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Preface

This document was created with help from fellow graduate students Ben Kle-
mens, Ming Hsu, Brian Rogers, and Isa Hafalir. Nearly all of the knowledge
contained within is not my own. Instead, I used a wide variety of valuable
resources which I hope to completely list in the bibliography.

At this point, this is not a complete document. The word “blah” is inserted
as a flag that much more could be written in a particular section. Eventually,
this document will be completed and the “blah”’s will be replaced with meaningful
text.
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Introduction

This document was created as a study guide for first year students in Social
Sciences at Caltech to help prepare for the infamous Econometrics Preliminary
Examination. It is a summary of the major topics learned throughout the
first year of graduate study. The typical student will have a variety of texts
and other resources at their disposal, and this is only meant to be a compact
supplement to those more in-depth sources. This document is by no means a
substitute for those texts.

Many proofs are given, though the reader should make an effort to prove
theorems on their own before reading the proof given. Most of the proofs
contained within are not terribly difficult and make for good test questions.

So find a comfortable chair, relax, and enjoy your review.
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Chapter 1

Probability Theory

1.1 Counting

We begin with a brief but important discussion on the counting of events. Al-
though a formal definition of an event will be given later, it is sufficient to think
of an event as a string of outcomes. For example, if we flip three coins, the
event ”heads, heads, tails” may be observed. A convenient label for this event
is ”HHT.”.

1.1.1 Ordering & Replacement

When couting events, it is crucial to understand whether we are sampling with
or without replacement and whether or not ordering of outcomes matters. This
is best understood through an example.

Given 5 cans of paint (R,B,Y,O,G), how many ways can you paint 3 boxes?
In general notation, n = 5, k = 3. Your job is to assign paint to each box.
If you sample paint colors with replacement, then a color may appear on two
different boxes. If you sample colors without replacement, then each color can
be assigned to at most one box - once you’ve used a color, you can’t put it back
into the set of colors from which you can choose for the next box. On the second
dimension, if you assume that the ordering of your boxes matters, then painting
Red, Blue, and then Green is different than painting Blue, Green, and then Red.
One way to think of this is that the boxes are somehow distinguishable (perhaps
by size) and painting the largest one red is a distinct event from painting the
smallest one red (all else constant, or ”ceteris peribus.”)

An important way to clarify these problems so that you can correctly solve
them is by identifying which set of items is getting assigned to the other set.
Are you assigning paint to boxes, or are you assigning boxes to paint? Both
make intuitive sense, but to answer this, use the following logic. Imagine one
of your sets of elements as being a set of buckets, or bins, while the other set
is comprised of balls. You want to assign balls to buckets and let n be the
number of buckets and k be the number of balls. It makes sense to assign

3



4 CHAPTER 1. PROBABILITY THEORY

multiple balls to a single bucket, but it’s crazy to assign multiple buckets to a
single ball. For our painting example, it makes sense to assign multiple boxes
to a single color of paint, but it’s not allowable to assign multiple colors to a
single box. Therefore, boxes are our ”balls,” k is 3, paints are our ”buckets,”
and n is 5.

With Replacement Without Replacement
Order

Matters
RRB 6=BRR

53 = nk

RBG6=BGR
5!
2! = n!

(n−k)!

Order
Doesn’t
Matter

RRB=BRR(
5+3−1

3

)
=

(
n+k−1

k

)
.

”arrange (n+k-1) interior
walls & k balls”

RBG=BGR(
5
3

)
=

(
n
k

)
= n!

k!(n−k)!

Example 1.1 If you receive exactly 12 calls per week, but they are randomly
distributed among the 7 days with equal probability, how many ways can you
have at least one call every day this week? How many total arrangements of
calls are there possible in a week?

The first question is to ask whether calls are assigned to days or days are
assigned to calls. It makes sense to have multiple calls in a day, but not vice
versa. So, calls are like balls and days are like buckets into which we assign
the calls. Therefore, we assign n as our number of days (buckets) and k as our
number of calls (balls.)

The second question is whether we have replacement and ordering. Since
we’ll allow multiple calls on any given day, we are choosing our days (buckets)
with replacement. We weren’t given any explicit information about calls being
distinct, so it’s safe to assume that the ordering of the calls does not matter.
We could claim that the calls are in fact distinct and solve the problem correctly
using that assumption, but we proceed assuming that order doesn’t matter.

The second question is easier. We know that n = 7 and k = 12, so our
answer is

(
7+12−1

12

)
=

(
18
12

)
.

To answer the first question, assume that one call has been distributed already
to each of the 7 days. Therefore, we have 7 days and 5 calls remaining. So,
n = 7 and k = 5. Our answer is

(
7+5−1

5

)
=

(
11
5

)
.

1.2 The Probability Space

The goal of developing a probability space is to take the natural set of pos-
sible outcomes from an experiment and develop it into a framework in which
we are able to use the tools of mathematics to apply a method of measuring
probabilities of collections of outcomes.
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1.2.1 Set-Theoretic Tools

Probability theory uses the concepts of the union (∪), the intersection (∩), and
the compliment

(
AC

)
quite often. Make sure you know how to manipulate

these standard operators. DeMorgan’s Laws define two ways to manipulate the
compliment operator.

Theorem 1.2 (DeMorgan’s Laws)

1. (A ∪B)C = AC ∩BC

2. (A ∩B)C = AC ∪BC

Make sure you are comfortable with basic set theory and its intuition. It
is very useful in understanding the problems you’ll be asked to solve. We will
discuss some of these topics in a bit more detail in Section 1.2.4. The following
are useful theorems and definitions as well.

Theorem 1.3 For any sets A, B, and C, A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
Proof. Recall that (B ∪ C) = {x : x ∈ B or x ∈ C} and (A ∩B) = {x : x ∈

A and x ∈ B}

A ∩ (B ∪ C) = {x : x ∈ A and (x ∈ B or x ∈ C)}
= {x : (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)}

= (A ∩B) ∪ (A ∩ C)

Theorem 1.4 (General set theory) For any sets A and B, (A∪B)∪ (A∩B) =
A ∪B

Proof. Using the definitions of ∩ and ∪ from Theorem 1.3, we have that

(A ∪B) ∪ (A ∩B) = {x : (x ∈ A or x ∈ B) or (x ∈ A and x ∈ B)}
= {x : x ∈ A or x ∈ B} = A ∪B

This is because any x in both A and B must also be in A or B. Therefore,
the second condition can be removed as it is satisfied by the first.

Definition 1.1 Sets A and B are mutually exclusive if A ∩B = ∅
Definition 1.2 A partition of a set B is a countable (possibly infinite) set of
sets {A1, A2, ...} such that Ai ∩Aj = ∅ ∀i, j and A1 ∪A2 ∪ ... = B.

Definition 1.3 The compliment of a set Ai is defined as AC
i = {A1 ∪ A2 ∪

... ∪ Ai−1 ∪ Ai+1 ∪ ...} = X \ Ai, where {A1, A2, ..., Ai−1, Ai, Ai+1, ...} form a
partition of X.
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1.2.2 Sigma-algebras

Note that this section is dense and very mathematical. The typical user of
econometrics needs only a superficial understanding of these concepts. The goal
is to formally develop those concepts needed to define our probability space,
which culminates in the results of Theorem 1.20. A reader not interested in
developing these tools should focus only on those definitions marked with a
double asterix (**) and then proceed to subsection 1.2.4.

We begin with a large collection of sets, X. From this set, we define families
of subsets of X that have desirable properties. Eventually, we develop a way to
measure elements from those families of subsets. This measure provides us with
a way to assign probabilities to abstract outcomes.

Definition 1.4 A collection of sets A is called a semiring if it satisfies the
following properties

1. ∅ ∈ A
2. A,B ∈ A =⇒ A ∩B ∈ A
3. A,B ∈ A =⇒ there exists a collection of sets C1, C2, ..., Cn ∈ A such that

A \B = ∪n
i=1Ci.

This definition is not very intuitive. Fortunately, we soon develop Theorem
1.7 that enables us to ignore the technical properties of semirings.

Definition 1.5 A collection of sets is called an algebra if it contains the empty
set and is closed under compliments and unions. If

1. A ∈ A =⇒ AC ∈ A (or, ”A is closed under complimentation”)

2. (A ∈ A & B ∈ A) =⇒ (A ∪B) ∈ A (or, ”A is closed under finite unions”)

then A is an algebra.

Remark 1.5 Algebras are also called ”fields.”

Definition 1.6 A collection E of sets is called a σ-algebra if it satisfies

1. If A ∈ E ,then AC ∈ E (closed under complementation)

2. If A1, A2, ... ∈ E, then ∪∞i=1Ai ∈ E (closed under countable unions)

Remark 1.6 DeMorgan’s laws together with properties 1 and 2 above imply that
σ-algebras are also closed under countable intersections. Similarly, this implies
that algebras are closed under finite intersections.
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Note that the set E = {∅, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}} is an
algebra and a σ-algebra.

Sigma algebras are a subset of algebras in the sense that all σ-algebras are
algebras, but not vice versa. Algebras only require that they be closed under
pairwise unions while σ-algebras must be closed under countably infinite unions.
Consider the following collection of sets:

X = N, the natural numbers (1.1)
Let n represent any single number in N (1.2)

A =





{ni}∞i=1 , {N\ni}∞i=1 ,{∪k
i=1ni : 0 ≤ k < ∞}

,{
N\ ∪k

i=1 ni : 0 ≤ k < ∞}



 (1.3)

In words, this collection A contains all single numbers ni, all compliments of
single numbers (N\ni), all finite unions of single numbers, and the compliment
of each finite union of single numbers. Note that the union of 0 numbers is
the empty set and that the unions and compliments of every element in the
collection is also in the collection (verify this yourself.) Therefore, this collection
is an algebra. However, if we take the countable union of all single numbers ni,
we get the entire set of natural numbers N. Since N is not in this collection,
the collection is not a σ-algebra. This famous example is known as the finite-
cofinite algebra. This leads into the following theorem, which is left unproven.

Theorem 1.7 All σ-algebras are algebras, and all algebras are semi-rings.

Therefore, if we require a set to be a semiring, it is sufficient to show instead
that it is a σ-algebra or algebra. This will be useful later.

Sigma algebras can be generated from abritrary sets. This will be useful in
developing the probability space.

Theorem 1.8 For some set X, the intersection of all σ-algebras Ai containing
X (meaning that x ∈ X =⇒ x ∈ Ai ∀i) is itself a σ-algebra, denoted σ (X).
This is called the σ-algebra generated by X.

Proof. (Intuitive, not formal)
Take any element x ∈ X. For any arbitrarily chosen σ-algebra Ai such that

X ⊆ Ai, we know that x ∈ Ai. Since Ai is closed under compliments, we know
that xC ∈ Ai. For any x, y ∈ X, we know that x, y ∈ Ai as well. Therefore,
{x} ∪ {y} ∈ Ai ∀x, y ∈ X.

Note that for each element, we have its compliment in Ai as well as the
union of all elements, the unions of the compliments, the compliments of all
unions of two elements, and so on. Clearly, we can take the elements of X and
extend the set to include those elements that are needed to satisfy the properties
of a σ-algebra. In fact, we do so without knowing anything about the σ-algebra
in which these elements belong. We only know that the σ-algebra is going to



8 CHAPTER 1. PROBABILITY THEORY

include them because of the properties of σ-algebras. Therefore, this ”extended
set” we’ve developed must be in every σ-algebra including X.

Furthermore, notice that all σ-algebras contain ∅, so their intersection also
contains ∅.

In conclusion, we know that every σ-algebra will contain both the ”extended
set” we generated from the elements of X as well as ∅. By construction, this
extended set and ∅ satisfy the properties of a σ-algebra.

In our probability space, we begin with our sample space.

Definition 1.7 (**) The sample space Ω is the set of all possible unique
outcomes of the experiment at hand.

If we were tossing a coin, Ω = {Heads, Tails}.
In the probability space, the σ-algebra we use is σ (Ω), the σ-algebra gener-

ated by Ω. So, as in the above proof, take the elements of Ω and generate the
”extended set” consisting of all unions, compliments, compliments of unions,
unions of compliments, etc. Include ∅ with this ”extended set” and the result
is σ (Ω), which we denote as Σ.

Definition 1.8 (**) The σ-algebra generated by Ω, denoted Σ, is the collection
of possible events from the experiment at hand.

If the experiment had a sample space of Ω = {10, 15, 20}, then
Σ = {∅, {10} , {15} , {20} , {10, 15} , {10, 20} , {15, 20} , {10, 15, 20}}.
Each of the elements of Σ is an event. Events can be thought of as descrip-

tions of experiment outcomes. For example, the description ”less than 18” is
represented by the event {10, 15}. Similarly, the description ”any outcome hap-
pens” is given by {10, 15, 20}. Note that ∅ is included to complete the definition
of a σ-algebra, but can be thought of as the event ”nothing happens.” We will
see that ∅ is usally assigned a probability of 0.

Note that σ-algebras can be defined over the real line as well as over abstract
sets. To develop this notion, we first need to develop the concept of a topology.

Definition 1.9 A topology τ on a set X is a collection of subsets of X satis-
fying

1. ∅, X ∈ τ

2. τ is closed under finite intersections

3. τ is closed under arbitary unions

Definition 1.10 Any element of a topology is known as an open set.
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Definition 1.11 The Borel σ-algebra (or, Borel field,) denoted B, of the
topological space (X, τ) is the σ-algebra generated by the family τ of open sets.
Its elements are called Borel sets.

Lemma 1.9 Let C = {(a, b) : a < b}. Then σ (C) = BR is the Borel field gener-
ated by the family of all open intervals C.

What do elements of BR look like? Take all possible open intervals. Take
their compliments. Take arbitrary unions. Don’t forget to include ∅ and R.
Clearly, BR contains a wide range of intervals including open, closed, and half-
open intervals. It also contains disjoint intervals such as (2, 7]∪(19, 32). Roughly
speaking, it contains (nearly) every possible collection of intervals that are easily
imagined.

1.2.3 Measure Spaces & Probability Spaces

We now develop the concepts needed to measure the ”size” of our experiment
outcomes.

Definition 1.12 A pair (X, Σ) is a measurable space if X is a set and Σ is
a nonempty σ-algebra of subsets of X.

By defining a measurable space, we guarantee that we can define a function
that assigns real-numbered values to the abstract elements of Σ.

Definition 1.13 A set function µ : S −→ [0,∞) is a measure if:

1. S is a semiring

2. (σ-additivity) For any sequence of pairwise disjoint sets {An} ∈ S such
that ∪∞n=1An ∈ S, we have µ (∪∞n=1An) =

∑∞
n=1 µ (An)

3. µ assumes at most one of the values −∞ and ∞

4. µ (∅) = 0

Definition 1.14 A triplet (X, Σ, µ) is a measure space if (X, Σ) is a mea-
surable space and µ : Σ −→ [0,∞) is a measure.

Definition 1.15 A measure space is a probability space if µ (X) = 1. In this
case, µ is a probability measure.
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1.2.4 The Probability Measure P

We now develop our standard probability measure P. Andrei Kolmogorov’s
axioms define a nice list of properties for a probability measure, and they are
the standard in use by most statisticians.1. Let P : E −→ [0, 1] be our probability
measure and E be some sigma-algebra of events generated by X.

Axiom 1.16 P[A] ≤ 1 ∀A ∈ E
Axiom 1.17 P[X] = 1

Axiom 1.18 P[A1∪A2∪...∪An] = P[A1]+P[A2]+...+P[An], where {A1, A2, ..., An}
are disjoint sets in E.

These three basic axioms imply the following

Theorem 1.10 P[AC
i ] = 1− P[Ai]

Proof. Using the definition of a compliment,

P[AC
i ] = P[A1 ∪A2 ∪ ... ∪Ai−1 ∪Ai+1 ∪ ...]

= P[A1] + P[A2] + ... + P[Ai−1] + P[Ai+1] + ... + P[An]
= P[E ]− P[Ai] = 1− P[Ai]

Theorem 1.11 P[∅] = 0
Proof. Simple. ∅ = XC and P[XC ] = 1− P[X] = 1− 1 = 0

Theorem 1.12 P[Ai] ∈ [0, 1]
Proof. We know that AC

i ∈ E and that P[AC
i ] = 1 − P[Ai]. Rearranging

gives P[Ai] = 1− P[AC
i ]. Since P[AC

i ] ≥ 0, then P[Ai] ≤ 1. Since P[Ai] ≥ 0, we
have that P[Ai] ∈ [0, 1]

Theorem 1.13 P[B ∩AC ] = P[B]− P[A ∩B]
Proof. Using Theorem 1.3,

P[B] = P[B ∩X] = P[B ∩ (A ∪AC)] = P[(B ∩AC) ∪ (A ∩B)]

= P[B ∩AC ] + P[A ∩B]

Simply subtract the P[A ∩B] from both sides to get the desired result.

Theorem 1.14 P[A ∪B] = P[A] + P[B]− P[A ∩B]
Proof. Starting with Axiom 1.18 and using Theorem 1.4,

P[A ∪B] = P[A] + P[B] (1.4)
P [(A ∪B) ∪ (A ∩B)] = P [A] + P [B] (1.5)
P[A ∪B] + P[A ∩B] = P[A] + P[B] (1.6)

P[A ∪B] = P[A] + P[B]− P[A ∩B] (1.7)

1Different sources vary in what they define as Kolmogorov’s axioms, but the versions not
given here are at least implied by the three given.
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Theorem 1.15 A ⊆ B ⇒ P[A] ≤ P[B]
Proof. From Theorem 1.13 we know that

P[B] = P[B ∩AC ] + P[A ∩B] (1.8)

Since A ⊆ B, then A ∩B = A. Therefore,

P[B] = P[B ∩AC ] + P[A] (1.9)
P[B] ≥ P[A] (1.10)

Theorem 1.16 A = B ⇒ P[A] = P[B]
Proof. If A = B, then ∀ x ∈ B, it must be true that x ∈ A.
Equivalently, /∃x : x ∈ B and x 6∈ A
Or, /∃x : x ∈ B and x ∈ AC

Which implies that B ∩AC = ∅
From Theorem 1.11 we know that if B ∩AC = ∅, then P[B ∩AC ] = 0.
Using the proof of Theorem 1.15 gives P[B] = P[B ∩AC ] + P[A]
Since P[B ∩AC ] = 0, we are done.

