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What is an Experiment?
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What is an Experiment?

The subject

◮ Walks into the lab

◮ Asked to make several choices

◮ Rewarded based on her choices

The researcher

◮ Observes subject’s choices

◮ Learns about her preferences
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The Problem

How to reward the subject such that observed choices are
‘truthful’?

◮ Truthful = rightly represent underlying preferences

◮ No problem if only one choice (give her what she chose)

◮ Less obvious with several decision problems – the researcher
analyzes the data as if each problem is isolated
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Example

Experiment: Testing “rationality” in a game

1. Play the following game:

L R

U 1, 1 0, 0

D 0, 0 1, 1

2. Guess which strategy your opponent will pick.
◮ Paid $1 if right, $0 if wrong.

Paying for both decisions creates a hedging problem:

Truth: $2 if right, $0 if wrong
Hedge: $1 for sure
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Another Example

Experiment: Correlate dictator-game giving with risk preferences

1. High-Stakes Dictator Game
◮ Each subject given $100
◮ Paired with another subject (anonymously)
◮ Asked how much he wants to give to the other subject (Dollar

increments)

2. Holt-Laury (2002) procedure for estimating risk preferences.

# Safe Lottery Risky Lottery

1 (0.1, $2.00; 0.9, $1.60) (0.1, $3.85; 0.9, $0.10)

2 (0.3, $2.00; 0.7, $1.60) (0.3, $3.85; 0.7, $0.10)

3 (0.5, $2.00; 0.5, $1.60) (0.5, $3.85; 0.5, $0.10)

4 (0.7, $2.00; 0.3, $1.60) (0.7, $3.85; 0.3, $0.10)

5 (0.9, $2.00; 0.1, $1.60) (0.9, $3.85; 0.1, $0.10)
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Another Example (cont.)

Suppose paying for all 6 decisions:

◮ Wealth effect: Earning $90 in dictator game may reduce risk
aversion

◮ Portfolio effect: The 5 risky lotteries as a portfolio aren’t that
risky
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Complementarities

More generally, complementarities between decision problems may
distort choices if all are paid

Example:

1. Cookie or Hot Dog?
2. Milk or Beer?
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A Proposed Solution

Certainly not the first to notice this problem

A commonly used solution: Pay for one randomly-selected decision

◮ Known at least since Allais (1953)

◮ Used by Yaari (1965)

◮ Discussed by Holt (1986)

◮ Definitely not a comprehensive list..

Our name: ‘Random Problem Selection’ (RPS) mechanism (but
other names appear in the literature).
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A Problematic Example (Holt 1986, Cox et al 2011)

Let L = (0.5, $0; 0.5, $3).

◮ Decision 1: L vs. $1 for sure

◮ Decision 2: L vs. $2 for sure

◮ Each decision chosen for payment w/ 50% probability

◮ Suppose $2 ≻ L ≻ $1

◮ Picking {L, $2} gives lottery (0.25, $0; 0.5, $2; 0.25, $3)
(TRUTH)

◮ Picking {$1, $2} gives lottery (0.5, $1; 0.5, $2) (LIE)

◮ ∃ rank-dependent utility preferences where $2 ≻ L ≻ $1 and
LIE ≻ TRUTH

U(f ) =

n
∑

s=1

u(xs)

[

q(

s
∑

r=1

pr )− q(

s−1
∑

r=1

pr )

]
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Current Practice

Only 1 None One Some All Rank-
Mechanism: Task Paid Random Random Paid Based Total

Individual Choice Experiments
‘ Top 5 ’ 7 0 3 1 3 0 14
ExpEcon 3 0 1 0 2 0 6

Muti-Person (Game) Experiments
‘ Top 5 ’ 9 0 1 0 8 0 18
ExpEcon 8 1 3 3 5 1 21

Totals 27 1 8 4 18 1 59

1. Experimenters lack a convention.

2. Theory is unclear. Is expected utility needed for RPS??

Azrieli, Chambers, & Healy Incentives in Experiments



In this paper

1. Describe an abstract model of experiment

2. Define a notion of incentive compatibility of the payment
mechanism (“each decision is made as if in isolation”)

3. Understand under what conditions the RPS mechanism is
incentive compatible (answer: ‘monotonicity’)

4. Characterize the set of incentive compatible payment
mechanisms (assuming monotonicity)

Also, analyze when is it OK to pay for all (or several) decisions
(but not in this talk).
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An Abstract Model of Experiment

◮ X : A finite set of ‘objects’ (no structure).

