Probability Matching and the Preference for Randomization

Marina Agranov (Caltech) P.J. Healy (OSU) Kirby Nielsen (OSU)

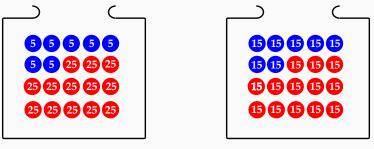
FUR York Some day in June

Probability Matching and the Preference for Randomization

Marina Agranov (Caltech) P.J. Healy (OSU) Kirby Nielsen (OSU) \leftarrow on the market

FUR York Some day in June

- People randomize (mix) in lots of settings
 - Sometimes even irrationally
- Is it all connected?
 - Mixing in one setting \Rightarrow mixing in another setting?
- Are there any theories that can explain it?
- Is it a heuristic?

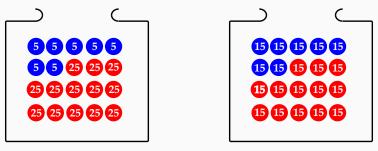

- People randomize (mix) in lots of settings
 - Sometimes even irrationally
- Is it all connected?
 - Mixing in one setting \Rightarrow mixing in another setting? Yes.
- Are there any theories that can explain it?
- Is it a heuristic?

- People randomize (mix) in lots of settings
 - Sometimes even irrationally
- Is it all connected?
 - Mixing in one setting \Rightarrow mixing in another setting? Yes.
- Are there any theories that can explain it? No.
- Is it a heuristic?

- People randomize (mix) in lots of settings
 - Sometimes even irrationally
- Is it all connected?
 - Mixing in one setting \Rightarrow mixing in another setting? Yes.
- Are there any theories that can explain it? No.
- Is it a heuristic? TBD.

DECISION PROBLEM ONE: Risky-Safe

Decision Problem 1: Risky-Safe

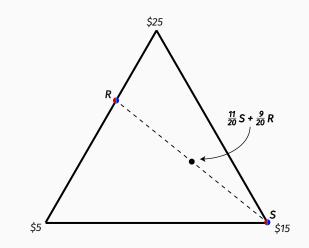


Risky Bet (65%)

Safe Bet

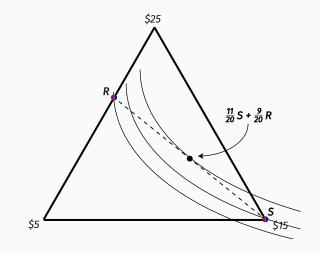
• Pick 1 time: Safe > Risky

Decision Problem 1: Risky-Safe

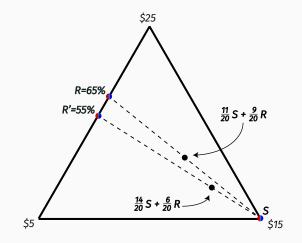


Risky Bet (65%)

Safe Bet


- Pick 1 time: Safe > Risky
- Our experiment: Pick 20 times, one is paid randomly
 - 14% pick Risky all 20 times
 - 32% pick Safe all 20 times
 - 54% mix. Average: 11 Safe, 9 Risky

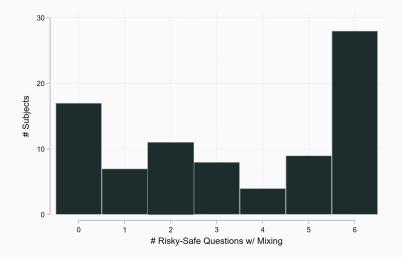
Mixing


Reduced compound lottery

Convex Preferences

Non-linear prefs \Rightarrow Violates EU.

Strictly Convex Preferences

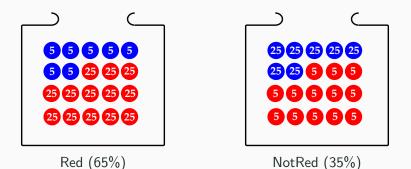

EU + Indifference? No. We see mixing in both.

Results

Baseline Treatment: n = 84

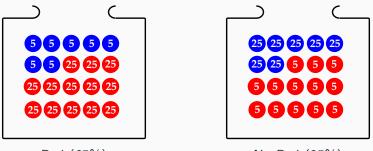
Pr(Red):	55%	60%	65%	70%	75%	80%
	Risky-Safe					
% who mix:	55%	60%	54%	57%	57%	54%
Avg # Risky mix	5.9	6.9	9.3	10.0	9.9	11.1

Results: Correlation Between Questions



Pairwise Cramer Coefficients all in [0.51, 0.70], sig. at p < 0.001.