Theorem 1.17 P[A] =
∑∞

i=1 P[A∩Ci], where {C1, C2, ...} forms a partition of
E.

Proof. Left as an exercise.

Theorem 1.18 If {A1, A2, ...}are pairwise disjoint sets in E, then P[∪∞i=1Ai] =∑∞
i=1 P[Ai]
Proof. Since E is a σ-algebra, then ∪∞i=1Ai ∈ E, so P [∪∞i=1Ai] is well

defined. Use Axiom 1.18 to show that the sum of the probabilities equals the
probability of the union... but this is not complete. Axiom 1.18 needs to be
extended to infinite unions... blah

Theorem 1.19 (Boole’s Inequality, aka ”Countable Subadditivity”) P[∪∞i=1Ai] ≤∑∞
i=1 P[Ai] for any set of sets {A1, A2, ...}
Proof. Also an exercise. Hint: {A1, A2, ...} is not necessarily a partition.

See Casella & Berger for a proof.

1.2.5 The Probability Space (Ω, Σ,P)

We now have all the tools required to establish that Ω, Σ , and P for a probability
space.

Theorem 1.20 Define Ω as the sample space of outcomes of an experiment, Σ
as the σ-algebra of events generated from Ω, and P : Σ −→ [0,∞) as a probability
measure that assigns a nonnegative real number to each event in Σ. The space
(Ω,Σ,P) satisfies the definition of a probability space.



12 CHAPTER 1. PROBABILITY THEORY

Proof. Ω is a set and Σ is a nonempty σ-algebra of subsets of Ω. Therefore,
(Ω, Σ) is a measurable space by Definition 1.12.

Since Σ is a σ-algebra, it is also a semiring by Theorem 1.7. By Theorem
1.18, P satisfies σ-additivity. P never assumes values −∞ and ∞. By Theorem
1.11, P [∅] = 0. These four properties imply that P is a measure by Definition
1.13.

Since (Ω,Σ) is a measurable space and P is a measure, then (Ω,Σ,P) is a
measure space by Definition 1.14.

By Axiom 1.17, P [X] = 1. Therefore, the measure space (Ω, Σ,P) is a
probability measure.

In summary, the sample space is the list of all possible outcomes. Events are
groupings of these outcomes. The σ-algebra Σ is the collection of all possible
events. To each of these possible events (or, groupings of outcomes,) we assign
some ”size” using the probability measure using P. An example will further
clarify these concepts.

Example 1.21 Consider the tossing of two fair coins. The sample space is
{HH,HT, TH, TT}. One possible event would be ”the coins have different sides
showing,” which is {HT, TH}. Another possible event is ”at least one head,”
which is {HH, HT, TH}. Our sigma algebra generated from the sample space
(defined in the next subsection) will be the collection of all possible such events:




∅, {HH} , {HT} , {TH} , {TT} ,
{HH, HT} , {HH, TH} , {HH,TT} ,
{HT, TH} , {HT, TT} , {TH, TT} ,
{HH, HT, TH} , {HH, HT, TT} ,
{HH, TH, TT} , {HT, TH, TT} ,

{HH,HT, TH, TT}





For example, the event ”first flip heads or second flip tails” is {HH,HT, TT}.
The probability measure P assigns a number from 0 to 1 to each of those

events in the sigma algebra. If we had a fair coin, we would want to assign the
following probabilities to the events in the above sigma algebra:

{0, 1/4, 1/4, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 3/4, 3/4, 3/4, 3/4, 1}
However, we need not use those values. Perhaps an experimenter has reason

to believe the coin is biased so that heads appears 3/4 of the time. Then the
following values for P would be appropriate:

{0, 9/16, 3/16, 3/16, 1/16, 3/4, 3/4, 5/8, 3/8, 1/4, 1/4, 15/16, 13/16, 13/16, 7/16, 1}
As long as the values of the probability measure are consistent with Kol-

mogorov’s axioms and the consequences of those axioms, then we consider the
probabilities to be mathematically acceptable, even if they aren’t reasonable for
the given experiment. This opens the door for philosophical comment on whether
or not the probability values assigned can even be considered unreasonable as long
as they’re mathematically acceptable.
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1.2.6 Random Variables & Induced Probability Measures

A random variable is a convenient way to express the elements of Ω as numbers
rather than abstract elements of sets. We use random variables (which are
really functions) to map the elements of Ω into the real number line. However,
we must first touch on the concept of measurability of such functions.

Definition 1.19 Let AX ,AY be nonempty families of subsets of X and Y ,
respectively. A function f : X −→ Y is (AX ,AY )-measurable if f−1 (A) ∈ AX

∀A ∈ AY .

Remark 1.22 If a function is (AX ,AY )-measurable, but AX and AY are un-
derstood from context, we simply say the function is measurable.

Definition 1.20 A random variable X : is a measurable function from the
probability space (Ω, Σ,P) into the probability space (X ,AX ,PX), where Ω, Σ,
and P are the sample space, sigma-algebra, and probability measure as defined
above, X ⊆ R is the range of X (which is a subset of the real number line,) AX
is a Borel field of X , and PX is the probability measure on X induced by X.
Specifically, X : Ω −→ X .

Remark 1.23 Always keep in mind that random variables, despite their name,
are really functions. Also, remember the distinction between the probability mea-
sures and the random variable. Both are functions, but each performs a very
different task.

Definition 1.21 The inverse of a random variable maps sets in AX back to
sets in Σ. Specifically, X−1 (A) = {ω ∈ Ω : X (ω) ∈ A}.

Remark 1.24 Random variables take single elements in Ω and map them to
single points in R. The inverse of random variables maps sets in AX back to
sets in Σ.

Definition 1.22 A random variable is discrete if there exists a countable set
S ∈ X such that PX

[
SC

]
= 0. Otherwise, the random variable is continuous.

The induced measure PX is just a way of relating measure on the real line (the
range of X) back to the original probability measure over the abstract events
in the σ-algebra of the sample space. Specifically, PX [A] = P

[
X−1 (A)

]
=

P {ω ∈ Ω : X (ω) ∈ A}. In effect, we take the probability weights associated
with events and assign them to real numbers. Remember that when we deal
with probabilities on some random variable X, we’re really dealing with the PX

measure.

There are some notational concerns involving the induced probability mea-
sure PX . We often encounter statements like P[2] = 0.5. This statement is
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completely uninformative (and meaningless) unless in some context. What is
meant by this statement is that the probability of the event in E which are
assigned a value of ”2” by the random variable in question is 0.5. Remember,
the probability measure on the range of the random variable is induced by the
probability measure on the sample space.

In general, if we want to look at some condition X ∈ A (which might
be something like X = 2), we may write P[X ∈ A], but we really mean
P

[
X−1 (A)

]
= P{ω ∈ Ω : X(ω) ∈ A}. In other words, we’re measuring the

”size” of the set (using P as our measure) of ω’s such that the random variable
X returns values in A. Remember that P is the probability measure over the
sample space and PX is the probability measure over the range of the random
variable. Therefore, when we write P [A] (where A is a subset of the range of
X,) what we really mean is PX [A], which is equivalent to P{ω ∈ Ω : X(ω) ∈ A}.
This notational shortcut of using P [A] instead of PX [A] is extremely common,
but can be misleading if there’s confusion about whether A is in the sample
space or in the range of X.

One standard probability space is the Borel field over the unit interval of
the real line under the Lebesgue measure λ. Notationally, that’s ([0, 1],B, λ).
The Borel field over the unit interval gives us a set of all possible intervals
taken from [0, 1]. The Lebesgue measure (denoted by λ [·] and pronounced
”le-BAYG”) is just a way to measure the size of any given interval. For any
interval [a, b] ⊆ [0, 1] with b ≥ a, λ [[a, b]] = b − a. As you can see, Lebesgue
measure is just a fancy name for a very intuitive method of measuring the size
of intervals.

Despite the confusing math rhetoric, this probability space is one of the most
common and well-known. It’s the ”uniform distribution”, where the probability
of any interval of values is simply the size of that interval. For example, the
probability that some random variable with a uniform distribution lies in the
interval [1/3, 1/2] is 1/2 − 1/3 = 1/6. The concept of a random variable will
be defined shortly. One interesting observation is that any point x ∈ R has
Lebesgue measure zero since x = [x, x] and λ [[x, x]] = x − x = 0. Another
observation is that Lebesgue measure does not depend on the closedness of the
interval. In other words, λ [[x, y]] = λ [(x, y)] = y − x.

Of course, as we learn different probability distributions, we’ll implicitly be
learning different probability measures other than the simple Lebesgue measure
λ.

Example 1.25 Refer back to Example 1.21 where two coins are tossed. We
defined the sample space (Ω) as all possible outcomes and the sigma algebra (E)
of all possible subsets of the sample space. A simple probability measure (P) was
applied to the events in the sigma algebra.

Define the random variable X to be ”the number of heads.” Recall that X
takes Ω into X and induces PX from P. In this example, X = {0, 1, 2} and
A = {∅, {0} , {1} , {2} , {0, 1} , {0, 2} , {1, 2} , {0, 1, 2}}. The induced probability
measure PX from the measure defined above would look like:
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Prob. of 0 heads = PX [0] = P [{TT}] = 1/4
Prob. of 1 heads = PX [1] = P [{HT, TH}] = 1/2
Prob. of 2 heads = PX [2] = P [{HH}] = 1/4
Prob. of 0 or 1 heads = PX [{0, 1}] = P [{TT, TH,HT}] = 3/4
Prob. of 0 or 2 heads = PX [{0, 2}] = P [{TT,HH}] = 1/2
Prob. of 1 or 2 heads = PX [{1, 2}] = P [{TH, HT, HH}] = 3/4
Prob. of 1, 2, or 3 heads = PX [{0, 1, 2}] = P [{HH, TH, HT, TT}] = 1
Prob. of ”nothing” = PX [∅] = P [∅] = 0
The empty set is simply needed to complete the σ-algebra. Its interpretation

is not important since P [∅] = 0 for any reasonable P.

If all of the above was confusing, rely on the following ”executive summary.”
We have defined a probability space, (Ω, E ,P), where:

• Ω is the sample space - the set of possible outcomes from an experiment.

– An event A is a set containing outcomes from the sample space.

• Σ is a σ-algebra of subsets of the sample space. Think of Σ as the
collection of all possible events involving outcomes chosen from Ω.

• P is a probability measure over Σ. Remember that P assigns a number
to each event in Σ.

We also have random variables that allow us to look at real numbers in-
stead of abstract events in Σ. For each random variable X, there exists a
new probability measure PX . PX [A] where A ∈ R simply relates back to
P {ω ∈ Ω : X (ω) ∈ A}. So, if we ask for PX [A], we are really interested in the
probability P {ω ∈ Ω : X (ω) ∈ A}, where A simply represents {ω ∈ Ω : X (ω) ∈ A}
through the inverse transformation X−1.

1.3 Conditional Probability & Independence

1.3.1 Conditional Probability

Conditional probability is the probability measure of an event in question given
that another event from the same sample space has occurred. For example, the
example of 2 coins being tossed was introduced previously. Suppose we know
that the event ”at least one head” occurred. If we now want to measure the
probability of the event ”two heads” given that ”at least one head” has occurred,
we have effectively reduced our σ-algebra of events down to those that satisfy ”at
least one head.” Notationally, we write this as P [two heads | at least one head].

To calculate conditional probabilities, we use the following formula:



16 CHAPTER 1. PROBABILITY THEORY

Definition 1.23 The conditional probability of A given B is

P [A|B] =
P [A ∩B]
P [B]

(1.11)

This definition leads directly to a useful theorem about partitions of the
sample space.

Theorem 1.26 If A1, A2, ..., An form a partition of the sample space, then
P [B] =

∑n
i=1 P [B|Ai] P [Ai]

Proof. Rearranging Definition 1.23 gives P [A ∩B] = P [A|B]P [B]. Recall
from Theorem 1.17 that P[B] =

∑n
i=1 P[B ∩ Ai], where {A1, A2, ..., An} forms

a partition of E. Substituting the definition of conditional probability into this
theorem gives the result.

1.3.2 Warner’s Method

Warner’s Method is a clever way of extracting sensitive survey data using the
results of the above theorem. Subjects enter a private booth and choose one of
two cards, each containing a ”yes/no” question. The subjects cannot see the
questions before they choose a card. One of the questions (which we’ll call Ques-
tion 1) will always generate a ”yes” response (for example, ”Are you human?”)
The other will contain the sensitive question of interest (for example, ”Do you
use cocaine?”) The subject answers the question on the chosen card and gives
only his answer to the experimenter without saying which card was chosen. The
experimenter has no way of knowing which question was being answered by this
subject. However, if this experiment is done with many subjects, the proportion
of people who answer the sensitive question can be accurately determined.

Let ”Y ” indicate a ”yes” response, Q1 indicate that question 1 was chosen,
and Q2 indicate that question 2 was chosen. After the experiment is run, the
proportion of ”yes” answers seen by the experimenter is p. Since Q1 and Q2

form a partition, we know that

P [Y ] = P [Y |Q1]P [Q1] + P [Y |Q2]P [Q2] (1.12)

This can be rearranged to give the proportion of ”yes” answers to the more
sensative question (Question 2):

P [Y |Q2] =
P [Y ]− P [Y |Q1]P [Q1]

P [Q2]
=

p− (1) (1/2)
(1/2)

= 2p− 1 (1.13)

Note that this method does assume that the questions are chosen with equal
probability and that every subject always answers ”yes” to Question 1.
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1.3.3 Independence

In some cases, the knowledge of one event has no effect on another. When this
is true, we say the events are independent.

Definition 1.24 Events A and B are indpendent if P [A ∩B] = P [A]P [B].

Definition 1.25 A1, A2, ..., An are mutually independent if P
[∩k

j=1Aij

]
=∏k

j=1 P
[
Aij

]
for any collection Ai1 , Ai2 , ..., Aik

of A1, A2, ..., An.

Theorem 1.27 If A and B are independent, then P [A|B] = P [A]
Proof. Just use the definitions of conditional probability and independence:

P [A|B] =
P [A ∩B]
P [B]

=
P [A] P [B]
P [B]

= P [A] (1.14)

Theorem 1.28 If A and B are independent, then

1. A and BC are independent

Proof. We know from Theorem 1.17 that P [A] = P [A ∩B] +P
[
A ∩BC

]
since B and BC form a partition.

P [A] = P [A ∩B] + P
[
A ∩BC

]
(1.15)

P
[
A ∩BC

]
= P [A]− P [A ∩B] (1.16)
= P [A]− P [A]P [B] (1.17)
= P [A] (1− P [B]) (1.18)

= P [A]P
[
BC

]
(1.19)

2. AC and B are independent

Proof. Same as the previous proof.

3. AC and BC are independent.

Proof. From DeMorgan’s Laws, AC ∩BC = (A ∪B)C .

P
[
AC ∩BC

]
= P

[
(A ∪B)C

]
(1.20)

= 1− P [A ∪B] (1.21)
= 1− (P [A] + P [B]− P [A ∩B]) (1.22)
= 1− P [A]− P [B] + P [A]P [B] (1.23)
= (1− P [A]) (1− P [B]) (1.24)

= P
[
AC

]
P

[
BC

]
(1.25)
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1.3.4 Philosophical Remarks

Conditional probability and independence are here introduced as mathematical
formulae. However, they have serious philosophical meanings and difficulties
that open questions about the very basics of probability theory and cause-effect
relationships. A few quick examples are given as thoughtful distractions.

Example 1.29 Events with probability 1 and probability 0 are independent of
themselves. Let P [A] = 0 and P [B] = 1. P [A ∩A] = P [A] P [A] = 1
and P [B ∩B] = P [B]P [B] = 0. How can an event be independent of its own
occurrence? How can a zero-probability event still have zero probability given
that it has occurred - or does result reflect the fact that it couldn’t have occurred
in the first place?

Example 1.30 The statement ”A is independent of B” makes no reference
to the probability measure. If we change probability measures, we can remove
independence. What does this say about the causal independence of these two
real-world events?

Example 1.31 Imagine tossing a fair coin three times. Let A be the event ”at
least two heads” and B be the event ”the first two flips are the same.” Note that
A and B are independent. P [A ∩B] = 1/4 = 1/2 ∗ 1/2 = P [A]P [B].

Now toss a fair coin four times. Define A and B as before. We know that
P [B] will be 1/2 regardless of how many flips are made. Now A and B are not
independent. P [A ∩B] = 10/32 6= 11/32 = 11/16 ∗ 1/2 = P [A] P [B].

Try two tosses. P [A ∩B] = 1/4 6= 1/8 = 1/4 ∗ 1/2 = P [A]P [B]. Not
independent.

Try any number of tosses other than three and we will always find depen-
dence.