◮ D = (D1, . . . ,Dk): A finite list of decision problems, where
each Di ⊆ X . Assume Di 6= Dj and |Di | > 1 for every i (can
be easily relaxed).

◮ � over X (complete & transitive)

◮ µi(�) = {x ∈ Di : (∀y ∈ Di) x � y}

◮ µ(�) = ×iµi(�) (‘optimal choices in isolation’)

◮ Messages: M = ×iDi (‘announced choice’)

◮ Payment mechanism: Maps M to ‘payments’
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The Example

◮ First decision: dictator game
D1 = {($100, $0), ($99, $1), . . . , ($0, $100)}. m1 = ($90, $10)

◮ Next: 5-question Holt-Laury elicitation
D2 = {(0.1, $2; $1.60), (0.1, $3.85; $0.10)}.
m2 = (0.1, $2; $1.60)
D3 = {(0.3, $2; $1.60), (0.3, $3.85; $0.10)}.
m3 = (0.3, $2; $1.60)
D4 = {(0.5, $2; $1.60), (0.5, $3.85; $0.10)}.
m4 = (0.5, $2; $1.60)
D5 = {(0.7, $2; $1.60), (0.7, $3.85; $0.10)}.
m5 = (0.7, $3.85; $0.10)
D6 = {(0.9, $2; $1.60), (0.9, $3.85; $0.10)}.
m6 = (0.9, $3.85; $0.10)

◮ Payment: RPS Mechanism
◮ Roll a 6-sided die.
◮ Roll a 1: pay m1

◮ Roll a 2: pay m2
...
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Payments: Acts vs Lotteries

The researcher may use a randomization device (say, roll a die) to
determine which element of X is chosen for payment

Two possible approaches regarding how the subject views this
uncertainty:

1. Savage (1954): Payment based on a die roll is an act

◮ Finite state space Ω = {ω1, . . . , ωn}
◮ A payment f (ω) ∈ X for each ω ∈ Ω
◮ The set of all acts is F = XΩ

◮ Each m ∈ M is mapped to some act φ(m) ∈ F

2. Payment based on a die roll is an objective lottery

◮ ∆(X ) – the set of lotteries on X
◮ Each m ∈ M is mapped to some lottery ϕ(m) ∈ ∆(X )
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Incentive Compatibility (Acts)

◮ Each � over X extends to �∗ over F

◮ �∗ agrees with � on constant acts

◮ Let E(�) be the set of admissible extensions of �

Definition
An experiment (D, φ) is incentive compatible with respect to E
if, for every � and extension �∗∈ E(�), every m∗ ∈ µ(�) and
every m ∈ M,

φ(m∗) �∗ φ(m)

and
φ(m∗) ≻∗ φ(m)

whenever m 6∈ µ(�).

Strict incentive compatibility.
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Preliminary Observation

Proposition

If no restrictions are placed on E(�), then there is an IC payment
mechanism if and only if there is only one decision problem
(k = 1).
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Monotonicity

What restrictions on �∗?

◮ (Subjective) expected utility representation

◮ Probabilistic sophistication

◮ Uncertainty aversion (say, maxmin expected utility)
...

(Statewise) Monotonicity:

f (ω) � g(ω) ∀ω ⇒ f �∗ g
and f (ω) ≻ g(ω) for some ω ⇒ f ≻∗ g

Emon(�) = set of all monotonic extensions of �
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Monotonicity

States of the World

Act 1 2 3 4 5 6

f $1 $25 pizza $0 $1 Twix

g $1 $24 pizza $0 $1 Mars

$25 ≻ $24 and Twix≻Mars ⇒ f ≻∗ g
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Monotonicity and Dominance

Lemma
An experiment (D, φ) is incentive compatible w.r.t. Emon if and
only if it has the “Truth Dominates Lies” property:

For every �, m∗ ∈ µ(�), m ∈ M and ω ∈ Ω,

φ(m∗)(ω) � φ(m)(ω).