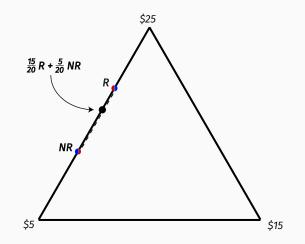
8


DECISION PROBLEM TWO: Red-NotRed

Decison Problem 2: Red-NotRed

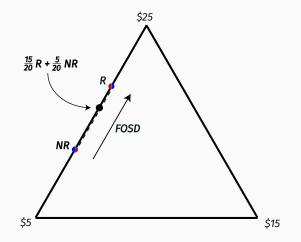
• Pick 1 time: Red \succ NotRed

Decison Problem 2: Red-NotRed



Red (65%)

NotRed (35%)


- Pick 1 time: Red \succ NotRed
- Our experiment: Pick 20 times, one is paid randomly
 - 54% pick Red all 20 times
 - 1% pick NotRed all 20 times
 - 45% mix. Average: 15 Red, 5 NotRed

Mixing

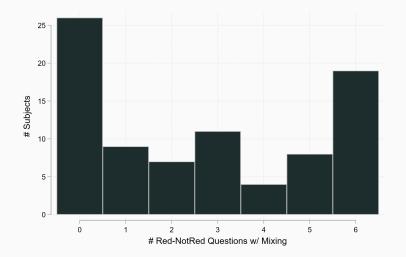
Reduced compound lottery

Irrational Mixing

Mixture violates FOSD (not just EU).

Results

Baseline Treatment: n = 84


Pr(Red):	55%	60%	65%	70%	75%	80%	
	Risky-Safe						
% who mix:	55%	60%	54%	57%	57%	54%	
Avg # Risky mix	5.9	6.9	9.3	10.0	9.9	11.1	
	Red-NotRed						
% who mix:	57%	54%	45%	39%	39%	35%	
Avg # Red mix:	11.4	13.7	14.5	14.1	15.2	16.0	

Results

Baseline Treatment: n = 84

Pr(Red):	55%	60%	65%	70%	75%	80%
	Risky-Safe					
% who mix:	55%	60%	54%	57%	57%	54%
Avg # Risky mix	5.9	6.9	9.3	10.0	9.9	11.1
	Red-NotRed					
% who mix:	57%	54%	45%	39%	39%	35%
Avg $\#$ Red mix:	11.4	13.7	14.5	14.1	15.2	16.0
Modal % Red mix:	50%	60%	65%	70%	75%	95%
Pr(Red):	55%	60%	65%	70%	75%	80%

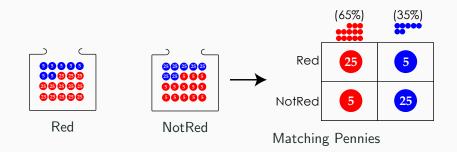
Results: Correlation

Pairwise Cramer Coefficients all in [0.47, 0.70], sig. at p < 0.001. ¹³

• Mix in Red-NotRed \Rightarrow Mix in Risky-Safe?

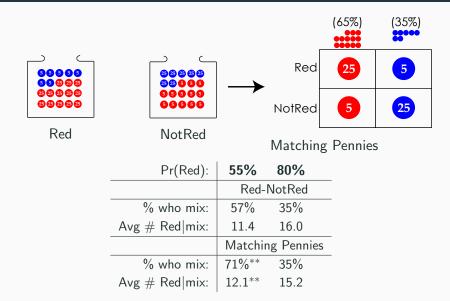
- Mix in Red-NotRed \Rightarrow Mix in Risky-Safe?
 - 78%

- Mix in Red-NotRed \Rightarrow Mix in Risky-Safe?
 - 78%
- Mix in Risky-Safe \Rightarrow Mix in Red-NotRed?