It is a mathematical oddity that independence only comes with three tosses
of the coin. Does this imply a true independence of these events only when the
coin is tossed three times? Can it be that two events will have the intersection of
their probability measures coincidentally equal to the product of those measures
while maintaining an underlying causal dependence?
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1.4 Important Probability Tools

Theorem 1.32 (Principle of Inclusion & Exclusion)

P [∪n
i=1Ai] =

n∑

i=1

P [Ai] (1.26)

−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ]

+
n∑

i=1

n∑

j=i+1

n∑

k=j+1

P [Ai ∩Aj ∩Ak]

− ...

+ (−1)n+1 P [∩n
i=1Ai]

Proof. Before considering the general proof, look first at the first few steps
of the n = 4 case.

P [A1 ∪A2 ∪A3 ∪A4] = P [A1] + P [A2 ∪A3 ∪A4]− P [A1 ∩ (A2 ∪A3 ∪A4)]
(1.27)

= P [A1] + P [A2 ∪A3 ∪A4]−
P [(A1 ∩A2) ∪ (A1 ∩A3) ∪ (A1 ∩A4)]
= P [A1] + P [A2] + P [A3 ∪A4]− P [A2 ∩ (A3 ∪A4)]−
P [(A1 ∩A2) ∪ (A1 ∩A3) ∪ (A1 ∩A4)]
= P [A1] + P [A2] + P [A3 ∪A4]− P [(A2 ∩A3) ∪ (A2 ∩A4)]−
P [(A1 ∩A2) ∪ (A1 ∩A3) ∪ (A1 ∩A4)]
= P [A1] + P [A2] + P [A3] + P [A4]− P [A3 ∩A4]−
P [(A2 ∩A3) ∪ (A2 ∩A4)]−
P [(A1 ∩A2) ∪ (A1 ∩A3) ∪ (A1 ∩A4)]

The strategy is to expand unions by separating the first term out. The re-
sulting subtracted term contains a single term intersected with a sequence of
unions. We distribute that intersetion through the unions. The first of these
unions is then separated and the process is repeated until all union operators are
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eliminated.

P [∪n
i=1Ai] = P [A1] + P [∪n

i=2Ai]− P [A1 ∩ (∪n
i=2Ai)] (1.28)

= P [A1] + P [A2] + P [∪n
i=3Ai]− P [A2 ∩ (∪n

i=3Ai)]︸ ︷︷ ︸
P[∪n

i=2Ai]

− P [A1 ∩ (∪n
i=2Ai)]

...

=
n∑

i=1

P [Ai]−
n∑

i=1

P
[
Ai ∩

(∪n
j=1+1Aj

)]

=
n∑

i=1

P [Ai]−
n∑

i=1

P
[∪n

j=1+1 (Ai ∩Aj)
]

=
n∑

i=1

P [Ai]−
n∑

i=1

(
P [Ai ∩Ai+1] + P

[∪n
j=i+2 (Ai ∩Aj)

]
−P [

(Ai ∩Ai+1) ∩
(∪n

j=i+2 (Ai ∩Aj)
)]

)

=
n∑

i=1

P [Ai]−
n∑

i=1



P [Ai ∩Ai+1] + P [Ai ∩Ai+2] + P

[∪n
j=i+3 (Ai ∩Aj)

]
−P [

(Ai ∩Ai+2) ∩
(∪n

j=i+3 (Ai ∩Aj)
)]

−P [
(Ai ∩Ai+1) ∩

(∪n
j=i+2 (Ai ∩Aj)

)]




...

=
n∑

i=1

P [Ai]−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ] +
n∑

i=1

n∑

j=i+1

P
[
(Ai ∩Aj) ∩

(∪n
k=j+1 (Ai ∩Ak)

)]

=
n∑

i=1

P [Ai]−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ] +
n∑

i=1

n∑

j=i+1

P
[∪n

k=j+1 ((Ai ∩Aj) ∩ (Ai ∩Ak))
]

=
n∑

i=1

P [Ai]−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ] +
n∑

i=1

n∑

j=i+1

P
[∪n

k=j+1 (Ai ∩Aj ∩Ak)
]

...

=
n∑

i=1

P [Ai]−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ] +
n∑

i=1

n∑

j=i+1

n∑

k=j+1

P [Ai ∩Aj ∩Ak]−

n∑

i=1

n∑

j=i+1

n∑

k=j+1

P
[
(Ai ∩Aj ∩Ak) ∩ (∪n

l=k+1 (Ai ∩Aj ∩Al)
)]

=
n∑

i=1

P [Ai]−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ] +
n∑

i=1

n∑

j=i+1

n∑

k=j+1

P [Ai ∩Aj ∩Ak]−

n∑

i=1

n∑

j=i+1

n∑

k=j+1

P
[∪n

l=k+1 (Ai ∩Aj ∩Ak ∩Al)
]

...

=
n∑

i=1

P [Ai]−
n∑

i=1

n∑

j=i+1

P [Ai ∩Aj ] +
n∑

i=1

n∑

j=i+1

n∑

k=j+1

P [Ai ∩Aj ∩Ak]−

... + (−1)n+1 P [∩n
i=1Ai]
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Theorem 1.33 (Bonferroni’s Inequality - Simple) P[A ∩B] ≥ P[A] + P[B]− 1
Proof.

P[A ∪B] = P[A] + P[B]− P[A ∩B] (1.29)
P[A ∩B] = P[A] + P[B]− P[A ∪B] ≥ P[A] + P[B]− 1 (1.30)
P[A ∩B] ≥ P[A] + P[B]− 1 (1.31)

Theorem 1.34 (Bonferroni’s Inequality - General) P [∩n
i=1Ai] ≥

∑n
i=1 P [Ai]−

(n− 1)
Proof. Starting with Boole’s Inequality applied to AC

i , we have that

P[∪n
i=1A

C
i ] ≤

n∑

i=1

P[AC
i ] (1.32)

P[(∩n
i=1Ai)

C ] ≤
n∑

i=1

P[AC
i ] (1.33)

1− P[∩n
i=1Ai] ≤

n∑

i=1

(1− P[Ai]) (1.34)

−P[∩n
i=1Ai] ≤ −1 + n +

n∑

i=1

(−P[Ai]) (1.35)

P[∩n
i=1Ai] ≥

n∑

i=1

P[Ai]− (n− 1) (1.36)

Theorem 1.35 (Bonferroni’s Inequality - Alternative Version) P[∩∞i=1Ai] ≥
1−∑n

i=1 P
[
AC

i

]
Proof. This proof uses many of the tools used in the general version of

Bonferroni’s Inequality and the final step requires Boole’s Identity.

P[∩n
i=1Ai] = 1− P

[
([∩n

i=1Ai)
C

]
= 1− P [∪n

i=1A
C
i

]
(1.37)

≥ 1−
n∑

i=1

P[AC
i ] (1.38)

Theorem 1.36 (Bayes’ Rule) P[Ai|B] = P[B|Ai]P[Ai]P∞
j=1 P[B|Aj ]P[Aj ]

, where A1, A2, ...

partition the sample space.

Proof. P[Ai|B] = P[Ai∩B]
P[B] = P[B∩Ai]P[Ai]

P[Ai]P[B] = P[B|Ai]P[Ai]
P[B] = P[B|Ai]P[Ai]P∞

j=1 P[B|Aj ]P[Aj ]

since {An} is a partition.
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Remark 1.37 Bayes’ Rule is very important in many economic problems, par-
ticularly in the field of game theory.

1.4.1 Probability Distributions

A random variable induces a probability measure on the real line from the
probability measure over the sample space. This measure assigns measure (or
weight) to real numbers in the range of the random variable. The term for this
induced measure on the real line is the distribution of the random variable.
From this distribution, we can define a function representing the relationship
between a real number and its assigned probability measure. This function is a
distribution function.

Definition 1.26 The cumulative distribution function FX of a random
variable X (also known as its cdf) is

FX(x) = P[X ≤ x] (1.39)

In all of statistics, it is crucial to note the difference between the capital letter
X and the small letter x. The capital letter refers to the random variable itself,
while the small letter refers to one particular value that the random variable
might take. We subscript the cdf function with the random variable to remind
us which measure we’re looking at. If it is obvious, the subscript is ignored.

Also, we use the notation X ∼ F (θ) to indicate that FX(x; θ) is the cdf of
X, which might take some parameter θ. For example, the Normal distribution
takes as its parameters the mean of the distribution, µ, and the variance, σ2. So,
if X were distributed with a normal distribution, we would say X ∼ N(µ, σ2).

Theorem 1.38 Any cumulative distribution function F has the following prop-
erties

1. F is nondecreasing

2. limx→∞ F (x) = 1

3. limx→−∞ F (x) = 0

4. F is right continuous (limx→x+
0

F (x) = F (x0))

Theorem 1.39 Any function G satisfiying the four conditions of Theorem 1.38
is the CDF of some random variable.

Definition 1.27 The probability distribution function (or, in discrete ran-
dom variables, the probability mass function), (also known as the pdf) is

fX(x) = P[X = x] (1.40)
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Corollary 1.40 The cdf is the integral of the pdf in the following way

FX(y) = P[X ≤ y] =
∫ y

−∞
fX(t)dt (1.41)

where t is a dummy variable of integration.

Theorem 1.41 Any probability distribution function f has the following prop-
erties

1. fX (x) ≥ 0 ∀x ∈ X
2.

∫∞
−∞ fX (x) dx = 1

Theorem 1.42 Continuous random variables have continuous cdf’s while dis-
crete random variables have right-continuous step-function cdf’s.

In the Subsection 2.1 we consider probability distributions in more detail,
but these definitions are needed at this point to understand the concepts of
expected value and variance of random variables.

1.4.2 The Expectation Operator

The expectation operator defines the mean (or population average) of a random
variable or expression.

We develop the expectation operator in terms of the Lebesgue integral. First
recall that (roughly speaking) the Lebesgue measure λ (A) for some set A gives
the length/area/volume of the set A. If A = (2, 5), then λ (A) = 2 − 5 = 3.
The Lebesgue integral of f on [a, b] is defined in terms of

∑n
i=1 yiλ (Ai), where

0 = y1 ≤ y2 ≤ ... ≤ yn, Ai = {x : yi ≤ f (x) < yi+1}, and λ (Ai) is the Lebesgue
measure of the set Ai. The value of the Lebesgue integral is the limit as the
yi’s are pushed closer and closer together. Essentially, we break the y-axis into
a grid using {yn} and break the x-axis into the corresponding grid {An} where
Ai = {x : f (x) ∈ [yi, yi+1)}. We then calculate the area under the function by
taking the sum of the rectangles given by λ (Ai) yi.

Consider our probability space. Take an event (a set A of ω ∈ Ω) and a
random variable that assigns real numbers to each ω ∈ A. If we were to take
an observation from A without knowing which ω ∈ A was to be drawn, we may
want to ask what value of X (ω) we should expect to see. Since each of the
ω ∈ A has been assigned a probability measure P [ω] (which induces PX [x],) we
can use this to weight the values X (ω). Since P is a probability measure, these
weights sum to 1, so the weighted sum provides us with a weighted average
of X (ω). If our measure P actually gives the ”correct” likelihood of ω being
chosen, then this weighted average of X (ω) (which we’ll call E [X]) gives an
indication of what values of X (ω) we should expect to draw.

Using the Lebesgue integral concept, we can take the possible values {xi}
and construct a grid on the y-axis, which gives a corresponding grid on the
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x-axis in A, where Ai = {ω ∈ A : X (ω) ∈ [xi, xi+1)}. Denote elements in this
x-axis grid as Ai. The weighted average is

n∑

i=1

xiP [Ai] =
n∑

i=1

xiPX [X = xi] =
n∑

i=1

xifX (xi) (1.42)

As we shrink this grid infinitessimaly, Ai will become an infinitessimal. Denote
the infinitessimal set Ai by dω. The Lebesgue integral becomes

limn→∞
n∑

i=1

xiP [Ai] =
∫ ∞

−∞
xP [dω] =

∫ ∞

−∞
xPX [X = x] =

∫ ∞

−∞
xfX (x) dx

(1.43)
We now have our definition of expected values.

Definition 1.28 The expected value of a continuous random variable X is

E[X] =
∫ ∞

−∞
xP [dω] =

∫ ∞

−∞
xfX(x)dx (1.44)

The expected value of a discrete random variable Y is

E [Y ] =
∑

y∈Y

yfY (y)

Remark 1.43 We sometimes denote E[·] as EX [·] to indicate that the expecta-
tion is being taken over fX(·)dx.

The following results can be easily shown using the definition of expected
value and some simple integral manipulation. Therefore, proofs are omitted.

• E[X + Y ] = E[X] + E[Y ]

• E[aX + b] = aE[X] + b

An alternative measure of the ”center” of the distribution is the median.

Definition 1.29 The median of a random variable X is the unique number m
that solves ∫ m

−∞
fX (x) dx =

∫ ∞

m

fX (x) dx (1.45)

Theorem 1.44 For any random variable X with median m, FX (m) = 1
2 .

Proof. Simply integrate out the definition of the median and solve for
FX (m).

∫ m

−∞
fX (x) dx =

∫ ∞

m

fX (x) dx (1.46)

FX (m)− FX (−∞) = FX (∞)− FX (m) (1.47)
FX (m)− 0 = 1− FX (m) (1.48)

2FX (m) = 1 (1.49)

FX (m) =
1
2

(1.50)
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1.4.3 Variance and Coviariance

Definition 1.30 The variance of a random variable X, denoted Var [X], is

Var[X] = E[(X − E[X])2] (1.51)

Definition 1.31 The covariance between two random variables X and Y , de-
noted Cov [X,Y ], is

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] (1.52)

The following results can be shown using the definitions of variance and
covariance given above. Therefore, proofs are again omitted.

• Var[XY ] = Var[X] + Var[Y ]− Cov[X,Y ]

• Var[aX + b] = a2 Var[X]

Theorem 1.45 Var[X] = E[X2]− E2[X]
Proof. We can use simple algebra to show this result

Var[X] = E[(X − E[X])2] = E[X2 − 2XE[X]2 + E[X]2] (1.53)

= E[X2]− 2E[XE[X]2] + E[X]2

Theorem 1.46 Cov[X, Y ] = E[XY ]− E[X]E[Y ]
Proof. From Definition 1.31 we know that

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] (1.54)
= E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]
= E[XY ]− E[XE[Y ]]− E[Y E[X]] + E[E[X]E[Y ]]
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Chapter 2

Probability Distributions

2.1 Density & Mass Functions

Recall from above the definitions of cumulative distribution functions and prob-
ability distribution functions.

FX(x) = P[X ≤ x] (2.1)

fX(x) = P[X = x] (2.2)
The probability that X satisfies some condition X ∈ E, is

P[X ∈ E] =
∫

x∈E

fX(x)dx for continuous distributions (2.3)

P[X ∈ E] =
∑

x∈E

fX(x)dx for discrete distributions (2.4)

Therefore, P[X ≤ c] =
∫ c

−∞ fX(t)dt = FX(c) (or,
∑c

t=−∞ fX(t) = FX(c) for
discrete distributions.)

2.1.1 Moments & MGFs

Definition 2.1 For each integer n, the nth moment of X, called µ′n, is µ′n =
E[Xn] and the nth central moment of X, called µn, is µn = E[X − µ]n

Remark 2.1 Var[X] = µ2

Definition 2.2 The moment generating function (mgf) of X, denoted
MX(t), is

MX(t) =
∫ ∞

−∞
etxfX(x)dx if X is continuous

MX(t) =
∑

x

etxP[X = x] if X is discrete

27
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Remark 2.2 E[Xn] = M
(n)
X (0) = dn

dtn MX(t)|t=0

Theorem 2.3 If FX(x) and FY (y) are two cdfs all of whose moments exist,
then

1. If X and Y have bounded support, then FX(u) = FY (u) ∀u iff E[Xr] =
E[Y r] ∀r = 0, 1, 2, ...

2. If the mgfs exist and MX(t) = MY (t) ∀t in some neighborhood of 0, then
FX(u) = FY (u) ∀u.

Theorem 2.4 The mgf of the random variable aX + b is given by

MaX+b(t) = ebtMX(at)

2.1.2 A Side Note on Differentiating Under and Integral

Theorem 2.5 (Leibnitz’s Rule) If f(x, θ), a(θ), and b(θ) are differentiable with
respect to θ, then

d

dθ

∫ b(θ)

a(θ)

f(x, θ)dx = f(b(θ), θ)
d

dθ
b(θ)− f(a(θ), θ)

d

dθ
a(θ) +

∫ b(θ)

a(θ)

∂

∂θ
f(x, θ)dx

and if a(θ) and b(θ) are finite constant functions, then

d

dθ

∫ b

a

f(x, θ)dx =
∫ b

a

∂

∂θ
f(x, θ)dx

Theorem 2.6 Suppose f(x, θ) is differentiable at θ0 and there exists a function
g(x, θ0) and a constant δ0 > 0 such that

1.
∣∣∣ f(x,θ0+δ)−f(x,θ0)

δ

∣∣∣ ≤ g(x, θ0) ∀x ∀ |δ| ≤ δ0

2.
∫∞
−∞ g(x, θ0)dx < ∞

then
d

dθ

∫ ∞

−∞
f(x, θ)dx|θ=θ0 =

∫ ∞

−∞

(
∂

∂θ
f(x, θ)|θ=θ0

)
dx

In short, you can move derivatives across integrals if and only if

1. The limits of integration are constant and finite, or

2. The limits of integration are infinite and there is some function that weakly
dominates the slope of the function inside the integral whose infinite inte-
gral is itself finite.
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2.2 Commonly Used Distributions

2.2.1 Discrete Distributions

Binomial(n,p)
Description n Bernoulli trials, x successes

PMF
(
n
x

)
px(1− p)n−x

Mean np
Variance np(1− p)

Notes Bernoulli Dist’n is Binomial(1,p)

Multinomial(n,m,p)
Description m trials with n possible outcomes, xi=# times ith outcome occurs

PMF f(x1, x2, ..., xn) = m!
x1!x2!...xn!p

x1
1 px2

2 ...pxn
n = m!

n∏
i=1

p
xi
i

xi!

