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I. INTRODUCTION

For public goods economies, Groves and Ledyard (1977, henceforth, GL) provide a mech-
anism that implements a Pareto efficient outcome in Nash equilibrium, thus offering
a solution to the classic free-rider problem. Two additional advantages are that it is
simple—agents need only to submit a single number as their message—and it can be
made stable: if the free parameter is chosen to be large enough then adaptive play-
ers will converge quickly to the efficient equilibrium. The main shortcoming of the GL
mechanism is that it violates individual rationality (IR): in some economies some agents
would prefer the initial endowment over the mechanism’s equilibrium outcome.

A natural question is whether the IR failure could be eliminated. Hurwicz (1979a)
shows that, under continuity assumptions, IR and Pareto optimality of Nash equilibrium
(PO) are obtained if and only if the mechanism implements the Lindahl allocations for
any given economy. The GL mechanism doesn’t implement Lindahl allocations, which
is why it must violate IR. But Walker (1981) provides a remarkably simple mechanism
that does achieves this goal, and is therefore both PO and IR. This mechanism was
generalized by Tian (1990). Although the Walker-Tian mechanisms are PO and IR,
unfortunately they sacrifice stability. In fact, Healy and Mathevet (2012) prove that any
simple mechanism—meaning, any mechanism in which agents submit a single number
as their message—cannot satisfy PO, IR, and stability. Thus, among PO mechanisms,
one must choose either IR failures, stability failures, or more complex message spaces.

Stability has been shown to be crucial in laboratory studies (Chen and Plott, 1996;
Chen and Tang, 1998; Healy, 2006, e.g.), so the literature has mostly focused on sacri-
ficing simplicity. Complex mechanisms have been found that are PO, IR, and stable, but
they are either balanced only in equilibrium or contain very complicated payment rules
(Hurwicz, 1979b; Kim, 1993; Chen, 2002; Healy and Mathevet, 2012; Van Essen, 2013).1

In this paper we take a different direction: We ask whether we can retain PO, sim-
plicity, and stability, and somehow minimize the resulting IR failures. We show that a
simple hybrid between the GL mechanism and Walker-Tian mechanisms can reduce IR
failures “in expectation” while remaining stable, Pareto efficient, and budget balanced
both on and off equilibrium path. In particular, we find that when the tax is composed
of a linear combination of the GL tax and a simple permutation of the Walker tax, the
agent whose equilibrium utility decreases the most relative to consuming the endow-
ment (hence, the agent with the largest potential IR violation) is always better off in

1Van Essen et al. (2012) test the two-dimensional Kim (1993) and Chen (2002) mechanisms against the
one-dimensional Walker mechanism in the lab. They find that Kim’s mechanism performs the best of the
three according to almost every measure considered.
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expectation in the hybrid mechanism as long as the weight on the Walker-Tian payment
is sufficiently small compared to the GL weight.

Our positive result, however, is subject to three limits. First, it is sensitive to which
neighbors affect one’s tax rate. Certain permutations of neighbors do not always lead to
an improvement, though we do identify one that does guarantee improvement. Second,
the result holds only in expectation. As shown in Section IV, for any hybrid mechanism
there always exist some economies such that the IR violation is more severe for the hy-
brid mechanism than the GL mechanism. And this event is not “rare” in the sense that
there exists an open set of economies wherein the hybrid performs worse. This effect
is offset, however, when we aggregate across economies while fixing the identity and
preference of the lowest type agent. Third, in the hybrid mechanism (like in the Walker
mechanism) agents must treat the other agents asymmetrically, which requires agents
to react to individual strategies of others rather than their aggregate contribution. This
may be politically undesirable and may hurt performance. These limits highlight the
underlying tension between implementing the Lindahl outcome and achieving dynamic
stability with simple mechanisms.

II. THE FRAMEWORK

We consider an n-agent public goods economy with one private good and one public good.
Let i ∈ N = {1, . . . ,n} index the agents. We assume n is finite and n ≥ 3. Each agent i
is initially endowed with ωi ≥ 0 units of private good and pays a tax ti ∈ R towards
the production of the public good (where ti < 0 if they receive a subsidy), which leaves
xi =ωi − ti as their final consumption of the private good.

Initially there is no public good. The government (or planner) receives taxes from the
agents and uses this revenue to produce y ∈ R units of the public good at a constant
marginal cost of κ > 0. We say that y is is feasible if κy ≤ ∑

i ti and budget balanced if
κy=∑

i ti.
Each agent has preferences ⪰i over R2 representable by a continuously-differentiable

utility functional ui(xi, y). When there is no confusion, let ui(ti, y) = ui(ωi − ti, y). The
marginal rate of substitution of ui is given by

MRSi(ti, y)= ∂ui(ti, y)/∂y
−∂ui(ti, y)/∂ti

.

Utility is quasilinear if ui(ti, y) = vi(y) +ωi − ti for some function vi. In this case,
MRSi(ti, y)= v′i(y). Without loss of generality we can set vi(0)= 0.

An economy is given by E = ((ui,ωi)n
i=1,κ). We are focused on constructing stable

mechanisms, but Kim (1987) shows that stability is impossible for general economies.
But stability is possible in quasilinear economies if concavity of preferences is bounded.
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Thus, we assume that each ui is quasilinear and twice differentiable, and that there is
some η> 0 such that vi(y)′′ ∈ (−η,−1/η) for all i and y.2 Let E QL denote the set of all such
economies.

The government uses a mechanism Γ= (M, y, t) to determine allocations, where M is
a message space with messages of the form m = (m1, . . . ,mn) ∈ M = ×iMi, the function
y(m) ∈ R identifies the resulting public good level, and t(m) = (t1(m), . . . , tn(m)) ∈ Rn the
resulting vector of taxes for each message profile m ∈ M.

We assume Nash equilibrium behavior by the agents, given the mechanism. The best
response correspondence for agent i (given Γ and E) is given by

βi(m−i)= {mi ∈ Mi : (∀m′
i ∈ Mi) ui (ti(mi,m−i), y(mi,m−i))≥ ui

(
ti(m′

i,m−i), y(m′
i,m−i)

)
}.

The set of Nash equilibrium messages is then given by NE = {m∗ ∈ M : (∀i) m∗
i ∈

βi(m∗
−i)}. Note that, depending on the preferences and the mechanism, it could be that

NE =;.

Definition 1. Γ is budget balanced in equilibrium if
∑

i ti(m∗) = κy(m∗) for every
m∗ ∈ NE, and budget balanced if this equality holds for every m ∈ M.

Definition 2. Given a set of economies E , Γ is

(2.a) y-optimal if, for every E ∈ E and every m∗ ∈ NE,
∑

i MRSi(ti(m∗), y(m∗))= κ,
(2.b) conditionally Pareto optimal if Γ is y-optimal and, for every E ∈ E , budget

balanced in equilibrium, and
(2.c) Pareto optimal (PO) if it is conditionally Pareto optimal and, for every E ∈ E ,

NE ̸= ;.

Definition 2.a is the familiar condition of Samuelson (1954), required to hold at any
equilibrium message. But in a quasilinear economy y-optimality does not guarantee
Pareto optimality since the transfers may be wasteful or infeasible. Definition 2.b there-
fore adds budget balance, which gives full Pareto optimality at any Nash equilibrium.
This requirement is vacuous, however, if the mechanism has no Nash equilibria, so 2.c
further requires that an equilibrium exist in every economy E ∈ E .

One desirable criterion is that the mechanism never make agents worse off when they
play equilibrium strategies. Formally, it should lead to equilibrium allocations that are
weakly preferred by every i to their initial endowment point of (ti, y)= (0,0).

Definition 3. Γ is individually rational (IR) if, for every m∗ ∈ NE and every i ∈ N,
ui(ti(m∗), y(m∗))≥ ui(0,0).

We define the minimum utility of a mechanism to be mini∈N,m∗∈NE ui(ti(m∗), y(m∗));
IR thus requires that the minimum utility be non-negative.
2See Healy and Mathevet (2012) for a discussion of this assumption.
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If E ∈ E QL then y-optimality simply requires that
∑

i v′i(y(m∗)) = κ. Budget balance
requires that

∑
i ti(m∗)= κ. And individual rationality reduces to vi(y)≥ ti.

Another desideratum is that the mechanism be “simple.” Following Healy and Math-
evet (2012), we say that a mechanism is simple if it only requires agents to submit a sin-
gle number. The Walker and Groves-Ledyard mechanisms (defined below) are both sim-
ple. Examples of non-simple mechanisms include the canonical mechanism of Maskin
(1999) and the dynamically stable mechanisms of Chen (2002) and Kim (1996).

Definition 4. Γ is simple if M ⊆R1.