- Mix in Red-NotRed \Rightarrow Mix in Risky-Safe?
 - 78%
- Mix in Risky-Safe \Rightarrow Mix in Red-NotRed?
 - 63%

- Mix in Red-NotRed \Rightarrow Mix in Risky-Safe?
 - 78%
- Mix in Risky-Safe \Rightarrow Mix in Red-NotRed?
 - 63%

• Definite evidence of 'mixing types'


MIXING IN GAMES

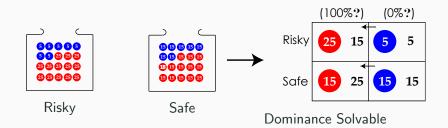
Mixing in Games

- Play against past players
 - No social preferences
 - Probability given (55% and 80%)

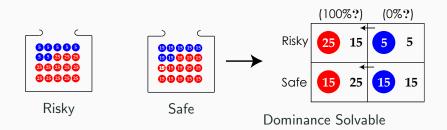
Mixing in Games

• Mix in Red-NotRed \Rightarrow Mix in Matching Pennies?

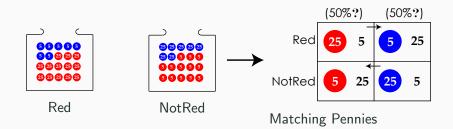
- Mix in Red-NotRed \Rightarrow Mix in Matching Pennies?
 - 55% Question: 88%
 - 80% Question: 66%

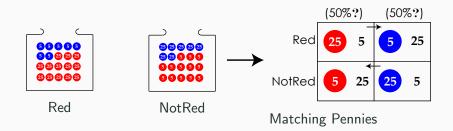

- Mix in Red-NotRed \Rightarrow Mix in Matching Pennies?
 - 55% Question: 88%
 - 80% Question: 66%
- Mix in Matching Pennies \Rightarrow Mix in Red-NotRed?

- Mix in Red-NotRed \Rightarrow Mix in Matching Pennies?
 - 55% Question: 88%
 - 80% Question: 66%
- Mix in Matching Pennies \Rightarrow Mix in Red-NotRed?
 - 55% Question: 70%
 - 80% Question: 66%


- Mix in Red-NotRed \Rightarrow Mix in Matching Pennies?
 - 55% Question: 88%
 - 80% Question: 66%
- Mix in Matching Pennies \Rightarrow Mix in Red-NotRed?
 - 55% Question: 70%
 - 80% Question: 66%

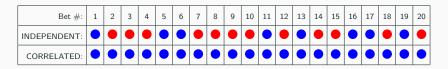
• Definite evidence of 'mixing types'


GAMES WITH STRATEGIC UNCERTAINTY

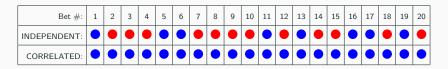

- Play against current players
 - Social preferences
 - Elicit beliefs
 - 80% belief $\Rightarrow \approx$ 80% Risky-Safe question, e.g.

- Result:
 - 69% have belief $\geq 75\%$
 - Choose Safe 3.5 times more (on avg.) than in corresponding Risky-Safe decision.
 - Strategic uncertainty $\Rightarrow \uparrow$ mixing on Safe

- Play against current players
 - Social preferences
 - Elicit beliefs
 - 55% belief $\Rightarrow \approx$ 55% Red-NotRed question, e.g.

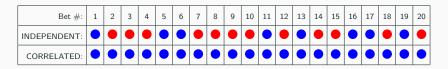


- Result:
 - Only 29% have belief = 50% (not far off, though)
 - Choose NotRed 5.2 times more (on avg.) than in corresponding Risky-Safe decision.
 - Strategic uncertainty $\Rightarrow \uparrow$ irrational mixing


THEORY TESTING

Bet #:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
INDEPENDENT:				•	•	•			٠	•	•		•	•		•	•			

Bet #:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
INDEPENDENT:					•	•				•	•		•	•		•	•		•	
CORRELATED:	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	



Data: ZERO difference between IND and CORR.*

Data: ZERO difference between IND and CORR.*

	Mix in Red-NotRed?			
	INDEP.	CORR.		
Our Data	√	√		
Negative Correlation	√			

Data: ZERO difference between IND and CORR.*

Mix in Red-NotRed?		
INDEP.	CORR.	
\checkmark	√	
√		
\checkmark		
√*		
	\checkmark	
	\checkmark	
	\checkmark	

(*Well, OK ... slightly more mixing in games under CORR.)

SUMMARY

Summary

- Mixing is pervasive
- Correlated across domains
- Seems to be a heuristic

- Mixing is pervasive
- Correlated across domains
- Seems to be a heuristic

- Next step: Can we "teach away" mixing?
- Reduce compound lottery for them \Rightarrow show NotRed is dominated
 - Red-NotRed mixing is a mistake \Rightarrow Should go away
 - Risky-Safe mixing is convex prefs \Rightarrow Should persist

FIN