Mean ?
Variance ?

Discrete Uniform(N)
Description uniform w/ X a discrete variable

PMF 1
N

Mean N+1
2

Variance (N+1)(N−1)
12

Notes Bernoulli Dist’n is Binomial(1,p)

Geometric(p)
Description X=# of trials until 1st success

PMF p(1− p)x−1

Mean 1
p

Variance 1−p
p2

Notes Special case of negative binomial

Hypergeometric(N,M,K)
Description Draw K balls from an urn of N, with M of them red. How many red drawn?

PMF (M
x )(N−M

K−x )
(N

K)
Mean KM

N

Variance KM
N

(N−M)(N−K)
N(N−1)

Notes

Negative Binomial(r,p)
Description Number of failures before the rth success
PMF

(
r+x−1

x

)
px(1− p)x

Mean r(1−p)
p

Variance r(1−p)
p2

Notes Can be derived as a gamma mixture of Poissons
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Poisson(λ)
Description Number of occurrence in a time or space interval
PMF e−λλx

x!
Mean λ
Variance λ
Notes

2.2.2 Continuous Distributions

Uniform(a, b)
PDF 1

b−a

Mean b+a
2

Variance (b−a)2

12

Normal(µ, σ2)

PDF 1√
2πσ

e

�
−1
2

(x−µ)2

σ2

�
Mean µ
Variance σ2

Notes Member of exponential family of dist’ns.

Student’s t(ν)
Description ν degrees of freedom

PDF Γ( ν+1
2 )

Γ( ν
2 )

1√
νπ

1

(1+( x2
ν ))

ν+1
2

Mean 0
Variance ν

ν−2

Notes F1,ν = t2ν , X̄−µ
S/
√

n
∼ Zr

χ2
n−1

n−1

∼ tn−1

Gamma(α, β)
Description
PDF 1

Γ(α)βα x(α−1)e(
−x
β ) Γ(α) =

∫∞
0

tα−1e−tdt

Mean αβ
Variance αβ2

Notes Γ(α + 1) = αΓ(α)

Snedecor’s F Distribution(ν, υ)
PDF (too messy!)
Mean υ

υ−2

Variance (too messy!)

Notes Fν,υ =
χ2

ν
ν

χ2
υ

υ



2.2. COMMONLY USED DISTRIBUTIONS 31

Exponential(β)
Description Models things like lifetimes
PDF 1

β e(
−x
β )

Mean β
Variance β2

Notes Memoryless property

Chi-Squared(p)
Description Sum of squared standard normals, p = d.f.

PDF 1
Γ( p

2 )x
( p

2−1)e(
−x
2 )

Mean p
Variance 2p
Notes Special case of the gamma distribution

Beta(α, β)
Description Number of occurrences in a time or space interval
PDF 1

B(α,β)x
α−1(1− x)β−1 B(α, β) = Γ(α)Γ(β)

Γ(α+β)

Mean α
α+β

Variance αβ
(α+β)2(α+β+1)

2.2.3 Useful Approximations

Normal Approximation of Binomial

Binomail random variables can be difficult to compute with large numbers (with-
out the aid of a computer.) However, the normal distribution serves as a good
approximation for large n and p not too far from 0.5.

Theorem 2.7 Let X˜b (n, p) and Y ˜N (np, np (1− p)). Then

P [X ≤ x] ≈ P [Y ≤ x + 0.5] (2.5)
P [X ≥ x] ≈ P [Y ≥ x− 0.5] (2.6)
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Chapter 3

Working With Multiple
Random Variables

3.1 Random Vectors

A random variable is a function from the sigma-algebra on the sample space
to the real line. An n-dimensional random vector is a function from the sigma
algebra on the sample space to Rn. For example, we may roll a pair of dice
and (X, Y ) may represent the numerical values of the dice. Or, perhaps they
represent the sum and difference of the two dice.

3.2 Distributions of Multiple Variables

In many cases the rules of probability discussed above that applied to events
and their probabilites have nearly identical analogues in the realm of random
variables and their distributions.

3.2.1 Joint and Marginal Distributions

If we have multiple random variables (as in a random vector,) the probability
that they all take on a particular vector of values is described by the joint pdf.

Definition 3.1 The joint probability distribution function is

fX,Y (x, y) = P [X = x, Y = y] (3.1)

Strictly speaking, if X and Y are continuous, we should define the probabil-
ities over intervals since the probability of a continuous variable being a single
number is zero. So, fX,Y ((X,Y ) ∈ A) =

∫
y∈A

∫
x∈A

fX,Y (x, y)dxdy.
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Definition 3.2 The joint cumulative distribution function is

F (x, y) = P [X ≤ x, Y ≤ y] (3.2)

=
∫ x

−∞

∫ y

−∞
f (s, t) dt ds

Definition 3.3 The expected value of a function of discrete random variables
g (X,Y ) is

E [g (X, Y )] =
∑

(x,y)∈R2

g (x, y) fX,Y (x, y) (3.3)

and the expected value of a function of continuous random variables h (X,Y )
is

E [h (X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
h (x, y) fX,Y (x, y) dx dy

Definition 3.4 The marginal distribution function is the pdf of only one
of the variables in a joint distribution function, and can be calculated by

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy (3.4)

if Y is continuous and

fX (x) =
∑

y∈Y
fX,Y (x, y) (3.5)

if Y is discrete, where Y is the range of Y .

In words, we ”integrate out” the unwanted variable.

3.2.2 Conditional Distributions and Independence

The conditional probability of X given Y is given by P [X|Y ] = P [X ∩ Y ] /P [Y ].
We define a similar concept for distributions.

Definition 3.5 The conditional pmf of X given Y = y is

fX|Y (x|y) = P [X = x|Y = y] =
fX,Y (x, y)

fY (y)
(3.6)

At this point, we will relax notation a bit. Since f (x, y) clearly represents
fX,Y (x, y) and f (x|y) represents fX|Y (x|y), we often drop the subscripts on
the f whenever the distinction is obvious.

The conditional pmf satisfies the properties of a regular pmf. For instance,
if X and Y are discrete,

∑

x∈X
f (x|y) =

∑

x∈X

f (x, y)
fY (y)

=
∑

x∈X f (x, y)
fY (y)

=
fY (y)
fY (y)

= 1 (3.7)
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Furthermore, the expectation and variance operators are similar to as before.

E [g (Y ) |X = x] =
∫ ∞

−∞
g (y) f (y|x) dy (3.8)

V ar [Y |x] = E
[
Y 2|x]− (E [Y |x])2

The notion of independence of random variables is also a transparent exten-
sion of independence of events.

Definition 3.6 Random variables X and Y are independent if

f (x, y) = fX (x) fY (y) (3.9)

or equivalently, if
f (y|x) = fY (y) (3.10)

3.2.3 The Bivariate Normal Distribution

The bivariate normal distribution has several interesting properties and is also
a popular prelim and exam topic.

Recall the pdf of the normal distribution for X ∼ N
(
µ, σ2

)

fX (x) =
1√

2πσ2
exp

(
−1

2
(x− µ)2

σ2

)
(3.11)

If there exist two random variables X ∼ N
(
µX , σ2

X

)
and Y ∼ N

(
µY , σ2

Y

)
such that Corr [X,Y ] = ρ, where µX and µY are finite, σ2

X and σ2
Y are positive,

and ρ ∈ (−1, 1), then their joint distribution is the bivariate normal distribution
with parameters µX , µY , σ2

X , σ2
Y , and ρ, which has the following pdf

fX,Y (x, y) =
exp

(
−1

2(1−ρ2)

((
x−µX

σX

)2

+
(

y−µY

σY

)2

− 2ρ
(

x−µX

σX

)(
y−µY

σY

)))

2πσXσY

√
1− ρ2

(3.12)
which is abbreviated by

(X,Y ) ∼ BV N
(
µX , µY , σ2

X , σ2
Y , ρ

)
(3.13)

Although this pdf has many terms, its roots in the univariate normal pdf
are obvious upon inspection. Take the product of fX (x) and fY (y):

fX (x) fY (y) =
1√

2πσ2
X

exp

(
−1

2
(x− µX)2

σ2
X

)
1√

2πσ2
Y

exp

(
−1

2
(y − µY )2

σ2
Y

)

(3.14)

=
1

2πσXσY
exp

(
−1

2

((
x− µX

σX

)2

+
(

y − µY

σY

)2
))

(3.15)
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and the result is the bivariate normal when ρ = 0. This serves as the proof of
Theorem 3.3.

Theorem 3.1 If fX,Y (x, y) is BV N
(
µX , µY , σ2

X , σ2
Y , ρ

)
, then X ∼ N

(
µX , σ2

X

)
and Y ∼ N

(
µY , σ2

Y

)
.

Proof. We prove the result for X only, which is surprisingly difficult. The
proof for Y is symmetric.

To avoid the extensive notation, we define a few variables.

W =
x− µX

σX
(3.16)

V =
y − µY

σY
(3.17)

Z ∼ N
(
ρW,

(
1− ρ2

))
(3.18)

Note that ∂V/∂y = 1/σY , which implies that dy = σY dV .

The BVN pdf is now given by

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

exp

(
− (

W 2 − 2ρWV + V 2
)

2 (1− ρ2)

)
(3.19)

=
1

2πσXσY

√
1− ρ2

exp
( −W 2

2 (1− ρ2)

)
(3.20)

× exp

(
− (

V 2 − 2ρWV + ρ2W 2
)

+ ρ2W 2

2 (1− ρ2)

)
(3.21)

=
1

2πσXσY

√
1− ρ2

exp
( −W 2

2 (1− ρ2)
+

ρ2W 2

2 (1− ρ2)

)
(3.22)

× exp

(
− (V − ρW )2

2 (1− ρ2)

)
(3.23)
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Taking the integral of the joint pdf gives the marginal.

fX (x) =
1

2πσXσY

√
1− ρ2

exp

(
−W 2

(
1− ρ2

)

2 (1− ρ2)

)
(3.24)

×
∫ ∞

−∞
exp

(
− (V − ρW )2

2 (1− ρ2)

)
(3.25)

=
1

2πσXσY

√
1− ρ2

exp
(−W 2

2

)
(3.26)

×
∫ ∞

−∞

√
2π

√
1− ρ2

√
2π (1− ρ2)

exp

(
− (V − ρW )2

2 (1− ρ2)

)
dy (3.27)

=
√

2π
√

1− ρ2

2πσXσY

√
1− ρ2

exp
(−W 2

2

)
(3.28)

×
∫ ∞

−∞

1√
2π (1− ρ2)

exp

(
− (V − ρW )2

2 (1− ρ2)

)
σY dV (3.29)

=
1√

2πσ2
X

exp
(−W 2

2

)
(3.30)

×
∫ ∞

−∞

1√
2π (1− ρ2)

exp


−1

2

(
V − ρW√

1− ρ2

)2

 dV (3.31)

=
1√

2πσ2
X

exp

(
−1
2

(
x− µX

σX

)2
) ∫ ∞

−∞
fZ (V ) dV (3.32)

=
1√

2πσ2
X

exp

(
−1
2

(
x− µX

σX

)2
)

= N
(
µX , σ2

X

)
(3.33)

Remark 3.2 The converse of Theorem 3.1 is not true.

Theorem 3.3 If X and Y are uncorrelated and fX,Y (x, y) is BV N (µX , µY , σX , σY , ρ),
then X and Y are independent.

Proof. The discussion at the beginning of this section shows that if ρ = 0,
then fX,Y (x, y) = fX (x) fY (y), which defines independence of X and Y .

This is a unique result. We know independence implies zero correlation, but
the converse is certainly not true. However, in the BVN case, the converse is
always true. This makes for a clever test question.

Theorem 3.4 If Z1 and Z2 are independent standard normal variables (N (0, 1))
and A is a 2 × 2 matrix of real numbers, then (X,Y )′ = A (Z1, Z2)

′ have a bi-
variate normal joint pdf.

Proof. Left as an exercise.
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We now consider the conditional distribution of X|Y when X and Y are
normal random variables with a BVN joint density function.

Theorem 3.5 If X and Y have a bivariate normal joint distribution, then the
variable X|Y is distributed N

(
µX + ρ

(
σX

σY

)
(y − µY ) , σ2

X

(
1− ρ2

))

Proof. Recall the notation of W = (x− µX) /σX and V = (y − µY ) /σY .

f (x, y) =
1

2πσXσY

√
1− ρ2

exp

(
− (

W 2 − 2ρWV + V 2
)

2 (1− ρ2)

)
(3.34)

fY (y) =
1√

2πσ2
Y

exp
(−1

2
V 2

)
(3.35)

f (x|y) =
f (x, y)
fY (y)

(3.36)

=

√
2πσ2

Y

2πσXσY

√
1− ρ2

exp
(
−1
2

(W 2−2ρWV +V 2)
(1−ρ2)

)

exp
(−1

2 V 2
) (3.37)

=
1√

2πσ2
X (1− ρ2)

exp

(
−1
2

((
W 2 − 2ρWV + V 2

)

(1− ρ2)
− V 2

))
(3.38)

=
1√

2πσ2
X (1− ρ2)

exp
(−1

2

(
W 2 − 2ρWV + ρ2V 2

(1− ρ2)

))
(3.39)

=
1√

2πσ2
X (1− ρ2)

exp


−1

2

(
W − ρV√

1− ρ2

)2

 (3.40)

=
1√

2πσ2
X (1− ρ2)

exp


−1

2

(
x−µX

σX
− ρy−µY

σY√
1− ρ2

)2

 (3.41)

=
1√

2πσ2
X (1− ρ2)

exp


−1

2


x−

(
µX + ρ

(
σX

σY

)
(y − µY )

)

σX

√
1− ρ2




2



(3.42)

= f (x|y) ∼ N

(
µX + ρ

(
σX

σY

)
(y − µY ) , σ2

X

(
1− ρ2

))
(3.43)

3.2.4 Useful Distribution Identities

Theorem 3.6 If {Xi}n
i=1 is a sequence of normal random variables with Xi ∼

N
(
µi, σ

2
i

)
, then (

∑n
i=1 Xi) ∼ N

(∑n
i=1 µi,

∑n
i=1 σ2

i

)
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3.3 Transformations (Functions of Random Vari-
ables)

3.3.1 Single Variable Transformations

Given some random variable X, we may wish to study some function g(X). This
function will itself be a random variable Y = g(X). To see this, recall Definition
1.20 that defined X as a transformation from (Ω, E ,P) into (X ,A,PX). Y is
therefore a transformation from (X ,A,PX) into (Y,F ,PY ), where Y ⊆ R is the
range of Y , F is a Borel field of Y, and PY is the induced probability measure
over F . For this to be of any use, we need to discover how the probability
measure PY relates to the measure PX .

For some F ∈ F , we have that PY [F ] = PX{x ∈ X : Y (x) ∈ F} = P{ω ∈
Ω : g (X(ω)) ∈ F} =
P{ω ∈ Ω : X(ω) ∈ g−1(F )} = PX [g−1(F )]
With non-transformed variables, we step ”backwards” from the values of the

random variable to the set of events in Ω. In the transformed case, you have to
make two steps ”backward” - once from the range of the transformation back
to the values of the original random variable, and then again back to the set
of events in Ω. The only problem one might encounter in this process is going
backwards through the transformation g(x) (which means you need to work
with g−1(x)) will not give you unique results if g(X) is not monotonic (or, ”1
to 1 and onto”.) We will first look at the case where g(X) is monotonic.

Theorem 3.7 For some transformation Y = g(X), where g(X) is a differen-
tiable function that is strictly monotonic, we have that

fY (y) = fX(g−1(y))
∣∣∣∣

∂

∂y
g−1(y)

∣∣∣∣ (3.44)

where
∣∣∣ ∂
∂y g−1(y)

∣∣∣ is referred to as the Jacobian of the transformation.
Proof. First we will look at the cdf of Y and then differentiate to find the

pdf.

FY (y) = P[Y ≤ y] = P[g(X) ≤ y] =
{
P[X ≤ g−1(y)] if d

dxg(X) > 0
P[X ≥ g−1(y)] if d

dxg(X) < 0

=
{

FX [g−1(y)] if d
dxg(X) > 0

1− FX [g−1(y)] if d
dxg(X) < 0

fY (y) =

{
fX [g−1(y)] d

dy g−1(y) if d
dxg(X) > 0

−fX [g−1(y)] d
dy g−1(y) if d

dxg(X) < 0

= fX(g−1(y))
∣∣∣∣

d

dy
g−1(y)

∣∣∣∣
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The reasoning for the last equality is that if g(X) is monotonic d
dxg(X) > 0,

then d
dy g−1(y) > 0 and if d

dxg(X) < 0, then d
dy g−1(y) < 0. If this isn’t intuitive,

think of it in terms of correlations. If Y = g(X) is increasing in X, then higher
values of X yield higher values of Y . Therefore, going backwards, higher values
of Y give higher values of X. The symmetric argument holds for decreasing
functions. The correlation between the variables is maintained through inverting
the function.

To look at transformations more generally, we still require that g(x) be
invertible, but we now do not require it to be monotonic over its entire domain.
Instead, we only require it to be piecewise strictly monotonic, which means that
the domain of the transformation (usually the real line) can be partitioned into
intervals over which the transformation is strictly monotonic.