Finally, experimental research has demonstrated the importance of dynamically sta-
ble mechanisms. Chen and Tang (1998) and Healy (2006) show that theoretically-
unstable mechanisms indeed perform poorly as subjects’ strategies fail to converge to
Nash equilibrium. Healy and Mathevet (2012) argue that contractiveness of the best-
response functions is an appealing notion of stability for the mechanism design setting,
so we apply that notion here.

Definition 5. Given E , a mechanism Γ is stable if, for every E ∈ E and every i ∈ N, the
best response correspondence βi is a single-valued contraction mapping.

We will focus on cases where the best response function is differentiable, in which
case stability has a simple necessary condition due to Conlisk (1973); see Healy and
Mathevet (2012) for details.

Lemma 1. If Γ is simple and each βi is differentiable then Γ is stable in E if for every
i ∈ N and m ∈ M, ∑

j ̸=i

∣∣∣∣∂βi(m)
∂m j

∣∣∣∣< 1.

Unfortunately, requiring stability causes two major difficulties when combined with
Pareto optimality and individual rationality. First, Hurwicz (1979a) shows that, under
richness and continuity assumptions, if Γ is both PO then Γ implements the Lindahl
correspondence. But Kim (1987) (following Jordan, 1986) shows that if the set of allow-
able preferences is sufficiently rich then any mechanism that implements the Lindahl
correspondence must be unstable for some economy E ̸∈ E QL. For this reason, the sub-
sequent literature on stability has focused on quasilinear preferences. We shall do the
same here. The second problem, however, is that even if we restrict to quasilinear pref-
erences, stability and simplicity are incompatible when also requiring PO and IR (Healy
and Mathevet, 2012). In other words, there does not exist a mechanism that satisfies
PO, IR, simplicity, and stability.

Lemma 2 (Healy and Mathevet (2012)). Under the richness and continuity assumptions
of Hurwicz (1979a), Pareto optimality, individual rationality, stability, and simplicity
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are jointly incompatible. This is true even when restricted to the space of quasilinear
economies with v′′i < 0 for all i.

The mechanisms we focus on in this paper all have Mi = R1 and y(m) = ∑
i mi. Thus,

all mechanisms are differentiable and responsive, meaning each agent can always change
the level of the public good by varying their announcement.3

Definition 6. A mechanism Γ is responsive if it is simple, y is differentiable, and there
exists some ε> 0 such that for any i and m−i, |∂y(m)/∂mi| > ε.

Assume Γ is responsive. Since we are applying best-response logic in our equilibrium
analysis, we can view each agent i as choosing a public good level yi(m−i) in response
to the message profile of others. Formally, the choice of yi(m−i) represents the choice of
the message mi such that y(mi,m−i)= yi(m−i). We often drop the dependence on m−i—
writing it simply as yi—when there is no confusion. For example, if y(m) = ∑

i mi then
yi represents the message mi = yi −∑

j ̸=i m j. Let ti(yi,m−i) denote the corresponding
tax function. If (m∗

i ,m∗
−i) is a Nash equilibrium then we can equivalently denote it by

(y∗i ,m∗
−i), where y∗i corresponds to the best-response choice of yi, given m∗

−i.
We now specify necessary conditions for Pareto optimality of a mechanism. Following

Healy and Mathevet (2012), we can without loss of generality write any mechanism’s
tax function as

ti(m)= qi(m−i)y(m)+ g i(m),(1)

where qi(m−i) is a personalized price per unit charged to agent i (which they cannot
affect through their own message) such that

∑
i qi(m−i) = κ for all m, and g i(m) is an

additional penalty or subsidy.4

Nash equilibrium implies the individual first-order condition of

−∂ui(ti(m∗), y(m∗))
∂ti

∂ti(m∗)
∂mi

= ∂ui(ti(m∗), y(m∗))
∂y

∂y(m∗)
∂mi

.

Inserting the functional form from (1) and assuming ∂y(m∗)/∂mi ̸= 0 (which is true if the
mechanism is responsive) we have

qi(m∗
−i)+

∂g i(m∗)/∂mi

∂y(m∗)/∂mi
= MRSi(ti(y∗i ,m∗

−i), y∗i ).

3Responsiveness is a slight strengthening of agent sovereignty (Moulin and Shenker, 2001; Marchant and
Mishra, 2015), which also requires that each agent is able to select any level of the public good regardless
of m−i, but may allow ∂y(m)/∂mi = 0 for some m and i. Agent sovereignty is part of the definition of a
“quasi-direct” mechanism in Healy and Jain (2017).
4This is without loss of generality because g i(m) is unrestricted and therefore can contain the term
−qi(m−i)y(m) plus any additional terms.
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Now, y-optimality requires that
∑

i MRSi = κ=∑
i qi(m−i), so if Γ is y-optimal then∑

i

∂g i(m∗)/∂mi

∂y(m∗)/∂mi
= 0.(y-OPT)

For Pareto optimality of Γ we also need budget balance at any equilibrium profile, which
further implies that ∑

i
g i(y∗i ,m∗

−i)= 0.(g-BAL)

Conversely, if a mechanism satisfies these two conditions at every equilibrium point,
then it is conditionally Pareto optimal.

Lemma 3. Suppose Γ is responsive. Conditions (y-OPT) and (g-BAL) are satisfied at
every Nash equilibrium m∗ if and only if Γ is conditionally Pareto optimal.

We now give three examples of mechanisms that are conditionally Pareto optimal. All
three have Mi =R and y(m)=∑

i mi and therefore are responsive.

Definition 7. The Proportional Tax mechanism is given by

(1) Mi =R,
(2) y(m)=∑

i mi, and
(3) ti(m)=αiκy(m).

where (αi)n
i=1 are cost shares that must satisfy αi ≥ 0 for all i and

∑
iαi = 1.

The Proportional Tax mechanism uses a fixed personal price (qi(m−i) = αiκ) and no
additional penalty (g i(m) = 0). Since g i ≡ 0, Lemma 3 immediately gives conditional
Pareto optimality. Unfortunately, Nash equilibrium rarely exists for this mechanism.
The following two mechanisms modify the Proportional Tax mechanism to give exis-
tence.

Definition 8. The Walker mechanism is given by

(1) Mi =R,
(2) y(m)=∑

i mi, and
(3) ti(m)= (αiκ+λ(mi+2 −mi+1))y(m).

where (αi)n
i=1 are cost shares, λ> 0 is a free parameter, and the indices i+2 and i+1 are

taken to be modulo n.5

Compared to the Proportional Tax mechanism, the Walker mechanism modifies the
price function qi(m−i), but maintains the property that

∑
i qi(m−i)= κ and g i ≡ 0. Thus

it remains conditionally Pareto optimal. Furthermore, Walker (1981) shows that equi-
librium exists for any economy, so the mechanism is fully Pareto optimal. Since every
5The original mechanism of Walker (1981) considered only λ= 1.
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agent has the ability to set y(m)= 0 and ti(m)= 0 by choosing mi =−∑
j ̸=i m j, any Nash

equilibrium outcome must be preferred to the endowment. Thus, the Walker mecha-
nism is also individually rational. It is, however, highly unstable (Chen and Tang, 1998;
Healy, 2006).

Definition 9. The Groves-Ledyard mechanism is given by

(1) Mi =R,
(2) y(m)=∑

i mi, and

(3) ti(m)=αiκy(m)+ γ

2

[
n−1

n
(mi − m̄−i)2 −σ2

−i

]
.

where (αi)n
i=1 are cost shares, γ > 0 is a free parameter, m̄−i = 1

n−1
∑

j ̸=i m j, and σ2
−i =

1
n−2

∑
j ̸=i(m j − m̄−i)2.

Whereas the Walker mechanism modified the individual price function qi(m−i), the
Groves-Ledyard mechanism instead modifies the added penalty function g i(m), but does
so such that conditions (y-OPT) and (g-BAL) remain intact. Groves and Ledyard (1980)
prove existence for a wide range of economies, so the mechanism is Pareto optimal.
And Page and Tassier (2010) find that the equilibrium is unique when preferences are
quasilinear. It does not implement Lindahl allocations, however, so it violates individual
rationality in many economies.

Unlike the Walker mechanism, the Groves-Ledyard mechanism becomes stable when
γ is large relative to n (Muench and Walker, 1983; Bergstrom et al., 1983; Chen and
Tang, 1998; Page and Tassier, 2004, 2010; Healy, 2006). Experiments verify that stabil-
ity is an important property for agents to obtain equilibrium outcomes, so our motiva-
tion is to maintain the stability of the Groves-Ledyard mechanism while trying to reduce
the magnitude of its individual rationality failures. We do so by blending together the
Walker and Groves-Ledyard mechanisms.

III. THE WALKER-GROVES-LEDYARD (WGL) MECHANISM

Here we introduce our new mechanism, which is a blend of the Walker and Groves-
Ledyard mechanisms. If we simply combine their tax functions, we would have a new
mechanism with y(m)=∑

i mi and

ti(m)= (αiκ+λ(mi+2 −mi+1))y(m)+ γ

2

[
n−1

n
(mi − m̄−i)2 −σ2

−i

]
.

