S_2 = L$	$s_2 = R$	$S_2 = L$	$S_2 = R$
Selfish	L	R	93.0%	26	27	5	8
DomStrat L	L	L	7.0%	5	0	-	-

Lessons

- 1. Most experiments are Bayesian games, not complete info
- 2. The story changes from one game to the next
- 3. Centipede game forms:
 - + Altruists pass \Rightarrow selfish pass
 - Backwards induction seems to work fine here
- 4. Prisoners' dilemma:
 - Non-consequential preference for cooperating
- 5. Beliefs are generally pretty accurate
- 6. Don't write a solo-authored paper post-tenure