If m 6∈ µ(�) then there is ω ∈ Ω such that

φ(m∗)(ω) ≻ φ(m)(ω).
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The RPS Mechanism

Definition
φ is an RPS mechanism if ∃ a partition {Ω1, . . . ,Ωk} of Ω into
non-empty sets such that

ω ∈ Ωi ⇒ φ(m)(ω) = mi .

(Assume each Ωi is non-null.)
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RPS and Monotonicity

Proposition

If only monotonic extensions are admissible (E ⊆ Emon) then any
RPS mechanism is incentive compatible.

Sketch of Proof:

Suppose each Di = {xi , yi , zi , . . .}
Suppose xi = µi(�) for each i

States of the World

Act 1 2 3 4 · · · k

φ(x1, x2, x3, . . . , xk) x1 x2 x3 x4 · · · xk
φ(x1, y2, x3, . . . , xk) x1 y2 x3 x4 · · · xk
φ(x1, y2, z3, . . . , xk) x1 y2 z3 x4 · · · xk

Now apply previous lemma.

Monotonicity (on a restricted domain) is also necessary for
incentive compatibility of the RPS mechanism.
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Monotonicity

Is monotonicity strong?

Suppose X is a space of lotteries.
Monotonicity + reduction ⇒ independence (EUT)

Suppose X is a space of acts.
Monotonicity + order-reversal ⇒ ambiguity neutrality
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Other IC Mechanisms?

Maintaining the monotonicity assumption (E = Emon), what is the
class of all incentive compatible mechanisms?

From now on, assume only strict � are admissible:

◮ A unique maximal element in each decision problem
(µ(�) is a singleton).

◮ There may be m ∈ M that cannot be rationalized:
D1 = {x , y}, D2 = {y , z}, D3 = {x , z}
m = (x , y , z) is not rationalizable

MR=rationalizable messages
MNR=non-rationalizable messages
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Surely Identified Sets

Example: D1 = {x , y}, D2 = {y , z}, D3 = {x , z}
Consider E = {x , y , z}
If m ∈ MR , then we know your favorite thing in E .

Definition
A set E ⊆ X is surely identified if, for every �, the choices
m = µ(�) reveal the �-maximal element of E . Let SI (D) be the
family of surely identified sets for D.

Lemma

E ∈ SI (D) ⇔ ∀x , y ∈ E ∃Di ∈ D, {x , y} ⊆ Di ⊆ E

In practice, usually SI (D) = {Di}
k
i=1

⋃

{x}x∈X .
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RSS Mechanisms

Given φ, denote Pφ(ω) = {φ(m)(ω)}m∈M .

Definition
φ is a Random Set Selection (RSS) Mechanism if, for each ω ∈ Ω,
Pφ(ω) ∈ SI (D) and for every m ∈ MR ,

φ(m)(ω) = max(Pφ(ω)|m).

Interpretation: I roll a die and pay you either for a real decision you
made, or for a fake decision where I can always figure out what you
would have chosen.

RPS ⊂ RSS

One known example: Krajbich (2011)

Azrieli, Chambers, & Healy Incentives in Experiments



Characterization

Theorem
(D, φ) is incentive compatible w.r.t. Emon if and only if

1. φ is an RSS mechanism;

2. Each Di is surely identified by the sets {Pφ(ω)}ω∈Ω;

3. m ∈ MNR implies φ(m) 6∈ φ(MR).

Idea of Proof:

1. At each ω you get the revealed best possible element
φ(m)(ω) = max(Pφ(ω)|m); thus, RSS

2. Each Di matters for the outcome

3. Non-rationalizable messages give you something from each
payment set, but can’t possibly be your favorite in all sets.
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Almost-Characterizing RPS

Usually SI (D) = {Di}
k
i=1

⋃

{x}x∈X .
(For example, if each Di is disjoint.)

In this case, RSS = RPS + “singleton payments”.