We will see, however, that which opponents’ indices are used in the personalized price
term will alter our results. The original Walker mechanism uses mi+2 −mi+1, but we
will show that, surprisingly, using mi+1 −mi−1 provides superior performance. For our
general exposition we will follow Tian (1990) and consider an arbitrary 1× n vector of
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weights A i such that i’s personalized price is given by qi(m−i) = (αiκ+λA im). This
vector must satisfy three conditions:

(1) A ii = 0,
(2)

∑
j A i j = 0, and

(3) A i j ̸= 0 for some j ̸= i.

The first guarantees that qi(m−i) is not affected by mi. The second guarantees that∑
i qi(m−i)= κ, which is needed for Pareto optimality. The third ensures the mechanism

differs from the Proportional Tax mechanism.
We construct each A i as a permutation of A1, which is a 1×n row vector of weights for

agent 1 satisfying the above three conditions. For example, in the original mechanism,
A1 = (0,−1,1,0, . . . ,0). The weights for agent 2 are given by the same vector, but shifted
by one coordinate. If we define the cyclic permutation matrix S by

S =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0


,

then the weights for agent 2 are A2 = A1S. Inductively, the weights for any agent i > 1
are given by A i = A i−1S = A1S i−1. We can now define the WGL mechanism for general
weight vectors.

Definition 10. The Walker-Groves-Ledyard (WGL) mechanism is given by

(1) Mi =R,
(2) y(m)=∑

i mi,
(3) ti(m)= (αiκ+λA im) y(m)+ γ

2

(n−1
n (mi − m̄2

−i)
2 −σ2

−i
)
,

where m = (m1, . . . ,mn)T is an n× 1 column vector, A i = A1S i−1 for some admissible
weighting vector A1, (αi)i is a vector of non-negative cost shares that sum to one, λ≥ 0,
and γ> 0.6

Since y(m) = ∑
i mi the WGL mechanism is responsive. And conditions (y-OPT) and

(g-BAL) are inherited directly from the original Walker and Groves-Ledyard mecha-
nisms, so the WGL mechanism is conditionally Pareto optimal. The key questions are
whether it can be made stable—as in the Groves-Ledyard mechanism—and whether it

6The mechanism would more appropriately be called the Walker-Tian-Groves-Ledyard mechanism; in an
effort to simplify the name we omit Tian with apologies.
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improves the minimum utility of the agents, therefore reducing IR failures. To answer
these questions we first characterize the equilibrium messages.

WGL Equilibrium Characterization

We now derive both the equilibrium messages and utility in the WGL mechanism when
A1 puts weight on exactly two adjacent neighbors to i = 1. To do so, we first define some
variables that simplify these expressions. Fix any WGL mechanism with parameters λ
and γ and weighting vector A1. Define

• scalar ρ =λ/γ,
• matrix A =∑

i e i A i, where e i is the ith standard basis vector for Rn, and
• matrix W = (I +ρA), where I is the n×n identity matrix.

We will show that W−1 (the inverse of W) plays an important role in our characterization;
to that end, let W−1

i be the ith row of W−1.
Next, recall that for any E ∈ E QL there is a unique yo satisfying y-optimality. Define

∆i = vi(yo)+ωi −αiκyo and

δi = v′i(yo)−αiκ

to be agent i’s total surplus and marginal surplus (respectively) at the Pareto optimal
allocation yo if their tax was simply given by αiκyo. Note that

∑
i δi = 0, so if there is an

agent i with δi > 0 then there is at least one agent j with δ j < 0.
With this notation we can now state our characterizations.7

Proposition 1. For any WGL mechanism with parameters λ and γ, and weighting
vector A1 such that W = (I +ρA) is invertible, the equilibrium message for each i ∈ N is
given by

m∗
i =

1
γ

W−1
i δ+ yo

n
.(2)

The resulting equilibrium utility for each agent i is then given by

uWGL
i (m∗)=∆i −ρ(A iW−1δ)yo − 1

2γ
n−1
n−2

(
(W−1

i δ)2 − (W−1
−i δ)2

)
,(3)

where (W−1
−i δ)2 = 1

n−1
∑

j ̸=i(W−1
j δ)2.

Proof. Since the WGL mechanism is conditionally Pareto optimal, any equilibrium m∗

results in a Pareto optimal public good y(m∗) = yo. Individual optimization for player i

7Page and Tassier (2010) provide a somewhat similar characterization of Groves-Ledyard equilibria (so,
with λ = 0), though for the class of quasi-additive preferences studied by Bergstrom and Cornes (1983)
and Bergstrom et al. (1983).
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implies that at any equilibrium we must have

v′i(yo)=αiκ+λA im∗+γ
(

n−1
n

(m∗
i − m̄∗

−i)
)

=αiκ+λA im∗+γ
(
m∗

i −
yo

n

)
,

(4)

where the second equality follows since yo =∑
i m∗

i . Rearranging, we get a linear equa-
tion of the form

γm∗
i +λA im∗ = δi + γ

n
yo.(5)

We now write the equilibrium system of equations in matrix notation. Define δ =
(δ1, . . . ,δn)T to be the n×1 column vector of marginal surpluses. Recall that A is the
matrix whose ith row is A i. Let 1 be the n×1 vector of ones. The equilibrium system of
equations can thus be written as

γm∗+λAm∗ = δ+ γ

n
yo1.

If we let ρ =λ/γ and define

W = (I +ρA),

then the linear system becomes

γWm∗ = δ+γ yo

n
1.

An explicit equation for equilibrium messages in the WGL mechanism is therefore given
by

m∗ = 1
γ

W−1δ+ yo

n
W−11

= 1
γ

W−1δ+ yo

n
1.

The second equality holds because A1 = 0⃗ (each row sums to zero) and A ii = 0 for all i,
so W1= 1, which gives W−11= 1. Recall that W−1

i is the ith row of W−1, so the individual
messages can be written as

m∗
i =

1
γ

W−1
i δ+ yo

n
.

This is exactly equation (2).
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Using the derived expression for m∗, the relevant equilibrium quantities in the tax
function can be solved to be8

m∗
i − m̄∗

−i =
1
γ

n
n−1

W−1
i δ,

A im∗ = 1
γ

A iW−1δ, and

σ2∗
−i =

1
n−2

1
γ2

(∑
j ̸=i

(W−1
j δ)2 − 1

n−1
(W−1

i δi)2

)
.

Plugging in these values, we derive the equilibrium utility of agent i to be

uWGL
i (m∗)=∆i −ρ(A iW−1δ)yo − 1

2γ
n−1
n−2

(
(W−1

i δ)2 − (W−1
−i δ)2

)
,

where (W−1
−i δ)2 = 1

n−1
∑

j ̸=i(W−1
j δ)2. This completes the proof. □

Invertibility of W will not be guaranteed for general weighting vectors, but for three
simple cases Searle (1979) proves an inverse exists and gives an explicit formula.

Lemma 4. If A1 puts weight only on two neighbors adjacent to i = 1 (meaning there
is some a ̸= 0 such that either A1 = (0,0,0, . . . ,0,−a,a), A1 = (0,−a,0, . . . ,0,0,a), or A1 =
(0,a,−a,0, . . . ,0)) and if ρ ̸= 1/(2a) then W = (I +ρA) is invertible.

Proof. For any A1, both matrix A and matrix W are circulant matrices (each row is
a shifted version of the previous row). Searle (1979) shows that if the first row of
a circulant matrix contains exactly three adjacent elements such that all other ele-
ments are zero (as in the three examples of A1 given) then W is invertible unless ei-
ther (1)

∑
i W1i = 0 or (2) n is even and the middle of the three numbers equals the

sum of the other two. The first never holds since
∑

i W1i = 1. The second only holds if
W1 = (1,0, . . . ,0,−1/2,1/2) or W1 = (1,1/2,−1/2,0, . . . ,0), which are both ruled out by re-
quiring ρ ̸= 1/(2a). □

If A1 puts weight on more than two other agents then we cannot ensure invertibility
of W . The set of invertible matrices is dense, however, so slight perturbations to A1 will
yield an invertible W .9 We proceed assuming that A1 is chosen so that W−1 exists.

The Groves-Ledyard and Walker mechanism equilibria are special cases of this char-
acterization. In the Groves-Ledyard mechanism λ = 0 and W is simply the identity
matrix, so W−1

i δ = δi. For the Walker mechanism, the matrix represented by γW in

8To derive the expression for m∗
i − m̄∗

−i note that m̄∗
−i = (y0 − m∗

i )/(n− 1) and plug in m∗
i . For the σ2∗

−i

expression, expand
∑

j ̸=i

(
W−1

j δ+ 1
n−1W−1

i δ
)2

, and note that 2
n−1W−1

i δ
∑

j ̸=i W−1
j δ = − 2

n−1
(
W−1

i δ
)2 since∑

j ̸=i W−1
j δ= 1TW−1δ−W−1

i δ, but 1TW−1δ= 1Tδ= 0, giving the result.
9If W is near a singular matrix then it may be ill-conditioned, meaning W−1 would be poorly-behaved,
numerically. This may hinder mechanism performance in applications.
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equation (2) reduces to λA, which is also circulant. This matrix is not invertible, but
Walker (1981) shows that the equilibrium messages can be obtained by replacing the
nth row of the matrix with the equation

∑
i mi = yo, which restores invertibility.