A good example is the 3rd order polynomial g(x) = 3
4x3 + 2x2 − x + 20,

which looks like:

REMOVED

Note that g′(x) = 9
4x2 + 4x− 1, which has roots at {−2, 2

9}. Therefore, the
transformation g(x) is monotonic over the intervals {(−∞,−2), [−2, 2

9 ], ( 2
9 ,∞)},

but is not monotonic over its entire domain. Note that these three intervals form
a partition of the real line. To look at the probability measure over the values of
g(X), we must divide it into this partition in order to get unique results. Before
proceeding, we first introduce the notion of an indicator function.

Definition 3.7 An indicator function is a function evaluated over a state-
ment S, where

χ{S} =
{

1 if S is true
0 if S is false

(3.45)

Example 3.8 χ{x≤2 & y>4} =
{

1 if x ≤ 2 & y > 4
0 if x > 2 or y ≤ 4

Theorem 3.9 The expected value of an indicator function containing a random
variable is equal to the probability that the condition inside the indicator function
is true.

Proof. Using the definition of the expectation, we have

E[χ{X∈E}] =
∫ ∞

−∞
χ{x∈E}fX(x)dx =

∫

x∈E

1fX(x)dx +
∫

x6∈E

0fX(x)dx =
∫

x∈E

fX(x)dx = P[X ∈ E]
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Continuing, we define a partition of X = {A1, A2, ...} such that g(X) is
monotonic over Ai∀i. We now define gi(X) = g(X)χ{x∈Ai}. Therefore,

g(X) = g1(X) + g2(X) + ... (3.46)

Now, to look at the distribution of Y = g(X), consider the cdf.

FY (y) = PY [Y ≤ y] = PY [g(X) ≤ y] = PY [g1(X) ≤ y] + PY [g2(X) ≤ y] + ...

= PX [X ≤ g−1
1 (y)] + PX [X ≤ g−1

2 (y)] + ...

We’ve now transformed the problem into one that looks like the globally
monotonic transformation problem. Using the results from that theorem gives
us the following.

Theorem 3.10 If X ∼ FX(x) and Y = g(X), where g(X) is piecewise mono-
tonic over the partition {A1, A2, ...} of X , g−1

i (y) is differentiable on y, and
Yi = {y : g−1(y) ∈ Ai}, then

fY (y) =
∞∑

i=1

fX(g−1
i (y))

∣∣∣∣
d

dy
g−1

i (y)
∣∣∣∣ χ{y∈Yi} (3.47)

Remark 3.11 Note that {Yi}∞i=1 does not form a proper partition of Y since
it may be true that Yi ∩ Yi 6= ∅. However, it will be true that ∪∞i=1Yi = Y.

Example 3.12 Let X ∼ U [−2, 2] and Y = X2χ{X≤0} + log[X]χ{X>0}.
We must be careful with this transformation since ∃y ∈ [−2, 4], x ∈ [−2, 2] 3

log[x] = y & x2 = y. Therefore we must partition the domain of the transfor-
mation. Although we don’t have an identification problem until x ≥ 1 (where
log[x] ≥ 0), we do have a monotonicity problem if we look at [−2, 1]. Therefore,
we must partition the domain into {[−2, 0), [0, 2]}.

Over [−2, 0) we have Y = g(X) = X2. Therefore, g−1(Y ) = −√Y (neg-
ative since we’re restricted to X < 0.) Therefore, dg−1

dy = −Y −1/2. We know
that since X ∼ U [−2, 2], the pdf will be fX(x) = 1

2+2∀x ∈ [−2, 2]. Therefore

fX(g−1
1 (y))

∣∣∣ d
dy g−1

1 (y)
∣∣∣ χ{y∈Y1} = 1

4

∣∣−y−1/2
∣∣ χ{y∈(0,4]}. Similarly, over [0, 2],

we have fX(g−1
2 (y))

∣∣∣ d
dy g−1

2 (y)
∣∣∣ χ{y∈Y2} = 1

4 |ey|χ{y∈(−∞,log[2]]}.

Therefore, we have our result that fY (y) = 1
4

(−y−1/2χ{0<y≤4} + eyχ{−∞<y≤log[2]}
)
.

To double-check that this is in fact a proper pdf, integrate it out.

∫ ∞

−∞

1
4

(
−y−1/2χ{0<y≤4} + eyχ{−∞<y≤log[2]}

)
=

1
4

(∫ 4

0

−y−1/2dy +
∫ log[2]

−∞
eydy

)
=

1
4

((2− 0) + (2− 0)) = 1, QED
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3.3.2 Bivariate Transformations

blah - this is a very big blah since bivariate transformations are both difficult
and important!



Chapter 4

Famous Inequalities

The following inequalities are all commonly used in various proofs. The proofs
of these inequalities also serve as instructive exercises for the reader.

4.1 Bonferroni’s Inequality

First, recall this basic inequality of probability theory that first appeared on
page 21.

Theorem 4.1 P[A ∩B] ≥ P[A] + P[B]− 1

4.2 A Useful Lemma

Lemma 4.2 If 1
p + 1

q = 1, then 1
pap + 1

q bq ≥ ab

Remark 4.3 Almost all of the following inequalities are consequences of this
lemma.

4.3 Holder’s Inequality

Theorem 4.4 For p, q satisfying Lemma 4.2

|E[XY ]| ≤ E |XY | ≤ (E |X|p)1/p (E |Y |q)1/q (4.1)

4.4 Cauchy-Schwarz Inequality

Theorem 4.5 (Holder’s inequality with p = q = 2)

|E[XY ]| ≤ E |XY | ≤
√
E |X|2 E |Y |2 (4.2)
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4.5 Covariance Inequality

Theorem 4.6 (application of Cauchy-Schwarz)

E |(X − µX)(Y − µY )| ≤
√
E(X − µX)2E(Y − µY )2 (4.3)

(Cov[X, Y ])2 ≤ σ2
Xσ2

Y

4.6 Markov’s Inequality

Theorem 4.7 If E [X] < ∞ and t > 0 then

P [|X| ≥ t] ≤ E [|X|]
t

(4.4)

4.7 Jensen’s Inequality

Theorem 4.8 If g(x) is convex, then

E[g(x)] ≥ g(E[x]) (4.5)

If g(x) is concave, then

E[g(x)] ≤ g(E[x]) (4.6)

Equality holds iff , for every line a + bx that is tangent to g(x) at x = E[x],
P[g(x) = a + bX] = 1

4.8 Chebyshev’s Inequality

Theorem 4.9 P [µX − kσX ≤ X ≤ µX + kσX ] ≥ 1− 1
k2

This theorem sets a weak lower bound on the probability that a random
variable falls within a certain confidence interval. For example, the probability
that X falls within two standard deviations of its mean is at least 1−1/4 = 3/4.
Note that the Chebyshev inequality usually undershoots the actual probability
by a long measure. In the normal distribution, the probability of a random
variable falling within two standard deviations of its mean is 0.95.



Part II

Statistics
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Chapter 5

Parameter Estimation

5.1 Statistics - Definitions and Properties

Any time you have an unknown parameter of a model, a distribution, or what-
ever, if you can observe data that gives you information about that unknown
parameter, then you can estimate it.

A statistic is any function of observed data. A sample mean (
∑

xi/n) is
a good example of a statistic. Since data is all we can work with, we form
statistics to estimate our unknown parameters. Really, any statistic can claim
to be an estimate of any parameter. For example, (x1 + x5 − 7) is by definition
a statistic and we could claim that it estimates the population mean of the
variable y. However, this is probably a really bad estimate! Therefore, we’d like
our estimators to have certain desirable properties.

Definition 5.1 A statistic T (X) is sufficient for a parameter θ if the condi-
tional distribution of the sample taken given the value T (X) does not depend
on θ. In other words, all information in the sample based on θ is captured by
T (X).

Theorem 5.1 (Sufficiency Principle) If T (X) is sufficient for θ, then any
inference about θ using the sample X will depend only on T (X) and not on θ.

Definition 5.2 An estimator θ̂ of θ is unbiased if E
[
θ̂
]

= θ.

Definition 5.3 An estimator θ̂ of θ is consistent if plim θ̂n = θ (see Section
7.1 for details)

Remark 5.2 Note that you can define asymptotic unbiasedness as lim
n→∞

E
[
θ̂n

]
=

θ, which is different than consistency. However, consistency is more common,
and the two are roughly substitutes.
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Definition 5.4 An estimator is efficient if the variance of the estimator is
minimized.

Definition 5.5 An estimator is asymptotically efficient if the Var
[
θ̂
]

p−→
CRLB (the Cramer-Rao Lower Bound, defined in Theorem 5.4.)

Definition 5.6 An estimator is BUE, or Best Unbiased Estimate, if it is the
estimator with the smallest variance among all unbiased estimates.

Definition 5.7 An estimator is BLUE, or Best Linear Unbiased Estimate,
if it is the linear estimate with the smallest variance among all unbiased linear
estimates.

One very popular estimation technique is the Ordinary Least Squares regres-
sion. This process (described in detail later) provides the most efficient linear
unbiased estimates (under certain assumptions) of the coefficients that would
form the best linear relationship (i.e., closest in the average squared distance
from the actual relationship) between a given variable and a given set of possibly
related variables.

5.2 Method of Moments

If your underlying distribution is described by k parameters, generate sample
analogues of each of the first k moments of the distribution. This gives you k
equations and k unknowns. For example, normal distributions are specified by
two parameters, µ and σ2. So, the equations are

µ̂ =
1
n

n∑

i=1

Xi = X̄ (5.1)

σ̂2 =
1
n

n∑

i=1

(
Xi − X̄

)2 (5.2)

5.3 Maximum Likelihood Estimation (MLE)

MLE is a very useful estimation technique because it is relatively simple to
use, has nice properties under fairly general assumptions, and can be applied to
virtually any estimable parameter.

To form an MLE of a parameter θ, we will first gather a set of data that
gives us information about θ. We than ask what the probability is that a certain
value of θ would have generated the data we’ve gathered. The value of θ that is
the most likely to have given us our data is our maximum likelihood estimate.

To find this value, we must first form the probability that the value of the
underlying parameter was θ. This is a conditional probability - conditional on
the observed data. This forms the likelihood function L.

L(θ) = Pr[θ = c|X = x] = f(θ|X) (5.3)
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If the data are iid (independent and identically distributed), then the prob-
ability is just

L(θ) =
n∏

i=1

Pr [Xi = xi|θ] =
n∏

i=1

fXi(xi|θ) (5.4)

where Xi is a random variable and xi is our ith observation of that random
variable.

Our goal now is to maximize L(θ) across all possible values of θ. However,
in the iid case (which is very common,) we have a large product. The solution
is to transform the maximization objective function using logarithms. Since
logarithms are monotonic, maximal points are invariant to the log transforma-
tion. So, if x = arg max{f(x)}, then x = arg max{log[f(x)]}. To prove this,
notice that the first and second order conditions for maximization must hold
for the first equation and then verify that they will not change under the log
transformation.

Therefore, we define the log-likelihood function L to be

L(θ) = log[L(θ)] =
n∑

i=1

log [fXi(xi|θ)] (5.5)

The first-order condition for maximization will be

∂L(θ)
∂θ

=
n∑

i=1

1
fXi(xi|θ)

∂fXi(xi|θ)
∂θ

= 0 (5.6)

The solution to this maximization will be our solution θ̂MLE .

Example 5.3 Some example...

5.3.1 Properties of ML Estimators

The following properties require some regularity conditions which are omitted
here.

1. Consistent – plim θ̂MLE = θ

2. Asymptotically Normal and Efficient – θ̂MLE
d−→ N

[
θ, I (θ)−1

]
,

where I (θ) is the information matrix defined in Definition 5.10.

3. MLE’s have the invariance property - if θ̂ is the MLE of θ, then T (θ̂)
is the MLE of T (θ) for any function T .
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5.4 Bayes Estimation

In Bayes estimation, we have some prior distribution on the parameter, π (θ)
which is known before any data is gathered. Data is then gathered and the
posterior distribution of the parameter, π (θ|x) is calculated through the
following ”updating” process:

π(θ|x) =
π(θ)f (x|θ)

fX(x)
=

f (x, θ)
fX(x)

(5.7)

There is a good example of Bayes estimation given as a practice problem in
the appendix.

5.5 The Cramer-Rao Lower Bound

In evaluating our estimates, we should (as a rough rule) require consistency,
strive for unbiasedness, and hope for the estimate’s variance to be as small as
possible. Consistency and unbiasedness are generally easy to check by taking
the plim or expected value, respectively. However, we would like to get some
idea about what kind of estimate variance is acceptable.

The intuitive answer to the estimator variance question is that we’d like
to define a class of acceptable estimators and then find the estimator in that
class that has the smallest variance. We usually restrict our attention to the
class unbiased estimates, so we will be searching for the uniform minimum
variance unbiased estimate (UMVUE.) Formally,

Definition 5.8 An estimator W ∗ is the UMVUE of the function τ (θ) if Eθ [W ∗] =
τ(θ) ∀θ (unbiasedness) and Varθ [W ∗] ≤ Varθ [W ] ∀W 3 Eθ [W ] = τ(θ) ∀θ.

The UMVUE definition is unsatisfying because it implicitly requires us to
test our estimator against all other possible unbiased estimators. So, we now
turn to defining what the minimum variance might look like for a given esti-
mator. If we can establish a lower bound on the variance possible, then we
know that any unbiased estimator with that variance will not be ”beaten” by
some other unbiased estimate that has lower variance. This lower bound is well
defined and is known as the Cramer-Rao Lower Bound.

Theorem 5.4 (Cramer-Rao Lower Bound) Let X1, ..., Xn be a sample with
pdf f (x|θ) = f(x1, ..., xn|θ) and let W (x) = W (x1, ..., xn) be any estimator such
that

d

dθ
Eθ [W (x)] =

∫

X

W (x)
(

∂

∂θ
f (x|θ)

)
dx (5.8)
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and Varθ [W (x)] < ∞, then

Varθ [W (x)] ≥
(

d
dθEθ [W (x)]

)2

Eθ

[(
∂
∂θ log [f (x|θ)])2

] (5.9)

Proof. The proof of this important theorem uses the Cauchy-Schwarz In-
equality, which states that Cov [X, Y ]2 ≤ Var [X] Var [Y ].

Note that

∂

∂θ
log [f(x|θ)] =

1
f(x|θ)

(
∂

∂θ
f(x|θ)

)
=

∂
∂θ f(x|θ)
f(x|θ) (5.10)

By assumption,

d

dθ
Eθ [W (x)] =

∫

X

W (x)

(
∂
∂θ f (x|θ)
f(x|θ)

)
f(x|θ)dx = Eθ

[
W (x)

∂
∂θ f(x|θ)
f(x|θ)

]

by Eq. 5.10
= Eθ

[
W (x)

∂

∂θ
log [f(x|θ)]

]

Note that

Covθ

[
W (x) ,

∂

∂θ
log [f(x|θ)]

]
= Eθ

[
W (x)

∂

∂θ
log [f(x|θ)]

]
−Eθ [W (x)]Eθ

[
∂

∂θ
log [f(x|θ)]

]

(5.11)
We now focus on calculating the two expectations. If we refer to the above

assumption and let W (x) = 1, then

Eθ

[
(1)

∂
∂θ f(x|θ)
f(x|θ)

]
= Eθ

[
(1)

∂

∂θ
log [f(x|θ)]

]
=

d

dθ
Eθ [(1)] = 0 (5.12)

Therefore,

Covθ

[
W (x) ,

∂

∂θ
log [f(x|θ)]

]
= Eθ

[
W (x)

∂

∂θ
log [f(x|θ)]

]
=

d

dθ
Eθ [W (x)]

(5.13)
Since Var [X] = E

[
X2

] − E [X]2 and Eθ

[
∂
∂θ log [f(x|θ)]] = 0 (by Equation

5.12) we can say that

Varθ

[
∂

∂θ
log [f(x|θ)]

]
= Eθ

[(
∂

∂θ
log [f(x|θ)]

)2
]
− 0 (5.14)

Rearranging the Cauchy-Schwarz Inequality from above gives

Var [X] ≥ Cov [X,Y ]2

Var [Y ]
(5.15)
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Here, let X = W (x) and Y = ∂
∂θ log [f(x|θ)] to get

Var [W (x)] ≥ Cov
[
W (x) , ∂

∂θ log [f(x|θ)]]2

Var
[

∂
∂θ log [f(x|θ)]] (5.16)

Plugging equations 5.13 and 5.14 into this inequality gives the result:

Varθ [W (x)] ≥
(

d
dθEθ [W (x)]

)2

Eθ

[(
∂
∂θ log [f (x|θ)])2

] (5.17)

5.6 Score, Information Matrix, & Information
Equality

These concepts are nothing substantially new at this point. They are simply
new names referring to values and functions we’ve already seen. However, since
they appear time and time again, they are given special names.

Definition 5.9 The score at a parameter value θ̃ is defined as the gradient of
the log-likelihood function L(θ̃) and is denoted s(θ̃) ≡ ∂

∂θ̃
L(θ̃).

Definition 5.10 The information matrix is defined as I(θ) ≡ E [
s(θ)s (θ)′

]
,

where the score is evaluated at the true parameter θ.

Lemma 5.5 The expected value of the score evaluated at the true parameter
value is zero, or Eθ [s(θ)] = 0

Proof. Let f(x|θ) be the multinomial pdf of the observed sample, which is
also the likelihood function. Then

E [s(θ)] = E
[

∂

∂θ
ln [f (x|θ)]

]
= E

[
∂
∂θ f(x|θ)
f (x|θ)

]
=

∫

θ̃

∂

∂θ
f(x|θ)dθ̃ =

∂

∂θ

∫

θ̃

f(x|θ)dθ̃ =
∂

∂θ
(1) = 0

Trivia Question: What regularity conditions have we assumed here1? Are
they valid?