Thus, in practice, IC ⇐⇒ RPS + singleton payments
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Incentive Compatibility (Lotteries)

◮ Each � over X extends to �∗ over ∆(X )

◮ �∗ agrees with � on degenerate lotteries

◮ Let E(�) be the set of admissible extensions of �

Definition
An experiment (D, ϕ) is incentive compatible with respect to E
if, for every � and extension �∗∈ E(�), every m∗ ∈ µ(�) and
every m ∈ M,

ϕ(m∗) �∗ ϕ(m)

and
ϕ(m∗) ≻∗ ϕ(m)

whenever m 6∈ µ(�).
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Monotonicity (Lotteries)

Definition
Fix �. The lottery f First Order Stochastically Dominates (FOSD)
the lottery g with respect to � if, for every x ∈ X ,

∑

{x ′∈X :x ′�x}

f (x ′) ≥
∑

{x ′∈X :x ′�x}

g(x ′).

If there is strict inequality for at least one x then we say f strictly
FOSD g with respect to �.

Definition
An extension �∗ of � is monotonic if f �∗ g whenever f FOSD g
w.r.t. � and f ≻∗ g whenever f strictly FOSD g w.r.t. �.

Emon(�) = The set of all monotonic extensions of �.
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Monotonicity and Dominance (Lotteries)

Lemma
A mechanism ϕ is incentive compatible with respect to Emon if and
only if, for every � and every m 6= µ(�), ϕ(µ(�)) FOSD ϕ(m)
w.r.t. �. (Truth FOSD’s Lies)
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The RPS Mechanism (Lotteries)

Definition
A mechanism ϕ is an RPS mechanism if there exists a full-support
probability distribution λ over D = (D1, . . . ,Dk) such that for
every alternative x ∈ X ,

ϕ(m)(x) =
∑

{i : mi=x}

λ(Di ).
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RPS and Monotonicity (Lotteries)

Proposition

If only monotonic extensions are admissible (E ⊆ Emon) then any
RPS mechanism is incentive compatible.

Sketch of Proof:

◮ Lying in any decision problem shifts probability from more to
less desired objects, hence any lottery that can be obtained by
lying is FOSD by the lottery obtained by truth-telling

◮ Now apply previous lemma
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What else is IC (with Emon)?

Example:

◮ D1 = {x , y}, D2 = {x , z}, D3 = {y , z}

◮ Consider the mechanism ϕ that puts probability of 0.8 on the
revealed most preferred object and 0.2 on the revealed
second-best (for m ∈ MR)

◮ ϕ is IC but not an RPS mechanism (even when restricted to
MR)

◮ E = {x , y , z} is SI

◮ λ(D1) = λ(D2) = λ(D3) = 0.2, λ(E ) = 0.4 generates ϕ

Lesson: We may put weight on surely identified sets
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What else is IC (with Emon)?

Example:

◮ D1 = {x , y}, D2 = {x , z}, D3 = {y , z}

◮ Consider the mechanism ϕ that puts probability of 0.6 on the
revealed most preferred object and 0.4 on the revealed
second-best (for m ∈ MR)

◮ ϕ is IC but not an RPS mechanism (even when restricted to
MR)

◮ E = {x , y , z} is SI

◮ λ(D1) = λ(D2) = λ(D3) = 0.4, λ(E ) = −0.2 generates ϕ

Lesson: We may put negative weights on surely identified sets

Note: λ(D1) = λ(D2) = λ(D3) = 0.6, λ(E ) = −0.8 generates a
non-IC mechanism
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WSS Mechanisms

Definition
A mechanism ϕ : M → ∆(X ) is a weighted set-selection (WSS)
mechanism if there exists some λ : SI (D) → R such that for every
rationalizable m ∈ MR and every x ∈ X ,

ϕ(m)(x) =
∑

{E∈SI (D) : max(E |m)=x}

λ(E ).