We will use equation (3) extensively in our analysis of individual rationality. But first
we verify that the mechanism can be made stable.

Dynamic Stability

The Groves-Ledyard mechanism is dynamically stable for large γ, but the Walker mech-
anism is unstable for all λ. We now show that the WGL mechanism is stable for large
γ, provided that λ stays small relative to γ. In other words, stability requires that the
Groves-Ledyard component dominates the Walker component.

Proposition 2. Recall that ρ =λ/γ and v′′i (y)≥−η, and let max(A) be the greatest single
entry in A. If ρ < 1/(nmax(A)) and

γ> nη
1−nρmax(A)

then the WGL mechanism is stable.

The proof of Proposition 2 appears in the appendix. The specific examples of WGL
mechanisms we will discuss all have max(A) = 1, so the stability condition on ρ sim-
plifies to ρ∗ < 1/n. Even when max(A) ̸= 1, we can always normalize it to 1 and use
ρmax(A) in place of ρ. The other condition implies that γ has to be sufficiently large.
As 1−nρmax(A) ∈ (0,1), the only one-size-fits-all condition is γ→∞ if we want to allow
for arbitrary n and/or richness in terms of the curvature bound η. This does not mean
γ→∞ is always necessary: a finite γ is sufficient if it is allowed to depend on n and if η
is known. We focus on the infinite γ case in the main results to obtain sharp predictions
regarding IR improvements. We shall come back to the possibility of finite γ in Section
V.

IV. INDIVIDUAL RATIONALITY: WGL VERSUS GL

We know that the GL and WGL mechanisms do not implement Lindahl allocations, and
therefore must violate IR for at least some economies.10 But can we rank them in terms
of the “severity” of their IR violations? To do so, we look at the welfare of the lowest

10For an example economy where WGL violates IR, let n ≥ 3 and vi(y) = ai y2/2+ bi y for each i, where∑
i bi = κ. This means yo = 0, so ∆i = 0. Furthermore, if there is at least one agent with bi ̸= αiκ then

equation (3) can be used to show that IR must be violated for any agent with (W−1
i δ)2 > (W−1

−i δ)2. And it
can be verified that at least one such agent must exist.



14 HEALY & YANG

type, which is the agent i whose value δi = vi(yo)−αiκ is the lowest.11 Henceforth we
assume αi = 1/n for all i, so the lowest type is also the agent with the lowest v′i(yo).

We will define a weakening of the usual single-crossing condition such that, under
this condition, the lowest-type agent will be the one hurt most in equilibrium. We will
then show that the WGL mechanism doesn’t always improve the lowest-type’s welfare
compared to the GL mechanism, but it does improve their welfare both “more often” and
“in expectation.” We formalize these concepts below.

First, we derive a useful expression for the difference between the WGL and GL equi-
librium utilities.

Lemma 5. The WGL equilibrium utility can be rewritten as

uWGL
i (m∗)=∆i +

[
W−1

i δ−δi
]

yo − 1
2γ

n−1
n−2

(
(W−1

i δ)2 − (W−1
−i δ)2

)
.(6)

The difference in equilibrium utility between the WGL and GL mechanisms is therefore
given by

uWGL
i (m∗)−uGL

i (m∗)= [
W−1

i δ−δi
]

yo − 1
2γ

n−1
n−2

([
(W−1

i δ)2 −δ2
i
]− 1

n−1

∑
j ̸=i

[
(W−1

j δ)2 −δ2
j

])
.

(7)

Proof. Take equation (3) and note that ρAW−1 = I −W−1 because

WW−1 = I

IW−1 +ρAW−1 = I

ρAW−1 = I −W−1.

Thus, we have

uWGL
i (m∗)=∆i − (eT

i −W−1
i )δyo − 1

2γ
n−1
n−2

(
(W−1

i δ)2 − (W−1
−i δ)2

)
,(8)

where eT
i is the ith row of the identity matrix. The GL equilibrium utility is found by

setting λ = 0 (so ρ = 0) and A to the matrix of zeros, so that W is simply the identity
matrix and W−1

i = eT
i . This gives

uGL
i (m∗)=∆i − 1

2γ
n−1
n−2

(
δ2

i −
1

n−1

∑
j ̸=i
δ2

j

)
.(9)

Subtracting (9) from (8) gives the result.12 □

11The usage of the word “type” is non-standard here since it is not a primitive construct specific to a
single agent, but instead depends on yo. And y0 is determined by the collection of all agents’ preferences.
Regardless, for any economy the vector of “types” is well-defined and easily derived from primitives.
12We note that m∗ varies by mechanism, though our notation for it does not.
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Next, we define our weakening of the single-crossing condition, which we call minimum-
surplus sorting. In the typical single-crossing condition with a quasilinear economy
there would be a one-dimensional type space and we would assume that v′i(y) is strictly
increasing in one’s type at every y. Thus, the lowest type has the lowest v′i(y) at every y.
Our condition only requires that this “lowest-type” property hold at the Pareto optimal
point yo, and we define one’s “type” simply as vi(yo)−κ/n. In other words, all we require
is that the agents with the lowest vi(yo) also have the lowest v′i(yo).

Definition 11. Assume αi = 1/n for all i. A quasilinear economy E ∈ E QL with Pareto
optimal public good level yo satisfies minimum-surplus sorting if

argmin
i∈N

∆i = argmin
i∈N

vi(yo)⊆ argmin
i∈N

v′i(yo)= argmin
i∈N

δi.

Let E MS ⊂ E QL be the set of quasilinear economies satisfying minimum-surplus sorting.

Recall that ∆i = vi(yo)−αiκyo and δi = v′i(yo)−αiκ, so the equalities follow from the
assumption that αi = 1/n. The minimum-surplus sorting condition will be important for
establishing our main welfare results, since we will focus on improving the welfare of
the consumer with the lowest type (δi), and for the relevant parameter ranges of the
WGL mechanism this will also be the consumer with the lowest equilibrium utility.

Lemma 6. Fix any E ∈ E MS and a WGL mechanism with αi = 1/n for all i and such that
A1 satisfies the “two neighbors” condition of Lemma 4. There exists a ρ̄ ∈ (0,1/n] and
γ̄ ≥ 0 such that if ρ ∈ (0, ρ̄] and γ ≥ γ̄ then the consumers with the lowest type are also
the consumers with the lowest equilibrium utility (argmini δi ⊆ argmini uWGL

i (m∗)).

Proof. Recall the expression for uWGL
i (m∗) from equation (6). Under the conditions of

Lemma 4, W is invertible for all ρ ∈ (0, ρ̄] since ρ̄ ≤ 1/n < 1/2. Thus W−1 is continuous in
ρ, and so uWGL

i (m∗) is continuous in both ρ and γ when ρ ≤ ρ̄ and γ≥ γ̄. The result then
follows since

lim
ρ→0

lim
γ→∞uWGL

i (m∗)=∆i,

and so for small ρ and large γ we have argmini uWGL
i (m∗)= argmini∆i = argmini δi. □

Realized Utility of the Lowest Type

In this subsection we focus on large γ—which is needed for stability—and establish that
the WGL mechanism does not always improve the lowest type’s utility compared to the
GL mechanism. But, for every case where it reduces their utility there is another case
where it increases their utility. Thus, a stable WGL mechanism helps “weakly more
often” than it hurts.
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First, we establish that any stable WGL mechanism can reduce welfare for the lowest
type, and that such examples are not knife-edge.

Proposition 3. Fix n = 3 and any stable WGL mechanism with ρmax(A) < 1/3 and
γ→∞. There exists an open subset of E MS for which the agent with the lowest type is
worse off in the WGL mechanism than in the GL mechanism.

Corollary 1. By Lemma 6, if ρ is small and γ is large then for each economy in the open
subset the minimum utility is lower in the WGL mechanism than in the GL mechanism.