1See Section 2.1.2 for the answer.
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Theorem 5.6 (Information Equality) Under regularity conditions2, the in-
formation matrix is equal to the negative of the expected value of the Hessian
(matrix of 2nd partials) of the log likelihood function:

I(θ) = −Eθ [H (L (θ))] = −Eθ

[
∂2L(θ)
∂θ̃ ∂θ̃′

]
(5.18)

Proof. The proof will be straightforward. We will work ”right to left.” Note
that we are working with vectors, so we will often see terms of the form XX ′

instead of the scalar-equivalent X2.

∂2L(θ)
∂θ̃ ∂θ̃′

=
∂

∂θ̃

(
∂

∂θ̃
ln [f(x|θ)]

)
=

∂

∂θ̃

(
∂
∂θ̃

f (x|θ)
f (x|θ)

)
=

−
(

∂
∂θ̃

f (x|θ)
)(

∂
∂θ̃

f (x|θ)
)′

f (x|θ) f (x|θ)′ +
∂2

∂θ̃ ∂θ̃′
f (x|θ)

f(x|θ)
Taking the negative of the expectation over θ gives

− Eθ



−

(
∂
∂θ̃

f (x|θ)
)(

∂
∂θ̃

f (x|θ)
)′

f (x|θ) f (x|θ)′


− Eθ

[
∂2

∂θ̃ ∂θ̃′
f (x|θ)

f(x|θ)

]
=

Eθ

[(
∂
∂θ̃

f (x|θ)
f (x|θ)

)(
∂
∂θ̃

f (x|θ)
f (x|θ)

)′]
−

∫

θ̃

∂2

∂θ̃ ∂θ̃′
f (x|θ)

f (x|θ) f (x|θ) dθ =

Eθ

[(
∂

∂θ̃
ln [f(x|θ)]

)(
∂

∂θ̃
ln [f(x|θ)]

)′]
− ∂2

∂θ̃ ∂θ̃′

∫

θ̃

f (x|θ) dθ =

Eθ [s(θ) s(θ)′]− ∂2

∂θ̃ ∂θ̃′
(1) = I (θ)− 0 = I (θ)

We can use these new terms to simplify the statement of the Cramer-Rao
Lower Bound.

Theorem 5.7 (Cramer-Rao Lower Bound) Let X1, ..., Xn be a sample with
pdf f (x|θ) = f(x1, ..., xn|θ) and let W (x) = W (x1, ..., xn) be any estimator3

such that
d

dθ
Eθ [W (x)] =

∫

X

W (x)
(

∂

∂θ
f (x|θ)

)
dx (5.19)

and Varθ [W (x)] < ∞, then

Varθ [W (x)] ≥ I (θ)−1 (5.20)
2These conditions guarantee that E [∂L(θ)/∂θ] = ∂E [L(θ)] /∂θ.
3The CRLB seems to only apply to unbiased estimates. However, to ”unbias” any statistic,

subtract its bias and use the result as the new statistic.
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So, the result is that the Cramer-Rao lower bound is the inverse of the
information matrix.



Chapter 6

Hypothesis Testing

6.1 Overview

For the uninitiated, an hypothesis test is simply a test of a statement. Hypoth-
esis tests always contain some null hypothesis H0 (usually the thing you hope
isn’t true) and an alternative hypothesis H1. It should be the case that H1 and
H0 be logically mutually exclusive. In other words, if one of the statements if
false, then the other must be true.

In most cases, tests are designed such that the null hypothesis is some very
specific situation and the alternative hypothesis is just the compliment of the
null. For example, if we are concerned that some parameter β might be exactly
equal to 1, then our null hypothesis would be ”H0 : β = 1”. This leaves our
alternative hypothesis to be ”H1 : β 6= 1”.

Since the null hypothesis is a very specific condition, our goal isn’t to prove
it to be true. In the above example, the event that β is exactly equal to 1 is a
zero-probability event, in the sense that β could be any of an infinite number
of values very close to 1, while 1 itself is just a single point. So, the correct
approach is to try to statistically reject the null hypothesis. If we find strong
evidence that β is almost certainly not 1 (or, in a neighborhood of 1,) then we
can reject H0. If we are unable to make such a claim, we ”Do Not Reject” (DNR)
the null hypothesis. This distinction is somewhat trivial, but if you claim that
you accept the null hypothesis to be true, then you claim to be certain that
β is equal to 1 but definitely not equal to 1.00001, for example. Regardless,
many scholars still ignore this distinction and either ”accept” or ”reject” the
null hypothesis.

We will delve into hypothesis tests in more detail in their specific applica-
tions. For example, in Section 8.8 we examine various hypothesis tests available
for ordinary least squares regressions.
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Chapter 7

Large-Sample Results

7.1 Introduction

Properties of estimates such as unbiasedness are known as small-sample proper-
ties because they apply for reasonably small sample sizes. However, there often
arise cases where the small-sample properties are unknown. In these cases, we
can often derive some large-sample results by looking at what would happen if
we had near-infinite sample sizes.

7.2 Notions of Convergence

Definition 7.1 A random variable Xn converges in probability to a constant
c if lim

n→∞
P [|Xn − c| > ε] = 0 ∀ε > 0. We denote this by plim Xn = c and c is

called the ”probability limit” of Xn. An alternative notation is Xn
p−→ c.

We can use Chebychev’s Inequality (Theorem 4.9) to derive a large-sample
equivalent to the theorem.

Theorem 7.1 If Xn is a random variable and c is a constant, then P [|Xn − c| > ε] ≤
E

[
(Xn − c)2

]
/ε2

The proof of the above theorem actually requires the following lemma, whose
proof is given as it is a clever use of conditional probability.

Lemma 7.2 (Markov’s Inequality) If Yn is a non-negative random variable and
δ is a constant, then P [Yn ≥ δ] ≤ E [Yn] /δ

Proof. E [Yn] = P [Yn < δ]E [Yn|Yn < δ] + P [Yn ≥ δ]E [Yn|Yn ≥ δ]. Since
Yn > 0, all expected values of Yn will be nonnegative. So, E [Yn] ≥ P [Yn ≥ δ]E [Yn|Yn ≥ δ].
Now note that E [Yn|Yn ≥ δ] ≥ δ. So, E[Yn] ≥ P [Yn ≥ δ]E [Yn|Yn ≥ δ] ≥
P [Yn ≥ δ] δ. Finally, we divide both sides by δ to get our lemma.
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Convergence in probability is a useful property of estimates.

Definition 7.2 An estimate θ̂n of θ is consistent if and only if plim θ̂n = θ.

We will show, for example, that a sample average is a consistent estimator
for the population mean. Furthermore, it can be shown that

Theorem 7.3 For any function g(X), if E [g(X)] and Var [g(X)] are finite con-
stants, then

plim
1
n

n∑

i=1

g(Xn) = E [g(X)] (7.1)

The plim operator has some very nice properties that make it easy to work
with. This is partly why we can usually get consistency statements in the
absence of small-sample statements. If plim Xn = c, plim Yn = d, and g(Xn) is
a continuous function that does not depend on n, then

1. plim (Xn + Yn) = c + d

The following are part of the Slutsky Theorem

2. plim (XnYn) = cd

3. plim
(

Xn

Yn

)
= c/d (∀d 6= 0)

The following is known as the Mann-Wald Theorem, and is often mis-
takenly called the Slutsky Theorem.

4. plim g (Xn) = g (plim Xn) = g (c)

Furthermore, if W and Z are matrices, plim Wn = A, and plimZn = B,
then

5. plim W−1
n = A−1 (∀ nonsingular A)

6. plim WnZn = AB

Another notion of convergence is defined as follows.

Definition 7.3 A random variable Xn converges almost surely to a con-
stant c if P

[
lim

n→∞
|Xn − c| > ε

]
= 0 ∀ε > 0. We denote this by Xn

a.s.−→ c.

Finally, we introduce our third notion of convergence.
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Definition 7.4 A random variable Xn with cdf FXn
(x) converges in distri-

bution to a random variable X∗ with cdf FX∗ (x) if lim
n→∞

|FXn
(x)− FX∗ (x)| = 0

for all x where FX∗(x) is continuous. We denote this by Xn
d−→ X∗, where

FX∗(x) is the limiting distribution of Xn.

When a variable converges in distribution to another, we can use the limit-
ing distribution to approximate the finite distribution of the converging variable.
For example, we will show that X̄n

d−→ N
[
µ, σ2/n

]
. Therefore, we can approx-

imate the distribution of the sample average X̄n with the normal distribution.
This is denoted as X̄n

a∼ N
[
µ, σ2/n

]
and the normal distribution is called the

asymptotic distribution of X̄n.

Some results to note are

1. Xn
p−→ X ⇒ Xn

d−→ X, where X is a random variable

2. Xn
p−→ c ⇔ Xn

d−→ c, where c is a constant.

3. Xn
as−→ c ⇒ Xn

p−→ c ⇔ Xn
d−→ c

4. If Xn
d−→ X and plim Yn = d, then XnYn

d−→ cX.

5. If Xn
d−→ X and g(Xn) is continuous, then g(Xn) d−→ g(X).

6. If Yn
d−→ Y and plim(Xn − Yn) = 0, then Xn

d−→ Y .

7.3 Laws of Large Numbers

From the different convergence notions come different laws of large numbers. It
is somewhat important to remember that there do exist different laws of large
numbers. Technically, you should always specify which you’re using since they
are not equivalent. They all show that sample averages converge to expected
values, but each requires different assumptions or uses a different notion of
convergence.

Theorem 7.4 (Chebychev’s Weak Law of Large Numbers) If X1, ..., Xn

are independently drawn where each have mean µi, variance σ2
i < ∞, lim

n→∞
∑n

i=1 (σi/n)2 <

∞, and Cov[Xi, Xj ] = 0 ∀i, j, then X̄
p−→ µ̄, where µ̄ = (1/n)

∑n
i=1 µi.

This theorem is very general since it allows for different means and differ-
ent variances (heteroscedasticity,) but it does require finite variances and no
covariances. Khinchine’s Weak Law removes replaces some of these restrictions
with an iid assumption, and is perhaps the most commonly used law of large
numbers.
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Theorem 7.5 (Khinchine’s Weak Law of Large Numbers) If X1, ..., Xn

are independently drawn and identically distributed (iid) with mean µ, then
X̄

p−→ µ.

We have a similar pair of Laws of Large Numbers for almost-sure conver-
gence.

Theorem 7.6 (Kolmogorov’s Strong Law of Large Numbers) If X1, ..., Xn

are independently drawn where each have mean µi, variance σ2
i < ∞, and∑∞

i=1 (σi/n)2 < ∞, then X̄
a.s.−→ µ̄, where µ̄ = (1/n)

∑n
i=1 µi.

Theorem 7.7 (Markov’s Strong Law of Large Numbers) If X1, ..., Xn

are independently drawn and identically distributed (iid) with mean µ < ∞ and
∃δ > 0 3 ∑∞

i=1 E
[
|Xi − µi|1+δ

]
/i1+δ, then X̄

a.s.−→ µ.

7.4 Central Limit Theorems

Much like the Laws of Large Numbers, there exist various Central Limit Theo-
rems that depend on the assumptions on the sample X1, ..., Xn. However, since
the theorems concern the convergence of a function of random variables to the
normal distribution, we use only the convergence in distribution concept.

Theorem 7.8 (Univariate Linberg-Levy Central Limit Theorem) If X1, ..., Xn

are independently drawn and identically distributed (iid) with mean µ < ∞ and
variance σ2 < ∞, then

√
n

(
X̄n − µ

) d−→ N
[
0, σ2

]
(7.2)

Note that we could scale the left-hand side by σ to get a slightly more useful
form √

n

(
X̄n − µ

σ

)
d−→ N [0, 1] (7.3)

Theorem 7.9 (Univariate Linberg-Feller Central Limit Theorem) Let
X1, ..., Xn be independently drawn with (possibly unique) means µi < ∞ and
variance σ2

i < ∞. If lim
n→∞

(
n−1

∑n
i=1 σ2

i

)
< ∞, then

√
n

(
X̄n − µ̄n

) d−→ N
[
0, σ2

]
(7.4)
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Roughly equivalent statements exist for multivariate central limit theorems.
We will only state the multivariate Linberg-Levy CLT here, but the extension
is fairly obvious.

Theorem 7.10 (Multivariate Linberg-Levy Central Limit Theorem) If
random vectors X1, ..., Xn are independently drawn and identically distributed
from a multivariate distribution with mean vector µ and finite positive definite
covariance matrix Q, then

√
n

(
X̄n − µ

) d−→ N [0, Q] (7.5)

One particular generalization of the central limit theorems is the delta
method.

Theorem 7.11 If Yn satisfies a central limit theorem for some θ (so,
√

n (Yn − θ) d−→
N

[
0, σ2

]
), then for a function g such that g′(θ) exists and is nonzero, then

√
n (g (Yn)− g (θ)) d−→ N

[
0, σ2 (g′ (θ))2

]
(7.6)

The proof of the delta method requires the Taylor series expansion of g(Yn)
around Yn = θ.

There also exist central limit theorems for situations where the variables
are drawn from distributions of different means and variances. These are less
common.

Finally, there exists a related Theorem for the Maximum Likelihood Esti-
mator, which is a direct consequence of property 2.

Theorem 7.12 If X1, X2, ..., Xn are iid f (x|θ) and θ̂ is the MLE estimate of
θ, then (under some regularity conditions on f (x|θ))

√
n

(
τ

(
θ̂
)
− τ (θ)

)
d−→ N

[
0, I [θ]−1

]
(7.7)

where I [θ]−1 is the Cramer-Rao Lower Bound for the estimate θ.
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Chapter 8

Ordinary Least Squares
(OLS)

8.1 The Model

We have some endogenous or dependent variable Y which is explained by
some collection of exogenous or independent variables X1, X2, ..., Xk, which
we combine into columns of a matrix X. For each variable we have T observa-
tions, so the variables are each vectors with 1 column and T rows. This means
Y is a Tx1 vector and X is a Txk matrix. Finally, we admit that Y is probably
not an exact linear combination of the X variables (Y 6∈ Col.Space[X],) so we
approximate Y by Ŷ ∈ Col.Space[X] plus the distance between Y and Ŷ , called
the residual and denoted e.

We wish to find the coefficients on the X variables that minimize the resid-
uals - the distance between Y and the ”predicted values” Ŷ . We call these co-
efficients β1, β2, ..., βk, and put them together in a kx1 vector called β. Putting
this together gives our model

Y = Xβ + ε

or, observation-by-observation,
Yt = Xtβ+εt

Note that in a good textbook, vectors and matrices will be boldfaced. For
simplicity, we shall drop the boldfacing shortly. In the OLS context, remember
that Yt, Xjt, and εt are scalars while Y,Xj , ε, and β are vectors and X is a Txk
matrix. Also note that we use t ∈ {1, 2, ..., T} to denote each observation, but
it is also common to denote them as n ∈ {1, 2, ..., N}. The use of t may indicate
observations over time (see Chapter 10) or some cross-sectional data taken at
one moment in time but over different geographical reigons, for example.

63
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8.2 Justifying the Error Term

There are four possible justifications for believing that Y is not an exact linear
combination of the X variables, which is why we must introduce this error term
ε.

The first is the fact that observed variables in the real world are very sen-
sative to a large number of other factors. We would likely need a very large
number of X variables to completely specify all of the factors that influence the
value of Y . If we fail to include even one such X variable, then our included X
variables will not perfectly predict our Y values. This is referred to as a model
misspecification. If the effect of our misspecifications is fairly small and, in a
sense, “random,” then we will not have any problems in analyzing our model.

The second justification for using an error term is that the true relationship
is likely to be some nonlinear equation and we are only estimating it using a
linear approximation. If we knew the true nonlinear equation and all relevant
X variables, we could write the model with no error term and Y would be
completely determined by the X values.

Theoretical physicists and other critics of determinism reading this mono-
graph would object to this reasoning with the belief that no real-world variables
can be completely described by some other set of variables. Furthermore, they
would argue that no real-world variables could be measured with complete ac-
curacy. Therefore, we offer as a third and fourth justification the possibility
that Y can’t be an exact functional relationship of our X values and that our
variables are measured with some error. In this ”impossibility” setting, we can
never find a model without an error term. In practice, all of these justifications
are likely to be valid and we will always include error terms in our model.

If the physicists are wrong and we did find the magical deterministic equa-
tion relating our pefectly-measured Y variable to a set of perfectly-measured X
variables, then our statistical analysis would find that this error term is every-
where equal to zero, thus making its inclusion (and the use of statistics as an
analytical tool) harmlessly superflous.

One point of frustration is in inconsistent error-term notation across (and
within) texts. It is common to use εt, ut, or vt for our error term. Like most
texts, we vary our notation, although ε is the most commonly used throughout.

8.3 OLS Assumptions

The following assumptions are made when performing the OLS procedure. We
will see that these assumptions appear frequently in the analysis of different
problems one might encounter. Each property of the OLS estimates that we will
derive are entirely dependent upon some subset of these assumptions. There-
fore, as we violate an assumption, we will lose a certain set of desirable proper-
ties.

The assumptions are
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1. Linearity of the Model
The true model is Yt = α + βXt + ut, which we will estimate with Yt =
a + bXt + et

2. X is known and nonrandom
This implies that Cov[Xt,ut|X] = E[Xtut|X]−E[Xt]E[ut|X] = XtE[ut|X]−
XtE[ut|X] = 0

3. No Multicollinearity
X is an n × k matrix with Rank[X] = k (i.e., full rank,) where k is the
number of exogenous (RHS) variables
Note that in order to satisfy full rank, it must be that n ≥ k.