RPS ⊂ RSS
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Switch Positivity

Definition
A WSS mechanism ϕ (with associated weighting vector λ) satisfies
switch positivity if, for every x , y ∈ X and A ⊆ X \ {x , y} it holds
that

∑

{E∈SI (D) : {x ,y}⊆E⊆A∪{x ,y}}

λ(E ) > 0

(provided the sum is not empty).
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Characterization (Lotteries)

Theorem
(D, ϕ) is incentive compatible w.r.t. Emon if and only if

1. ϕ is a WSS mechanism;

2. ϕ satisfies switch positivity;

3. if m ∈ MNR then ϕ(m) ∈ conv(ϕ(MR )) \ ϕ(MR).
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‘Proof’

D1 = {x , y}, D2 = {x , z}, D3 = {y , z}

x y

z

xyz yxz

yzx

zyxzxy

xzy
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‘Proof’ (cont.)

D1 = {x , y}, D2 = {x , z}, D3 = {y , z}

There is a normalized and convex ‘capacity’ v : 2{x ,y ,z} → [0, 1]
that ‘represents’ ϕ:

ϕ(µ(�))(a1) = v(a1, a2, a3)− v(a2, a3)

ϕ(µ(�))(a2) = v(a2, a3)− v(a3)

ϕ(µ(�))(a3) = v(a3)

{a1, a2, a3} = {x , y , z} and � ranks a1 � a2 � a3.
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‘Proof’ (cont.)

Each v can be represented uniquely by the ‘unanimity capacities’:

v(A) =
∑

E⊆A

λ(E )

ϕ(µ(�))(a1) = v(a1, a2, a3)− v(a2, a3) =
∑

a1∈E

λ(E )

ϕ(µ(�))(a2) = v(a2, a3)− v(a3) =
∑

a2∈E⊆{a2,a3}

λ(E )

ϕ(µ(�))(a3) = v(a3) =
∑

E⊆{a3}

λ(E )

But this is exactly the required representation...

Note: v convex ⇔ λ satisfies “switch positivity”
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IC Mechanisms: Acts vs. Lotteries

◮ The lotteries framework can be seen as a restriction of the set
of possible extensions �∗

◮ The subject is indifferent between any two acts that generate
the same lottery

◮ Incentive compatibility becomes a weaker requirement

◮ ‘More’ mechanisms are IC
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IC Mechanisms: Acts vs. Lotteries

Definition
Say that ((Ω, µ), φ) generates ϕ if, for each m ∈ M and x ∈ X ,

ϕ(m)(x) = µ ({ω ∈ Ω : φ(m)(ω) = x}) .
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IC Mechanisms: Acts vs. Lotteries

Proposition

If φ is an IC act-mechanism (defined on some state space Ω), and
µ is a full-support probability distribution on Ω, then the
lotteries-mechanism ϕ generated by ((Ω, µ), φ) is IC.

Proposition

Assume that ϕ is an IC lotteries-mechanism.

1. If the associated weighting vector λ of ϕ is non-negative, then
there exists an IC acts-mechanism φ (on some Ω) and a
probability µ on Ω such that ((Ω, µ), φ) generates ϕ on
rationalizable messages.

2. If the associated weighting vector λ of ϕ contains negative
elements, then ϕ cannot be generated by any IC
acts-mechanism φ (even when restricted to rationalizable
messages).
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Summary

◮ If paying all, need to assume no complementarities.
◮ Fairness, portfolio, hedging, wealth, ...

◮ If RPS, need to assume monotonicity. Weak, unless 2-stage
gambles.

◮ Reduction & non-expected utility
◮ Order Reversal & ambiguity aversion

◮ Other mechanisms may be IC for certain models.

◮ Experimenter needs to decide for themselves!

My (current) opinion:

◮ Use RPS

◮ Separate decisions as much as possible.

◮ Use separate, physical randomizing devices.
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Other Issues

Other Monotonicity Violations:

◮ Decision Overload w/ Easy/Default Option (NCaT also
questionable)

◮ Ex-Ante Fairness (NCaT also questionable)

◮ Irrational Diversification (NCaT also violated)

Issues Besides IC:

◮ Payment Inequality

◮ Payment Variance

◮ Confusion

◮ Irrational Choice

Theory is not explicitly dynamic! (But we can discuss.)
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The End
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