Proof. Given the minimum surplus sorting condition, it is sufficient to show that the
equilibrium utility under the WGL is lower for the agent with the lowest δi, since that
agent also has the lowest ∆i. Assume without loss that this is agent 1, so that δ1 ≤ 0.
If δ1 = 0 then δ= 0⃗ and both mechanisms give an equilibrium utility of ∆i to each i, so
consider δ1 < 0. For n = 3 we have that A1 = (0,−a,a) for some a ̸= 0, so W1 = (1,−ρa,ρa),
and the first stability condition reduces to ρ|a| < 1/3. Thus, an explicit solution for W−1

is easily obtained. By (6), uWGL
1 (m∗)−uGL

1 (m∗)= [W−1
1 δ−δ1]yo when γ→∞. For n = 3,

W−1
1 δ−δ1 = 1

1+3(ρa)2

[
(1+ (ρa)2)δ1 + (ρa+ (ρa)2)δ2 + (−ρa+ (ρa)2)δ3

]−δ1

= ρa
1+3(ρa)2

[
δ2 −δ3 +3ρa(δ2 +δ3)

]
.

where the second equality follows from two applications of the fact that
∑

i δi = 0. The
WGL mechanism performs worse than the GL mechanism if this expression is negative.
Since (δ2 +δ3)=−δ1 > 0, the condition for this expression to be negative is

ρa < 1
3
δ3 −δ2

δ3 +δ2
if a > 0, and

ρa > 1
3
δ3 −δ2

δ3 +δ2
if a < 0.

(10)

In the first case (a > 0) let δ2 < 0 and δ3 > −δ2 > 0 and the condition will be satisfied
since δ3−δ2

δ3+δ2
> 1 and we have already assumed ρa < 1/3. There is an open set of (δ2,δ3)

satisfying these restrictions, proving the proposition for a > 0.
In the case of a < 0 let δ3 < 0 and δ2 > −δ3 > 0 and the condition will be satisfied

since δ3−δ2
δ3+δ2

<−1 and we have already assumed ρa >−1/3. There is an open set of (δ2,δ3)
satisfying these restrictions, proving the proposition for a < 0. □

Remark. In the proof of Proposition 3, suppose a > 0. Since ρ > 0, the right-hand side
of condition (10) must be positive. But consider a new economy in which agents 2 and 3
(thus, δ2 and δ3) are switched. Now the right-hand side of (10) becomes negative and the
inequality is reversed. Thus, for this new economy the WGL mechanism gives higher
utility to agent 1 than the GL mechanism. Similarly, if a < 0 then the economy in which



IMPROVING INDIVIDUAL RATIONALITY 17

δ2 and δ3 are switched also reverses the inequality, meaning agent 1 prefers the WGL
mechanism over the GL mechanism in this case as well.

The above remark shows that any 3-agent quasilinear economy for which the WGL is
relatively worse for the lowest type can be permuted (switching the identities of agents 2
and 3) to give an economy where the WGL is relatively better for the lowest type. Thus,
the WGL improves the lowest type’s utility “more often” than it hurts. The following
proposition confirms that this remains true for any n ≥ 3.

Proposition 4. Let γ→∞. Fix a WGL mechanism with A1 = (0,−1,0, · · · ,0,1). For any
E ∈ E QL such that the WGL mechanism gives lower utility (than the GL mechanism) to
the agent with the lowest type, there is another economy Ẽ ∈ E QL such that the WGL
mechanism gives higher utility to the lowest type.

Corollary 2. For large γ and small ρ, for every economy where the WGL mechanism
has the lower minimum utility (compared to GL) there is another economy where it has
the higher minimum utility.

A proof appears in the appendix. Again, the main idea is to construct Ẽ from E by
switching identities of the two neighbors of the lowest type agent.

Expected Utility of the Lowest Type

Finally, our main result demonstrates that that the WGL improves welfare of the low-
est type relative to the GL “in expectation.” Since economies are randomly drawn, each
agent’s type δi is randomly drawn from some joint distribution F over economies that
respect the minimum-surplus sorting property. The expected gain in surplus for the low-
est type is then taken with respect to this distribution. Given that we condition on the
lowest type, this expectation is a conditional expectation, conditional on the realization
of the lowest type. Formally, an economy E ∈ E MS is drawn and only the lowest value
of δi is identified. Then we take the expectation of the others’ types, conditional only on
the fact that the minimal type is δi.13

13Equivalently, we can model the designer as having a hierarchical distribution over economies and
“types.” Specifically, an economy E = ((ui,ωi)i,κ) is first drawn from a distribution over possible n-agent
economies, and then the identities (or, indices i) are randomly permuted. One way to view this is that
the vector (ui,ωi)i represents the n “types” in the chosen economy, and these types are then randomly
assigned to the agents. We assume the permutation from types to agents is drawn uniformly from the set
of all permutations. Although this hierarchical model is different from the Bayesian model in the main
text, they serve the same purpose because all we need is the interim belief E[δ j|δi,δi = mink δk] =− δi

n−1 ,
which holds in both cases.
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Our only assumption is that the sequence of random variables {δi}n
i=1 is exchange-

able.14 We make no other assumptions on F.
We can now state our main result.

Theorem 1. There exists a class of dynamically stable WGL mechanisms with either
A1 = (0,−1,0, . . . ,0,1) or A1 = (0,1,0, . . . ,0,−1) such that for any E ∈ E MS and n ≥ 3, the
consumer with the lowest type gets a higher expected equilibrium payoff in the WGL
mechanism than in the GL mechanism.

Corollary 3. Fix any E ∈ E MS. For large γ, small ρ, and either A1 = (0,−1,0, . . . ,0,1)
or A1 = (0,1,0, . . . ,0,−1), the WGL mechanism gives a higher expected minimum utility
than the GL mechanism.

Proof of Theorem 1. First, we derive an expression for the expected surplus of the lowest
type in the WGL mechanism.

Lemma 7. Suppose we know agent i’s δi is minimal among (δ1, . . . ,δn), but we do not
know the values of δ j for any j ̸= i. As γ→ ∞ agent i’s expected equilibrium utility
difference between the WGL and GL mechanisms is given by

E[uWGL
i (m∗)−uGL

i (m∗)|δi,δi =min
k
δk]= n

n−1
(W−1

ii −1)δi yo.

Proof of Lemma 7. Conditional on the fact that δi is minimal (and no other information
about j ̸= i) the interim belief about each j ̸= i given by

E[δ j|δi,δi =min
k
δk]= 1

n−1

∑
j ̸=i

E
[
δ j|δi,δi =min

k
δk

]

= 1
n−1

E

[∑
j ̸=i
δ j|δi,δi =min

k
δk

]

= 1
n−1

(−δi)≥ 0.

The first equality comes from the exchangeability assumption of the joint type distribu-
tion, conditional only on δi and δi = min j δ j. The third holds because it’s true at every
realization.

Using this, the expectation of the vector δ can be written as

E
[
δ|δi,δi =min

k
δk

]
= δi

n−1
(ne i − 1),

14Sequence {δi}n
i=1 is exchangeable if for any permutation of the indices 1,2, · · · ,n the joint distribution

of the permuted sequence is the same as F. Note that the realization of real-valued random variables
δ1, · · · ,δn is determined by the realization of function-valued random variables v1, · · · ,vn. In particular,
the latter determines yo through

∑
i v′i(yo)= κ and δi = v′i(yo)−αiκ. The exchangeability of δ distribution

holds as long as we assume the exchangeability of v distribution.
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where e i is the ith standard basis vector.
From equation (7) we have that an agent i who is assigned the minimal δi will have

an expected surplus gain of

E[uWGL
i (m∗)−uGL

i (m∗)|δi,δi =min
k
δk]=[

W−1
i (ne i − 1) δi

n−1
−δi

]
yo − 1

2γ
n−1
n−2

E

[[
(W−1

i δ)2 −δ2
i
]− 1

n−1

∑
j ̸=i

[
(W−1

j δ)2 −δ2
j

]
| · · ·

]

= n
n−1

(W−1
ii −1)δi yo − 1

2γ
n−1
n−2

E

[[
(W−1

i δ)2 −δ2
i
]− 1

n−1

∑
j ̸=i

[
(W−1

j δ)2 −δ2
j

]
| · · ·

]
,

where all expectations are conditional on δi and δi =minkδk. The second equality comes
because W−1

i 1= 1. When γ→∞ the last term goes to zero, giving the result. □

Given Lemma 7, we simply need to verify that (W−1
ii −1)δi yo is positive for the lowest

type. But the minimal δi must be negative (or zero), so this reduces to (W−1
ii −1)yo < 0.

Since we assume all admissible economies have yo > 0, then we require only that W−1
ii <

1. Without loss we let agent 1 be the agent with the lowest type.
We prove the theorem by showing that W−1

ii ≤ 1 when A1 = (0,−1,0, · · · ,0,1) or A1 =
(0,1,0, · · · ,0,−1). To do so, we first prove a useful lemma about the monotonicity of W−1

ii .

Lemma 8. A1 = (0,−1,0, · · · ,0,1) and A1 = (0,1,0, · · · ,0,−1) result in the same W−1
ii . For

any n ≥ 3, and for every i, this W−1
ii decreases in ρ.