(a) n > k - this modified assumption will be need for unbiased variance
estimates. See Property 4 below.

4. Regression
E[ut|X] = 0 ∀t

5. Homoscedasticity
All ut are identically distributed with Var[ut|X] = E[u2

t |X] = σ2 ∀t
6. Serial Independence

Cov[ut,us|X] = E[utus|X] − E[ut|X]E[us|X] = 0 and with A4, we have
that E[utus|X] = 0

7. Xt 6= Xs for some t, s

If all Xt were equal, then the regression could not be estimated. The slope
of a line over a single x value is not defined (or, has infinite slope.)

8. Normality of Errors
ut ∼ N(0, σ2) ∀t ⇒ Y|X ∼ N(α + βX, σ2)
Note that this assumption is very strong and can often be dropped. Also
note that it implies several of the other assumptions.

8.4 The OLS Solution

The goal of OLS, as the name indicates, is to find the ”least squares” estimator.
The ”least squares” refers to minimizing the sum of the squared residuals. The
solution is found as follows

min
β

n∑

i=1

e2 = min
β

(Y −Xβ)′(Y −Xβ)

= min
β

(Y ′Y − Y ′Xβ − β′X ′Y + β′X ′Xβ)

= min
β

(β′X ′Xβ − β′X ′Y − Y ′Xβ)
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Note that the Y ′Y term is irrelevant since we’re maximizing over β. Now,
take a minute to consider the dimensions of the terms in this last equation. Y
is nx1, X is nxk, and β is kx1. Therefore, Y ′Xβ is (1xn)(nxk)(kx1) = 1x1,
β′X ′Y is (1xk)(kxn)(nx1) = 1x1, and β′X ′Xβ is (1xk)(kxn)(nxk)(kx1) =
1x1. Most importantly, note that β′X ′Y = Y ′Xβ, so we can rewrite this
minimization as

min
β

(β′X ′Xβ − 2X ′Y β) (8.1)

Finally, recall from linear algebra that

∂

∂β
(β′X ′Xβ) = 2(X ′X)β (8.2)

∂

∂β
(2X ′Y β) = 2X ′Y (8.3)

So, the first order condition for our minimization problem is

2(X ′X)β∗ − 2X ′Y = 0 (8.4)
X ′Xβ∗ = X ′Y (8.5)

β∗ = b = (X ′X)−1X ′Y (8.6)

The phrase ”X-prime-X inverse X-primeY” should be permanently ingrained
into your memory.

We now check the second order conditions.

∂2

∂β2
(β′X ′Xβ − 2X ′Y β) = 2X ′X > 0 (8.7)

We know that X ′X > 0 since X ′X is a kxk matrix with each term being∑
i X2

ik which is nonnegative by construction. Further, the only way X ′X could
be zero is if X is a matrix of zeros. However, this violates the assumption that
not all Xjt are the same. Since the minimization problem is strictly convex, we
know that our first order conditions imply minimization.

8.4.1 Linear Algebra Interpretation of the OLS Solution

The vector of the dependent variable, Y is located in Rn. However, we want
to explain Y as best we can using the observable independent variables X =
(1, X1, X2, ..., Xk). In linear algebra terms, this means we want to project the
vector Y onto the span of X, where the span is a subspace such that span[X] =
{x : x = λ01 + λ1X1 + λ2X2 + ... + λkXk}.
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8.5 Properties of OLS

1. {A1, A2, A3} ⇒ the LSE α̂ and β̂ are unbiased - E[a] = α and E[b] = β.

2. {A1, A2, A3, A5, A6} ⇒ Cov[b, e] = 0

3. {A1, A2, A3, A5, A6} ⇒ Var[b] = σ2(X′X)−1

4. {A1, A2, A3a,A5, A6} ⇒ E[s2] = σ2

Remark 8.1 The Maximum Likelihood Estimator of σ2, s2
ML = n−k

n s2

is biased since s2 is unbiased. However, s2
ML is consistent.

5. {A2, A5, A6, A8} ⇒ ε ∼ N(0,σ2In)

6. {A1, A2, A3, A5, 6, A8} ⇒ (b− β) ∼ N(0, σ2(X′X)−1)

Remark 8.2 This property is used to test H0 : βk = c ⇒ βk − c = 0.
Simply set up

zk ≡ bk − c√
σ2(X′X)−1

kk

∼ N(0, 1) (8.8)

tk ≡ bk − c

SE[bk]
=

bk − c√
s2(X′X)−1

kk

∼ t(n−k) (8.9)

7. {A7, A4, A2} ⇒ the LSE are consistent - lim
n→∞

E[b] = β, lim
n→∞

Var[b] = 01

8.5.1 Gauss-Markov Theorem

The final two properties given are perhaps the most significant in terms of
evaluating the OLS estimators against any other possible estimation.

1. {A1, A2, A3, A5, A6} ⇒ OLS estimators are BLUE - the most efficient
among unbiased linear estimators. This is the Gauss-Markov Theorem.

Theorem 8.3 (Gauss-Markov) The least squares estimate b is the mini-
mum variance linear unbiased estimator of β.

Proof. NOTE TO READER: I BELIEVE I FOUND A PROB-
LEM WITH THIS PROOF AT ONE TIME, BUT I DON’T RE-
MEMBER WHAT IT WAS. READ CAREFULLY AND THINK
FOR YOURSELF!!! blah

1My sources seem to disagree on which assumptions are actually needed to get consistent
estimates. This needs to be double-checked.
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This proof selects another hypothetical linear and unbiased estimate for
β and shows that its variance must be greater than or equal to the OLS
estimate for β.

If the model is indeed linear, then it is of the form Y = Xβ + ε, which
can be estimated by

Y = Xb (8.10)
X′Y = X′Xb

(X′X)−1X′Y = b

PY = b

where P is a k×n projection matrix (as X′X is k×k and X′ is k×n). Now
let us choose an arbitrary linear estimate of β, called b0. Let b0 = CY.
Since we assume b0 to be unbiased (because we’re looking for the best
unbiased estimate,) then

E[CY] = E[CXβ + Cε] = β (8.11)

which implies that CX = I since E [Cε] = 0. The variance of our unbiased
estimator will be

Var[b0] = E
[
(CY − β) (CY − β)′

]
(8.12)

= E
[
(CXβ + Cε− β) (CXβ + Cε− β)′

]
(8.13)

= E
[

(CX− I) (CX− I)′ β + Cε (CX− I)′ β
+(CX− I)βε′C + Cεε′C

]
(8.14)

= (CX− I) (CX− I)′ β + 0 + 0 + E
[
Cεε′C

]
(8.15)

= 0 + 0 + 0 + CC′E [εε′] (8.16)

= σ2CC′ (8.17)

Let D = C−P (the ”distance” between our new projection matrix C and
the OLS projection P.) So, C = D + P. Note that

CX = DX + PX = I (8.18)

= DX + (X′X)−1(X′X) = I (8.19)
⇒ DX = 0 (8.20)

Using the fact that C = D + P and Var [b0] = σ2CC′, we have

Var[b0] = σ2[(D + P)(D + P)′] (8.21)

= σ2[(D + (X′X)−1X′)(D + (X′X)−1X′)′] (8.22)

= σ2[DD′ + (X′X)−1 + 2DX (X′X)] (8.23)

= σ2DD′ + σ2(X′X)−1 + 0 (8.24)

= σ2DD′ + Var[b] (8.25)
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Since σ2 and X are known values, we can only minimize the variance by
reducing DD′. If we set C = P =(X′X)−1 X′, then we have that

DD′ = (C−P)(C−P)′ = 0 (8.26)

and that b0 = b. So, b is the minimum-variance unbiased estimate.

2. {A1, A2, A3, A5, A6, A8} ⇒ the OLS estimate b is BUE - the best un-
biased estimator. Adding the normality assumption gives the stronger
condition that the OLS estimate is the smallest-variance estimate among
all unbiased estimates.

8.6 Various Mathematical Results and Identi-
ties

The following commonly-used variables are useful in shortening notation.
Sxx = X′X =

∑
(Xt − X̄)2 =

∑
X2

t − nX̄2 =
∑

X2
t − 1

n (
∑

Xt)
2

Sxy = X′Y =
∑

(Xt − X̄)(Yt − Ȳ) = (
∑

XtYt) − nX̄Ȳ =
∑

XtYt −
1
n (

∑
Xt

∑
Yt)

SSE =
∑(

Yt − Ŷ
)2

is the ”sum of squares, errors”

SSR =
∑(

Ŷi − Ȳ
)2

is the ”sum of squares, regression”

SST =
∑(

Yt − Ȳ
)2 is the ”sum of squares, total”

Note that most of these results are derived from the ”standard” OLS as-
sumptions.

1. Ȳ = a + bX̄

2. E[Y ] = Xβ

3. E[εε′] = Var[ε] = σ2I (spherical disturbances)

4. b = Sxx

Sxy
= (X ′X)−1X ′Y

5. e = Y −X
(
(X ′X)−1X ′Y

)
= (I −X(X ′X)−1X ′)Y = MY

6. ε′
σ2 M ε

σ2 = e′e
σ2 ∼ χ2

Rank[M ]=k if ε ∼ N
[
0, σ2

]

7. X ′M = MX = 0

8. SST = SSR + SSE

9. SST = Y ′DY , where D is an n × n idempotent matrix that transforms
observations into deviation form
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10. SSE = e′e

11. Est Var [εi] = σ̂2 = SSE
n−k = e′e

n−k

12. R2 = SSR
SST = b′XY

SST

13. R̄2 = 1− SSE/(n−k)
SST/(n−1) = 1− n−1

n−k (1−R2) = ”adjusted R2”

14. Sxu =
∑

(Xt − X̄)(ut − ū) =
∑

(Xt − X̄)ut E[Sxu] = 0

15. Var[b] = σ2

Sxx
= σ2(X ′X)−1

16. Est. Var[b] = s2
b = σ̂2

Sxx
= σ̂2(X ′X)−1 = e′e

n−k (X ′X)−1

17. b is also the MLE estimator of β

18. Var [b] achieves the Cramer-Rao Lower Bound of σ2 (X ′X)−1 and is there-
fore UMVUE.

19. Var[a] = σ2
P

X2
t

nSxx
Est. Var[a] = s2

a = σ̂2
P

X2
t

nSxx

20. Cov[a, b] = −σ2 X̄
Sxx

Est. Cov[a, b] = sab = −σ̂2 X̄
Sxx

8.7 MLE of The Linear Model

Assume that (X1, Y1)... (Xn, Yn) are drawn iid from the model

Y = Xβ + U (8.27)

where U ∼ N
[
0.σ2

]
with σ2 and β unknown.

The likelihood function for a single observation is

Li (β) = P [Ui = Yi −Xiβ] =
1√
2πσ

exp

[
−1

2

(
Yi −Xiβ

σ

)2
]

(8.28)

The likelihood function for all N observations is

L(β, σ2) =
(

1√
2πσ

)N

exp

[
− 1

2σ2

N∑

i=1

(Yi −Xiβ)2
]

(8.29)

L
(
β, σ2

)
=

(
2πσ2

)−N
2 exp

[
− 1

2σ2
(Y −Xβ)′ (Y −Xβ)

]
(8.30)

The log-likelihood is

L (
β, σ2

)
= −N

2
log [2π]− N

2
log

[
σ2

]− 1
2σ2

(Y −Xβ)′ (Y −Xβ) (8.31)
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Taking the FOC’s gives

∂L
∂β

= − 1
2σ2

2 (Y −Xb) (−X ′) = 0 (8.32)

0 = X ′Xb−X ′Y (8.33)

b = (X ′X)−1
X ′Y = bOLS (8.34)

∂L
∂σ2

= − N

2σ̂2
+

1
2 (σ̂2)2

(Y −Xβ)′ (Y −Xβ) = 0 (8.35)

N

σ̂2
=

1
(σ̂2)2

(Y −Xβ)′ (Y −Xβ) (8.36)

(
σ̂2

)2

σ̂2
= σ̂2 =

(Y −Xβ)′ (Y −Xβ)
N

=
e′e
N

6= σ̂2
OLS (8.37)

So, we have that the OLS coefficients are identical to the MLE coefficients,
but the OLS estimate of σ is not equal to the MLE estimate. However, they
are asymptotically equivalent.

8.8 Model Restrictions

8.8.1 Omitted Variables and OLS Estimates

If the ”true” model contains more variables than the model estimated, then we
have a model misspecification. As argued in the development of the error term
in the OLS equation, any omitted variables get collected into the error term.
If this misspecification is serious (in the sense that the omitted variable does
explain variation in the dependent variable,) then we will have problems with
our OLS estimates.

For example, consider the true model

Yt = X1tβ1 + X2tβ2 + ut (8.38)

and the omitted variable model

Yt = X1tβ1 + vt (8.39)

Some problems with this new model are

E [vt] = E [X2tβ2 + ut] = X2tβ2 6= 0 if β2 6= 0 (8.40)
Cov [X1t, (X2tβ2 + ut)] = β2 Cov [X1t, X2t] + Cov [X1t,ut] = β2 Cov [X1t, X2t]

(8.41)

The estimate of β̂1 for the new model will be

β̂1 = (X ′
1X1)

−1
X ′

1Y = (X ′
1X1)

−1
X ′

1 (β1X1 + β2X2 + u)

= β1 + β2 (X ′
1X1)

−1
X ′

1X2 + (X ′
1X1)

−1
X ′

1u
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The expectation of this estimate gives E
[
β̂1

]
= β1 + β2 (X ′

1X1)
−1

X ′
1X2,

so we have a biased estimate. Specifically, the second term is called the mis-
specification bias. Even worse is the fact that β2 appears in this equation,
indicating that β̂1 is no longer an estimate of only the marginal effect of X1.

Another misspecification error is the inclusion of excessive variables. Adding
variables into the model that have a true coefficient of zero will not bias the
coefficient estimates, but will increase estimate variance. Therefore, models
with unnecessary variables will produce inefficient estimates. However, it can
be shown that the estimated variance will still be unbiased, so that hypothesis
tests are still valid. In general, these additional variables are generally harmless,
but the regression will produce better results if they were omitted. Of course,
if theory necessitates their inclusion, they should not be omitted.

These arguments give rise to the need for testing whether or not variables
should be included or excluded in a given model.

8.8.2 Testing β Against a Given Value

H0 : βk = c (most often, c = 0, which implies that the corresponding X variable
could be removed from the model.)

Property 6 can be used to test H0 : βk = c ⇒ βk − c = 0. Simply set up

zk ≡ bk − c√
σ2(X′X)−1

kk

∼ N(0, 1) (8.42)

tk ≡ bk − c

SE [bk]
=

bk − c√
e′e

n−K (X ′X)−1
k,k

∼ t(n−k) (8.43)

Or, Do Not Reject (DNR) H0 if c ∈ [bk ± SE[bk] · tα/2,n−k] (α/2 is used for
a 2-sided test)

8.8.3 General Setup for Model Restrictions Tests

H0 : Rβ = r
We require that Rank[R] = dim[r] = #r, or that the rows of R (the restric-

tions) be linearly independent.

Example 8.4 If you want to test β2 = β3 and β4 = 0 as an ”overall” restriction
to your model, then the values of R and r will be

R =
[

0 1 −1 0
0 0 0 1

]
r =

[
0
0

]
(8.44)

Note that the rows of R are linearly independent, so this restriction is
testable.
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The following techniques are all useful in testing model restrictions.

8.8.4 The F-Test

Under H0 : Rβ = r, the F-ratio is defined as

F ∗ ≡
(Rb−r)′(R(X′X)−1R′)−1(Rb−r)

#r

s2
=

(Rb− r)′(R s2
b R′)−1(Rb− r)
#r

∼ Frank[R],n−k

(8.45)
DNR if F ∗ < Fα,#r,n−k. Remember that F distributions are strictly positive

and F tests are always one-sided tests.
An equivalent way to set up this problem (and easier to remember) is

F ∗ ≡ (SSRR − SSRU )/#r

SSRU/(n− k)
(8.46)

8.8.5 The Lagrange Multiplier Test

The Lagrange Multiplier (or, LM) Test is a very general test that can be used to
examine model restrictions, to test for multiple insignificant variables, to build
a model, or any general model-comparison procedure.

The first way to specify the LM test is simpler, but more specific. A general
approach is added later.

Define your restricted model as

Y = β0 + β1X1 + β2X2 + ... + βmXm + u (8.47)

Define the unrestricted (or, full) model as

Y = β0 + β1X1 + β2X2 + ... + βmXm + βm+1Xm+1 + ... + βkXk + v (8.48)

The null hypothesis is that the added variables provide no explanatory
power. Formally, H0 : βm+1 = βm+2 = ... = βk = 0. Therefore, H1 :At
least one of βm+1, βm+2, ..., βk 6= 0.

We first estimate the restricted model 8.47 to get β̂’s. From this model we
can calculate the residuals as

ûR = Y − β̂0 − β̂1X1 − β̂2X2 − ...− β̂mXm (8.49)

Note that if the added variables in the unrestricted model are in fact signif-
icant, then they would be highly related to the residual ûR since their absence
from Model 8.47 forces the effect on Y of those omitted variables into the error
term u. So, if we regress ûR on the missing variables and find a good fit, then
we know there is a suspicion that the omitted variables were ”hidden” in the
error term of the restricted model.
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We now set up an auxiliary regression in which we regress the restricted
model’s residuals against the full model (all variables included.) From this model
we can calculate R2

AUX = SSRAUX

SSTAUX
. It can be shown that nR2

AUX ∼ χ2
k−m.