The proof is in the appendix. Given Lemma 8, proving that W−1
ii ≤ 1 simply requires

that we prove that it converges to 1 as ρ approaches 0.
Note that W = I +ρA is a circulant matrix with 3 nonzero elements (1,−ρ,ρ) and we

need ρ < 1
n for stability. We directly obtain the analytical formula of W−1

ii from Searle
(1979):

W−1
ii =W−1

11 = 1√
1+4ρ2

(
1

1− zn
1
− 1

1− zn
2

)
where

z1 = −1+
√

1+4ρ2

2ρ
, z2 = −1−

√
1+4ρ2

2ρ
.

We can analytically verify that W−1
ii → 1 as ρ → 0, because z1 → 0 from above and

z2 → −∞. Note that the fraction 1/
√

1+4ρ2 converges to 1 from below and the term
in parentheses also converges to 1. Thus, their product converges to 1, proving Theorem
1. □
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Remark. This framework is related to, but distinct from those in the literature of
Bayesian public good mechanisms. First, the aim here is to capture the idea of “improv-
ing IR in expectation.” Although we are evaluating the IR performance by the interim
utility, our mechanisms are still within a Nash implementation framework in terms
of incentive compatibility, budget balance, and stability. In contrast, the key ingredi-
ent of the Bayesian public good mechanisms is Bayesian incentive compatibility (BIC),
wherein agents do not know the realized preference of others when making choices.
Second, we evaluate the expected utility for agent i conditional on not only δi, but also
on the fact that δi = minkδk. The standard notion of interim IR, on the other hand,
conditions only on the realization of δi.

Remark. Surprisingly, not all WGL mechanisms reduce IR failures in expectation. For
example, if we construct the WGL mechanism based on the original Walker mechanism
with A1 = (0,−1,1,0, · · · ,0), then the hybrid mechanism can have worse performance in
expectation for the lowest type, relative to the GL mechanism.

V. A DISCUSSION OF FINITE γ

We obtain our main results under the restriction γ→∞ in order to guarantee dynamic
stability in arbitrarily rich environments. For a certain economy or a restricted class of
economies that deviates from the richness assumption, however, infinitely large γ is not
necessary. Allowing for finite γ gives us further flexibility to improve IR by relaxing the
stability constraint. Although a full analysis of IR comparisons is not tractable due to
the complexity of the penalty terms, we demonstrate through examples how IR failures
can be reduced while keeping γ finite.

Finite γ in the Groves-Ledyard Mechanism

It is easy to verify that for a fixed economy the equilibrium utility of any one agent in the
GL mechanism is monotone in γ (either increasing or decreasing). The minimum utility
is the lower envelope of these monotone functions, which will be quasiconcave. Thus,
the set of γ for which the lowest utility is positive will either be empty or an interval.

Agent ai
bi

economy (a) economy (b) economy (c) economy (d)
1 1 40 118 30 30
2 4 50 20 40 60
3 8 78 30 98 78

TABLE I. Four 3-agent economies with quadratic preferences.
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γ

uGL
i (m∗)
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u3

12

γ

uGL
i (m∗)

u1
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u2

u3

12
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u2

u3

12

(c) (d)

FIGURE I. Equilibrium utilities for each player in the Groves-Ledyard
mechanism for the four economies shown in Table I. The solid curve shows
the minimum utility, which must be positive for IR to be satisfied.

Figure I depicts the equilibrium utilities of agents as functions of γ in several ex-
amples of 3-agent economies, the preference parameters of which are summarized in
Table I. In all four economies agents have quadratic preferences of the form vi(y) =
bi y−ai y2, equal cost shares (αi = 1

3 ), and a marginal cost of κ = 90. Furthermore, the
economies all have the same quadratic coefficient vector a and differ only in the linear
coefficient b’s. In all four economies, the PO allocation is yo = 3 and stability requires
that γ > 12. Economy (a) and economy (d) belong to E MS while the other two do not.
In economy (a) a larger γ always improves equilibrium utility of the lowest type and
can fully eliminate IR failures when γ ∈ [ 8

21 ,∞), which is compatible with stability. In
economy (d), the IR failure cannot be eliminated for any γ, as u1 remains negative for
all γ. Economy (b) and economy (c) suggest that for some economies different values
of γ might reverse the ranking of equilibrium utilities. In both cases there exists an
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interval of γ that guarantees IR for all agents—
[4994

255 , 409
18

]
in the former and

[71
33 , 11

3

]
in

the latter—but IR is compatible with stability only in economy (b).

Finite γ in WGL mechanisms

Now we consider the WGL mechanism with finite γ. To illustrate how a finite γ can
improve welfare we focus first on economy 4 mentioned above. Brute-force calculations
give the following equilibrium utilities:

u1(m∗)=−9+18
ρ+3ρ2

1+3ρ2 − 18
γ

1−6ρ−3ρ2

(1+3ρ2)2 ,

u2(m∗)= 54+18
ρ−3ρ2

1+3ρ2 − 18
γ

1+6ρ−3ρ2

(1+3ρ2)2 , and

u3(m∗)= 72−36
ρ

1+3ρ2 − 18
γ

6ρ2 −2
(1+3ρ2)2 .

We can verify that IR is violated in the original GL mechanism since ρ = 0 leads to
u1(m∗)≤−9 for all γ. But notice that if ρ > 0 then agent 1’s IR failure can be avoided for
large γ since the second term becomes positive. And u2(m∗) and u3(m∗) are positive as
well. Therefore, to minimize the magnitude of the IR failure, we choose ρ to maximize
u∗

1(m∗) subject to the dynamic stability constraint of ρ < 1/3. Since u1(m∗) is increasing
in ρ (when γ is large), and since (ρ+3ρ2)/(1+3ρ2) converges to 1/2 as ρ→ 1/3, we have
that supu1(m∗) = 0. In other words, we can get arbitrarily close to eliminating the IR
failure by letting γ→∞ and ρ→ 1/3.

Can the minimum utility be improved further by considering finite γ? For this econ-
omy the stability constraint can be computed as follows:

|γ(1+3ρ)+3v′′i (y)|+ |γ(1−3ρ)+3v′′i (y)| < 2γ−3v′′i (y) ∀i,

which reduces to {(γ,ρ) : γ > 12 & ρ < 1
3 + 1

γ
}. We can obtain supu1(m∗) ≈ 3.4 at γ = 12

and ρ = 5/12. Thus, allowing for finite γ in the WGL mechanism completely eliminates
the IR failure for this economy.

In these examples the minimal γ for stability is γ= 12, but for general economies this
minimum can vary. And this defines the range over which γ should be chosen. Because
of this complication, a general characterization of when IR can be improved with finite
γ—and by how much—remains elusive.
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VI. CONCLUDING THOUGHTS

We have shown that it is possible to construct a PO mechanism that is simple, preserves
stability, and improves IR in expectation over the GL mechanism. Although the message
space is simple (Mi = R1), the tax function does involve more terms and, in that sense,
is more complex. An open question is whether this sort of added complexity will hinder
performance.

Furthermore, our results generally rely on small ρ (or, large γ relative to λ), which
makes the mechanism act much more like a coordination game in which agents are se-
verely penalized for deviating from others’ announcements. Although this is stable in
theory, it approaches a situation of multiplicity in which any message is approximately
in equilibrium as long as all agents submit that message. It is possible this will ef-
fectively weaken the incentives and generate strategic uncertainty, undermining the
equilibrium performance of the mechanism. Similar concerns were raised by Muench
and Walker (1983) when considering the original GL mechanism with large γ, and Ar-
ifovic and Ledyard (2011) show that empirical convergence of the GL mechanism can
actually become slower with very large values of γ.

Finally, the fact that players’ taxes are heavily dependent on their neighbors’ mes-
sages creates possible opportunities for collusion. Or animosity between neighbors.
Future work could focus on anonymizing the relevant neighbors—or spreading the in-
fluence across many more neighbors—to increase the privacy of the mechanism. The
mechanisms of Kim (1993), Chen (2002), and Healy and Mathevet (2012) accomplish
this, but are not simple and not budget balanced out of equilibrium.15 Many voting-
based mechanisms preserve this sort of privacy, and perhaps this is why they are widely
used despite their allocative inefficiencies, which in fact may become small for large
economies (Ledyard and Palfrey, 2002).
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APPENDIX A. PROOFS

Proof of Proposition 2

Recall that βi(m−i) is the best response function. We use the implicit function theorem
approach to derive its derivatives. The first-order condition from utility maximization
gives that

v′
(
βi(m−i)+

∑
j ̸=i

m j

)
−αiκ−λA im−γn−1

n

(
βi(m−i)− 1

n−1

∑
j ̸=i

m j

)
= 0

for every m−i. Differentiating with respect to any m j ( j ̸= i) gives

∂βi(m−i)
m j

= γ
(
1−nρA i j

)−n(−v′′i (y))
γ(n−1)−nv′′i (y)

.

The mechanism is contractive if, for every i,
∑

j ̸=i |∂βi(m)/∂m j| < 1, which is equivalent
to ∑

j ̸=i

∣∣γ(
1−nρA i j

)−n(−v′′i (y))
∣∣

γ(n−1)+n(−v′′i (y))
< 1.(11)

If ρ < 1/(nmax(A)) and
γ> nη

1−nρmax(A)
then the terms inside the absolute-value signs are positive and the stability condition
can be rewritten as∑

j ̸=i

(
γ(1−nρA i j)−n(−v′′i (y))

)< γ(n−1)+n(−v′′i (y)).

But ∑
j ̸=i

(
γ(1−nρA i j)−n(−v′′i (y))

)= γ(n−1)−n(n−1)(−v′′i (y))

< γ(n−1)+n(−v′′i (y)),

so the stability condition is satisfied.

Proof of Proposition 4

WLOG assume agent 1 has the lowest type, so that δ1 ≤ 0 and δ j −δ1 ≥ 0 for all j. If
δ1 = 0,δ j = 0 for all j and the problem is trivial. If δ1 < 0, we compute as γ→∞

uWGL
1 −uGL

1 =W−1
1 δ−δ1

= ∑
j ̸=1

W−1
1 j (δ j −δ1),(12)



IMPROVING INDIVIDUAL RATIONALITY 27

where the first equality follows lemma 5 and the second equality holds because W · 1= 1
implies W−1 · 1= 1 (its rows sum to one). By Searle (1979) we have

W−1
1 j = 1√

1+4ρ2

(
z j−1

1

1− zn
1
− z j−1

2

1− zn
2

)

= 1√
1+4ρ2

z j−1
1 − z j−1

2 + (−1) j−1(zn− j+1
1 − zn− j+1

2 )
(1− zn

1 )(1− zn
2 )

where

z1 = −1+
√

1+4ρ2

2ρ
, z2 = −1−

√
1+4ρ2

2ρ
.

The last equality holds because z1z2 =−1.
Suppose for a certain economy E such that

∑
j ̸=1 W−1

1 j (δ j−δ1)< 0, we consider an alter-
native economy Ẽ obtained by switching the identity of agent 2 and agent n. In equation
(12) this is mathematically equivalent to keeping the economy at E but replacing ρ with
−ρ, which has the effect of switching the signs of z1 and z2. For the new economy agent
1 is still the lowest type agent and we want to show that

ũWGL
1 − ũGL

1 = ∑
j ̸=1

W̃−1
1 j (δ j −δ1)> 0

where

W̃−1
1 j = 1√

1+4ρ2

(−z1) j−1 − (−z2) j−1 + (−1) j−1 [
(−z1)n− j+1 − (−z2)n− j+1]

(1− (−z1)n)(1− (−z2)n)
.

Case 1. n is even.
When j is odd, we have

W−1
1 j = W̃−1

1 j = 1√
1+4ρ2

z j−1
1 − z j−1

2 + zn− j+1
1 − zn− j+1

2

(1− zn
1 )(1− zn

2 )
> 0.

The inequality holds because for all |ρ| < 1
n we have |z1| < 1 and |z2| > 1. This implies∑

j ̸=1, j odd
W−1

1 j (δ j −δ1)> 0.

When j is even, we have

∑
j ̸=1, j even

W−1
1 j (δ j −δ1)= ∑

j ̸=1, j even

1√
1+4ρ2

z j−1
1 − z j−1

2 − zn− j+1
1 + zn− j+1

2

(1− zn
1 )(1− zn

2 )
(δ j −δ1)< 0.

The inequality holds because by assumption δ j−δ1 > 0,
∑

j ̸=1 W−1
1 j (δ j−δ1)< 0 and

∑
j ̸=1, j odd W−1

1 j (δ j−
δ1)> 0.
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Meanwhile we have W̃−1
1 j =−W−1

1 j > 0 for any j that is even, so that∑
j ̸=1

W̃−1
1 j (δ j −δ1)= ∑

j ̸=1, j odd
W̃−1

1 j (δ j −δ1)+ ∑
j ̸=1, j even

W̃−1
1 j (δ j −δ1)

= ∑
j ̸=1, j odd

W−1
1 j (δ j −δ1)− ∑

j ̸=1, j even
W−1

1 j (δ j −δ1)

> 0,

giving the result.
Case 2. n is odd.

When j is odd, we have

W−1
1 j = 1√

1+4ρ2

z j−1
1 − z j−1

2 + zn− j+1
1 − zn− j+1

2

(1− zn
1 )(1− zn

2 )
.

When j is even, we have

W−1
1 j = 1√

1+4ρ2

z j−1
1 − z j−1

2 − zn− j+1
1 + zn− j+1

2

(1− zn
1 )(1− zn

2 )
.

Note that∑
j ̸=1

W−1
1 j (δ j −δ1)= ∑

j ̸=1, j odd
W−1

1 j (δ j −δ1)+ ∑
j ̸=1, j even

W−1
1 j (δ j −δ1)

= 1√
1+4ρ2

1
(1− zn

1 )(1− zn
2 )
·[ ∑

j ̸=1, j odd
(z j−1

1 − z j−1
2 )(δ j −δ1)+ ∑

j ̸=1, j even
(z j−1

1 − z j−1
2 )(δ j −δ1)

+ ∑
j ̸=1, j odd

(zn− j+1
1 − zn− j+1

2 )(δ j −δ1)− ∑
j ̸=1, j even

(zn− j+1
1 − zn− j+1

2 )(δ j −δ1)

]

= 1√
1+4ρ2

1
(1− zn

1 )(1− zn
2 )
·[ ∑

j ̸=1, j even
(z j

1 − z j
2)(δ j+1 −δ1)+ ∑

j ̸=1, j even
(zn− j

1 − zn− j
2 )(δn− j+1 −δ1)

+ ∑
j ̸=1, j even

(zn− j
1 − zn− j

2 )(δ j+1 −δ1)− ∑
j ̸=1, j even

(z j
1 − z j

2)(δn− j+1 −δ1)

]

= 1√
1+4ρ2

1
(1− zn

1 )(1− zn
2 )
·[ ∑

j ̸=1, j even
(z j

1 − z j
2)(δ j+1 −δn− j+1)+ ∑

j ̸=1, j even
(zn− j

1 − zn− j
2 )(δn− j+1 +δ j+1 −2δ1)

]
.
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where the third equality obtains by replacing each j by j−1 when j is odd and replacing
each j−1 by n− j when j is even, and the first term is positive∑

j ̸=1, j even(zn− j
1 − zn− j

2 )(δn− j+1 +δ j+1 −2δ1)√
1+4ρ2(1− zn

1 )(1− zn
2 )

> 0

because z1 > 0, z2 < 0, n is odd, j is even and that δ1 is the lowest type. If
∑

j ̸=1 W−1
1 j (δ j −

δ1)< 0, it must be that the second half is negative∑
j ̸=1, j even(z j

1 − z j
2)(δ j+1 −δn− j+1)√

1+4ρ2(1− zn
1 )(1− zn

2 )
< 0.

If we replace ρ by −ρ,∑
j ̸=1

W̃−1
1 j (δ j −δ1)= 1√

1+4ρ2

1
−(1− zn

1 )(1− zn
2 )
·[ ∑

j ̸=1, j even
(z j

1 − z j
2)(δ j+1 −δn− j+1)− ∑

j ̸=1, j even
(zn− j

1 − zn− j
2 )(δn− j+1 +δ j+1 −2δ1)

]

= 1√
1+4ρ2

1
(1− zn

1 )(1− zn
2 )
·[

− ∑
j ̸=1, j even

(z j
1 − z j

2)(δ j+1 −δn− j+1)+ ∑
j ̸=1, j even

(zn− j
1 − zn− j

2 )(δn− j+1 +δ j+1 −2δ1)

]
>0,

which is what we wish to prove. Note that the first equality holds because n is odd,
z1z2 =−1, and

[1− (−z1)n][1− (−z2)n]= (1+ zn
1 )(1+ zn

2 )

= 1+ zn
1 + zn

2 + zn
1 zn

2

= zn
1 + zn

2

=−1+ zn
1 + zn

2 − zn
1 zn

2

=−(1− zn
1 )(1− zn

2 ).

Proof of Lemma 8

We first establish that the two forms of A1 we propose lead to the same Wii. Recall that
by Searle (1979) we have

W−1
ii =W−1

11 = 1√
1+4ρ2

(
1

1− zn
1
− 1

1− zn
2

)



30 HEALY & YANG

where

z1 = −1+
√

1+4ρ2

2ρ
, z2 = −1−

√
1+4ρ2

2ρ
.

Let

f (ρ)= 1√
1+4ρ2

, g(ρ)= 1
1− zn

1
− 1

1− zn
2

,

It is immediate that f (ρ) = f (−ρ), so we only need to check g(ρ) = g(−ρ). When n is
even, it holds naturally as z2

h(ρ)= z2
h(−ρ) for h = 1,2. When n is odd, we have:

g(ρ)− g(−ρ)=
(

1
1− zn

1
− 1

1− zn
2

)
−

(
1

1+ zn
1
− 1

1+ zn
2

)
= zn

1 − zn
2

(1− zn
1 )(1− zn

2 )
+ zn

1 − zn
2

(1+ zn
1 )(1+ zn

2 )

= 2(zn
1 − zn

2 )(1+ zn
1 zn

2 )
(1− zn

1 )(1− zn
2 )(1+ zn

1 )(1+ zn
2 )

= 0.

The last equality holds because z1z2 = 1−(1+4ρ2)
4ρ2 =−1.

Now we establish monotonicity. We have

f ′(ρ)=−4ρ(1+4ρ2)−3/2 = −4ρ
1+4ρ2 f (ρ),

g′(ρ)= nzn−1
1 z′1(ρ)

(1− zn
1 )2 − nzn−1

2 z′2(ρ)
(1− zn

2 )2 =
(
1− f (ρ)

)
nzn−1

1

2ρ2(1− zn
1 )2 −

(
1+ f (ρ)

)
nzn−1

2

2ρ2(1− zn
2 )2 .
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Substitute these two terms into d
dρW−1

11 , we obtain

d
dρ

W−1
11 = f ′(ρ)g(ρ)+ g′(ρ) f (ρ)

= f (ρ)
[ −4ρ

1+4ρ2 g(ρ)+ g′(ρ)
]

= f (ρ)

[
−4ρ

1+4ρ2

(
1

1− zn
1
− 1

1− zn
2

)
+

(
1− f (ρ)

)
nzn−1

1

2ρ2(1− zn
1 )2 −

(
1+ f (ρ)

)
nzn−1

2

2ρ2(1− zn
2 )2

]

= f (ρ)

[
−4ρ

1+4ρ2

zn
1 − zn

2

(1− zn
1 )(1− zn

2 )
+

(
1− f (ρ)

)
nzn−1

1 (1− zn
2 )2 − (

1+ f (ρ)
)
nzn−1

2 (1− zn
1 )2

2ρ2(1− zn
1 )2(1− zn

2 )2

]

= f (ρ)

[
−4ρ

1+4ρ2

zn
1 − zn

2

(1− zn
1 )(1− zn

2 )
+ 2ρ f (ρ)nzn

1 (1− zn
2 )2 +2ρ f (ρ)nzn

2 (1− zn
1 )2

2ρ2(1− zn
1 )2(1− zn

2 )2

]

= f (ρ)2 [−4ρ2 f (ρ)(zn
1 − zn

2 )(1− zn
1 )(1− zn

2 )+nzn
1 (1− zn

2 )2 +nzn
2 (1− zn

1 )2]
ρ(1− zn

1 )2(1− zn
2 )2

= f (ρ)2 [−4ρ2 f (ρ)(zn
1 − zn

2 )(1− zn
1 )(1− zn

2 )+n(1− zn
2 )(zn

1 − (−1)n)+n(1− zn
1 )(zn

2 − (−1)n)
]

ρ(1− zn
1 )2(1− zn

2 )2

where the fifth equality is because 2ρ f (ρ)z1 = 2ρp
1+4ρ2

−1+
p

1+4ρ2

2ρ = 1− 1p
1+4ρ2

= 1− f (ρ)

and, similarly, 2ρ f (ρ)z2 =−1− f (ρ). The sixth equality holds because −4ρ
1+4ρ2 =−4ρ f (ρ)2.

The last equality holds because z1z2 =−1. To show that this term is negative, we further
simplify the expression by considering two cases: n is odd and n is even.
Case 1. When n is odd,

d
dρ

W−1
11 = f (ρ)2 [

4ρ2 f (ρ)(zn
1 − zn

2 )(zn
1 + zn

2 )+n(1− zn
2 )(zn

1 +1)+n(1− zn
1 )(zn

2 +1)
]

ρ(1− zn
1 )2(1− zn

2 )2

= f (ρ)2 [
4ρ2 f (ρ)(zn

1 − zn
2 )(zn

1 + zn
2 )+n(1− zn

2 + zn
1 − zn

1 zn
2 )+n(1− zn

1 + zn
2 − zn

1 zn
2 )

]
ρ(1− zn

1 )2(1− zn
2 )2

=4 f (ρ)2 [
ρ2 f (ρ)(zn

1 − zn
2 )(zn

1 + zn
2 )+n

]
ρ(1− zn

1 )2(1− zn
2 )2 .

The first equality holds because n is odd. The third equality holds because z1z2 = −1.
This result implies that the sign of d

dρW−1
11 is the same as that of ρ2 f (ρ)(zn

1 − zn
2 )(zn

1 +
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zn
2 )+n. We argue that this term is negative, because for any ρ we consider in this paper

ρ2 f (ρ)(zn
1 − zn

2 )(zn
1 + zn

2 )+n =ρ2 f (ρ)(z2n
1 − z2n

2 )+n

≤ρ2 f (ρ)(z2
1 − z2

2)+1

= ρ2√
1+4ρ2

(
1+2ρ2 −

√
1+4ρ2

2ρ2 − 1+2ρ2 +
√

1+4ρ2

2ρ2

)
+1

=0.

where the inequality follows from the next lemma.

Lemma 9. ρ2 f (ρ)(z2n
1 − z2n

2 )+n decreases with n for any ρ < 1
3 .

Proof. We directly check the first order derivative:16

d
dn

[
ρ2 f (ρ)(z2n

1 − z2n
2 )+n

]=ρ2 f (ρ)
(
z2n

1 ln(z2
1)− z2n

2 ln(z2
2)

)+1

=ρ2 f (ρ)z2n
1 ln(z2

1)−ρ2 f (ρ)z2n
2 ln(z2

2)+1

<−ρ2 f (ρ)z2
2 ln(z2

2)+1

=− ρ2√
1+4ρ2

1+2ρ2 +
√

1+4ρ2

2ρ2 ln
1+2ρ2 +

√
1+4ρ2

2ρ2 +1

=− 1+2ρ2 +
√

1+4ρ2

2
√

1+4ρ2
ln

1+2ρ2 +
√

1+4ρ2

2ρ2 +1

<− 1+2ρ2 +
√

1+4ρ2

2
√

1+4ρ2
2.3895+1

<−2.38+1

<0.

where the first inequality holds because 1) z2
1 < 1 and, hence, ρ2 f (ρ) ln(z2

1) < 0, and
2) z2

2 > 1 which implies that −ρ2 f (ρ)z2n
2 ln(z2

2) decreases in n. We obtain the second
inequality by letting ρ = 1

3 which is the least upper bound of feasible ρ that satisfies

dynamic stability. The inequality holds because 1+2ρ2+
p

1+4ρ2

2ρ2 decreases in ρ, which can
be easily verified by its first order derivative. We have the third inequality because
1+2ρ2+

p
1+4ρ2

2
p

1+4ρ2
increases in ρ and, hence, we obtain the upper bound of its negation by

letting ρ = 0 within this term. □

16Note that n is an integer larger than or equal to 3 in our original problem but here it suffices to show
the monotonicity by treating it as a continuous variable.
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Case 2. When n is even,

d
dρ

W−1
11 = f (ρ)2 [−4ρ2 f (ρ)(zn

1 − zn
2 )(2− zn

1 − zn
2 )+n(1− zn

2 )(zn
1 −1)+n(1− zn

1 )(zn
2 −1)

]
ρ(1− zn

1 )2(1− zn
2 )2

= f (ρ)2 [−4ρ2 f (ρ)(zn
1 − zn

2 )(2− zn
1 − zn

2 )−n(2− zn
1 − zn

2 )−n(2− zn
1 − zn

2 )
]

ρ(1− zn
1 )2(1− zn

2 )2

=2 f (ρ)2(−2+ zn
1 + zn

2 )
[
2ρ2 f (ρ)(zn

1 − zn
2 )+n

]
ρ(1− zn

1 )2(1− zn
2 )2 .

The first inequality holds because n is even and the second is because (z1z2)n = (−1)n = 1.
In this case the sign of d

dρW−1
11 is the same as that of 2ρ2 f (ρ)(zn

1 −zn
2 )+n. This is because

when n is even,

−2+ zn
1 + zn

2 =−2+|z1|n +|z2|n

=−2+|z1|n + 1
|z1|n

>0.

We can now prove that

2ρ2 f (ρ)(zn
1 − zn

2 )+n =2ρ2 f (ρ)(z2m
1 − z2m

2 )+2m

<0.

The equality is obtained by letting n = 2m which is feasible since n is even. The inequal-
ity follows directly from case 1. Note that although we assume that n is odd in case 1 to
get the formula of d

dρW−1
11 , the proof of the inequality does not.