Recall that the chi-squared distribution takes strictly positive values, so we
form a one-tail test to test our hypothesis. Clearly if nR2

AUX is large, then our
auxiliary regression has a good fit and it is very likely that some of the omitted
variable have an effect on the response variable Y .

This method is useful in iteratively ”designing” a model. Start with a most
basic model and continue to use the LM test procedure to test if a given variable
should be added to the model. This is best done one variable at a time for
obvious reasons. However, caution should be taken... you may end up adding
variables that, although highly correlated with the response variable, may not
have any place in your actual model. In other words, model-building can become
dangerous if not done with a constant eye on whether or not each variable makes
sense in the given model.

In the more general approach to the Lagrange Multiplier Test, we perform
a likelihood maximization subject to an equality constraint. This procedure
will require us to define a Lagrangian function with a Lagrange multiplier that
gives this test its name. Reference section 5.3 for an introduction to likelihood
functions and maximum likelihood estimation.

We wish to test the restriction that c(θ) − q = 0, where c is some function
of the parameters θ. In OLS, think of θ = β. The Lagrangian for maximizing
likelihood subject to this constraint is

L∗(θ) = L(θ) + λ(c(θ)− q) (8.50)

Maximizing this function over θ and λ gives our first order conditions

∂L∗
∂θ

=
∂L
∂θ

+ c′(θ)λ = 0 (8.51)

∂L∗
∂θ

= c(θ)− q = 0 (8.52)

Note that if θ is a vector, then c is a vector-valued function and c′(θ) =
∇c(θ). From optimization theory, if a constraint on a maximization is not
binding (“slack,”) then the Lagrange multiplier will be zero. Therefore, we test
H0 : λ = 0.

A simpler formulation of this test is to take the derivative of the log-likelihood
function f the restricted model, which is

∂L(θ̂R)

∂θ̂R

= −c′(θ̂R)λ̂ = ĝR (8.53)

Here, if ĝR = 0, then the restricted model achieves the maximum likelihood,
implying that the restriction is valid. This version of the test is often called
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the score test since the vector of first derivatives of the log-likelihood function
is known as the score. The negative expected value of the matrix of second
partials of L is known as the information matrix and is denoted I(θ̂R) =
−E

[
∂2L
∂θ2

]
, which we saw in section 5.3. Finally, we define our test statistic to

be

LM =

(
∂L(θ̂R)

∂θ̂R

)′ [
I(θ̂R)

]−1
(

∂L(θ̂R)

∂θ̂R

)
(8.54)

Under the null-hypothesis, LM has a limiting chi-squared distribution with
degrees of freedom equal to the number of restrictions.

When testing an OLS model, use the auxiliary regression method, but for
more general procedures, the score test is appropriate. Keep in mind that LM
on converges to a chi-squared distribution. For small samples, this test may not
be valid.

8.8.6 The Likelihood Ratio Test

The Likelihood Ratio Test (or, LRT) is a very general procedure. We will
introduce its applications to OLS with the goal of making the more general
applications fairly transparent.

In subsection 5.3 we introduced the concept of maximum likelihood and
the maximum likelihood function L(θ). Our goal is to compare to likelihood
functions - that of a hypothesized set of coefficients, β0, and the estimated set
of coefficients, β̂. Our null hypothesis will be H0 : β = β0. We construct the
following statistic

λ =
L(β0)

L(β̂)
(8.55)

Notice that L(β̂) is guaranteed to be larger (or, less negative) than L(β0)
since we know that β̂OLS = β̂MLE . Therefore, λ ∈ [0, 1]. If our null hypothesis
is correct, then we expect λ to be very close to 1. Therefore, we will reject H0

unless λ is sufficiently large.
We first define the upper bound of our rejection region by specifying a desired

level of significance, α, and then find some value K such that P[0 ≤ λ ≤ K|β =
β0] = α. In order to do this, we must know the distribution of λ. In some cases,
this distribution may be known to be a t, F , or χ2 distribution. Otherwise, we
must rely on a large-sample test.

For large distributions, the test statistic LR = −2 ln λ = 2 ln L(β̂)−2 ln L(β0) ∼
χ2

#β0
, where #β0 represents the number of coefficients being restricted.

There are a lot of “warnings” that come with the LRT. For one, if you don’t
know the distribution of λ, then you can only use the asymptotic result that LR
converges to a chi-squared distribution. For smaller samples, this test may not
be appropriate. Secondly, when testing distributional assumptions (such as H0 :
X ∼ N(µ, σ2),) this test becomes invalid as the underlying distribution between
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the restricted and unrestricted parameters must be equal. If not, the likelihood
functions are not directly comparable and this test becomes meaningless.

8.8.7 The Wald Test

The Wald test is another likelihood test using the information matrix. We focus
on the squared distance between our OLS estimate β̂ and the value β0 to which

we restrict β. Clearly, if β̂ = β0, then this restriction is justified. If
(
β̂ − β0

)2

is
large, then it is unlikely that this restriction is valid. We construct the following
statistic

W =
(
β̂ − β0

)2

I(β̂) (8.56)

where I(β̂) is the information matrix calculated from the log-likelihood of
our OLS estimates.

We know that β̂ ∼ N(β, σ2/Sxx). Therefore, z = (β̂ − β)/
(
σ2/Sxx

) ∼
N(0, 1) and z2 ∼ χ2

1. If we were to test β = 0, then W = β̂2Sxx/σ2. Since
β̂ = Sxy/Sxx, then W = β̂Sxy/σ2. Furthermore, we know that β̂Sxy = SSR
and σ2 = SSE/n, so

W =
nSSR

SSE
=

nR2

1−R2
(8.57)

For a large enough sample, W will be distributed as a chi-squared.

The more general Wald test (where θ̂ is a vector and the restriction is of the
form c(θ)− q = 0) is written as

W =
[
c(θ̂)− q

]′ (
Var[c(θ̂ − q]

)−1 [
c(θ̂)− q

]
(8.58)

where W ∼ χ2
#q, where #q represents the number of restrictions, which

equals the number of elements in the q vector.

8.8.8 Summary of Tests

T-Test

H0 : βk = c

tk ≡ bk − c

SE [bk]
=

bk − c√
s2 (X ′X)−1

k,k

∼ t(n−k) (8.59)

Do Not Reject (DNR) H0 if c ∈ [bk ± SE[bk] · tα/2,n−k] (α/2 is used for a
2-sided test)
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The F-Test

H0 : Rβ = r

F ∗ ≡ (Rb− r)′(R s2
b R′)−1(Rb− r)
#r

∼ Frank[R],n−k (8.60)

or,

F ∗ ≡ (SSRR − SSRU )/#r

SSRU/(n− k)
(8.61)

DNR if F ∗ < Fα,#r,n−k.

The Lagrange Multiplier Test

H0 : βm+1 = βm+2 = ... = βk = 0
H1 :At least one of βm+1, βm+2, ..., βk 6= 0.

ûR = Y − β̂0 − β̂1X1 − β̂2X2 − ...− β̂mXm (8.62)

R2
AUX =

SSRAUX

SSTAUX
(8.63)

nR2
AUX ∼ χ2

k−m

nR2
AUX large implies omitted variables have an effect on the response vari-

able Y .

More general approach:
Testing :c(θ) − q = 0 for parameters θ. In OLS, think of θ = β. The

Lagrangian for maximizing likelihood subject to this constraint is

L∗(θ) = L(θ) + λ(c(θ)− q) (8.64)

Maximizing this function over θ and λ gives our first order conditions

∂L∗
∂θ

=
∂L
∂θ

+ c′(θ)λ = 0 (8.65)

∂L∗
∂θ

= c(θ)− q = 0 (8.66)

H0 : λ = 0.
A simpler formulation:

∂L(θ̂R)

∂θ̂R

= −c′(θ̂R)λ̂ = ĝR (8.67)

If ĝR = 0, then the restriction is valid.

LM =

(
∂L(θ̂R)

∂θ̂R

)′ [
I(θ̂R)

]−1
(

∂L(θ̂R)

∂θ̂R

)
(8.68)
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Under H0, LM has a limiting χ2
#r distribution.

The Likelihood Ratio Test

H0 : β = β0.

λ =
L(β0)

L(β̂)
(8.69)

Reject H0 unless λ is sufficiently large.
Find K such that P[0 ≤ λ ≤ K|β = β0] = α.
For large distributions, the test statistic LR = −2 ln λ = 2 ln L(β̂)−2 ln L(β0) ∼

χ2
#r

The Wald Test

W =
(
β̂ − β0

)2

I(β̂) =
nR2

1−R2
(8.70)

I(β̂) is the info matrix calculated from the log-likelihood of our OLS esti-
mates.

If we were to test β = 0, then W = β̂2Sxx/σ2

For a large enough sample, W will be distributed as a chi-squared.
The more general Wald test:

W =
[
c(θ̂)− q

]′ (
Var[c(θ̂ − q]

)−1 [
c(θ̂)− q

]
(8.71)

W ∼ χ2
#r

8.9 The ANOVA Table

The Analysis of Variance (ANOVA) table is the standard output of most com-
puter programs that run regressions.

Source Deg. of Freedom (df) Mean Square = SS/df F-stat
Regression SSR 1 SSR MSR

MSE

Residual SSE n− 2 s2 = SSE
n−2

Total SST n− 1 s2
y = SST

n−1

R2 1-SSR
SST



Chapter 9

Non-Spherical Disturbances

9.1 Introduction

Looking back to Section 8.3, we recall the following assumptions:
A5: Homoscedasticity
A6: Serial Independence
Together, these assumptions imply that E[ε′ε|X] = σ2I. This is referred

to as spherical disturbance because the errors should be evenly distributed,
forming something that looks like a hypersphere in Rn. If you really want to see
this, try generating 100 random numbers from ε1 ∼ N(0, 1) and ε2 ∼ N(0, 1).
Graph these on a 2-dimensional plane and you’ll get a scattering of points
mostly located within the unit circle. Of course there may be several outliers
not within the unit circle. Extend this to higher dimensions and you roughly get
a hypersphere. Now try the same exercise with ε1 ∼ N(0, 1) and ε2 ∼ N(0, 4).
This forms an ellipse of points. Extending this to higher dimensions warps the
sphere into a strange hyperellipse object.

If the error terms of the model are not ”spherical,” then the result isn’t
terribly disastrous. The normal OLS estimates will still be unbiased as long as
X ′ε = 0. To see this, recall that

E[b] = (X ′X)−1X ′Y (9.1)

= (X ′X)−1X ′(Xβ + ε)

= (X ′X)−1X ′Xβ + (X ′X)−1X ′ε

= β + (X ′X)−1X ′ε

= β iff X ′ε = 0

However, the OLS estimates will no longer be efficient. In other words,
their variance and covariances will be inflated. This can be seen by noting that
the Gauss-Markov Theorem (Theorem 8.3) required both A5 and A6. As a
consequence, any sort of inferences or forecasts made with these estimates will
be inefficient.

79



80 CHAPTER 9. NON-SPHERICAL DISTURBANCES

Although unbiasedness is in some ways more desirable than efficiency, we
are restricted to making only weak statistical inferences about our estimates
without efficiency. Therefore we examine procedures to achieve efficiency under
these conditions.

9.2 Generalized Least Squares (GLS)

Consider a linear model in which T observations are taken, but the error-term
variances of each observation are known to be unique. In other words, εt 6= εs

for some observations t, s. Therefore, we have non-spherical disturbances.
We introduce GLS with a specific (but instructive and useful) example.
Recall that the variables are also vectors of length T . We transform out

model to
Yt

σt
=

1
σt

β0 +
X1t

σt
β1 +

X2t

σt
β2 + ... +

Xkt

σt
βk +

ut

σt
∀t (9.2)

Relabelling for simplicity gives

Y ∗
t = X∗

0tβ0 + X∗
1tβ1 + X∗

2tβ2 + ... + X∗
ktβk + u∗t (9.3)

The variance of the error term becomes

Var[u∗t ] = Var
[
ut

σt

]
=

Var[ut]
σ2

t

= 1 (9.4)

We now have spherical disturbances and our estimates of regressing Y ∗ on
X∗

1 , X∗
2 , ..., X∗

k (without X∗
0 ) will be BLUE once again.

In general, assume E[ε′ε|X] = σ2Ω, with E[ε|X] = 0. Therefore, errors are
non-spherical but still centered around zero. Assume that Ω is a known, positive
definite, and symmetric matrix. Therefore, we can factor Ω into CΛC ′, where
C is a matrix with eigenvectors as columns and Λ is a matrix with eigenvalues
along the diagonal. Note that if we define P ′ = CΛ−1/2, then Ω−1 = P ′P . This
procedure is known as a Cholesky decomposition. Our model is Y = Xβ + ε.
Premultiplying by P gives

PY = PXβ + Pε (9.5)
Y ∗ = X∗β + ε∗ (9.6)

As we did in our specific example above, consider the variance of our adjusted
error term. E[ε∗ε∗′] = σ2I (can you verify this?) Our GLS estimate of the
coefficients will be

β̂GLS = (X∗′X∗)−1
X∗′Y ∗ =

(
X ′Ω−1X ′)−1

X ′Ω−1Y (9.7)

We now have an efficient, unbiased estimate.
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Theorem 9.1 (Unbiasedness) If E[ε∗|X] = 0, then E[β̂GLS ] = β

Proof. E[β̂GLS ] = E[(X∗′X∗)−1
X∗′Y ∗] = β + E[(X∗′X∗)−1X∗′ε∗] = β

Note that ε∗ = Pε, so E[ε∗|X] = 0 ⇐⇒ E[ε|X] = 0 since P is a matrix of
known constants.

Theorem 9.2 (Efficiency) β̂GLS is the minimum variance estimator among all
linear unbiased estimates.

Proof. Simple extension of the Gauss-Markov Theorem.
From this, we find that Var[β̂GLS ] = σ2(X ′Ω−1X)−1

Note that all of the results are essentially the same now as the OLS proce-
dure, except we have Ω−1 appearing almost everywhere variables are multiplied.

An even more general setup is the Weighted Least Squares (WLS)
model. Where GLS specifies the values of Ω, WLS allows this matrix to be de-
termined by the researcher. There may be reasons for weighting certain observa-
tions, etc. However, careless WLS procedures will create undesirable properties
(such as inefficiency,) so non-GLS versions of WLS should only be used when
absolutely appropriate. Also note that OLS is a form of WLS where Ω = I.

There exists a version of maximum likelihood estimation analogous to GLS
that also uses Ω. However, we do not cover that topic here.

9.3 Feasible GLS

In setting up the GLS procedure, we made one particularly strong assumption.
In real-world analysis, the value of Ω would almost never be known. Therefore,
our next-best alternative is to estimate Ω̂.

To come up with an estimate for Ω, we must parametrize it as a function of
X and θ, where θ is some vector of parameter that my include β.

The usual procedure is find some consistent estimator θ̂ of θ, which will
depend on the question at hand. Using this, we can perform the Cholesky
decomposition as described in the previous section to get P̂ . Premultiplying
the variables in our model by P̂ gives us the FGLS model, which can then be
regressed using normal OLS techniques.

Since θ̂
d→ θ (“θ̂ converges in distribution to θ”,) then we have that the

asymptotic properties of the FGLS estimators are equivalent to the GLS esti-
mators. Therefore, as n → ∞, we have that the FGLS estimators are asymp-
totically efficient.

A common procedure in OLS is to first fit the unadjusted model and analyze
the residuals against each of the model’s variables. For example, if the resid-
uals plotted against X1 show a “megaphone” shape, then we’ll want to look
at f(εi) = ε2

i regressed against X1. If the residuals plotted against Y show a
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megaphone shape, we’ll want to look at f(εi) = |εi| regressed against Y . Next,
regress f(ε) on the appropriate variables. Use the fitted values ε̂ from this
regression to form your vector weights w. Weight the OLS variables by w to
get a FGLS model. Note that if your fitted values ε̂ differ substantial from ε,
the it is advisable to iterate the procedure to get “more convergent” values of
ε̂. This process is known as iteratively reweighted least squares (IRLS).

We will introduce another, more specific way to perform FGLS in Section
9.4.2.

9.4 Heteroscedasticity

Heteroscedasticity means that Var[εt] 6= Var[εs] for some s, t. In other words,
each observation has its own error variance. For example, if data was gath-
ered across different neighborhoods, then it may be unreasonable to assume
that the error variance across neighborhoods is equal. This would introduce
heteroscedasticity into the model1.

We’ve already discussed the consequences of ignoring heteroscedasticity in
Section 9 and how to derive BLUE estimates (or, to avoid redundancy, BLU
estimates) in Section 9.2. Therefore we proceed to specific tests for heteroscedas-
ticity.

9.4.1 Jackknife Estimator

It has been noted that if consistent estimates are possible for the variance-
covariance matrix of the OLS estimates (Var[b],) then we can make valid infer-
ences in the presence of heteroscedasticity as long as we have sufficiently large
samples. White (of the White test discussed below) suggests the jackknife
procedure for devising consistent estimates of Var[b], which he called a het-
eroscedasticity consistent covariance matrix (HCCM) estimator. The basic idea
is to estimate your model over and over, each time dropping one (and only one)
observation. This gives you a series of estimates, each with a unique variance-
covariance matrix. The average of these variance-covariance matrices will be a
consistent estimate for the true variance-covariance matrix.

The appeal of the jackknife procedure is that with a statistical software
package capable of performing iterative loops, you can set up a fairly simple
jackknife program to be run automatically.

1Heteroscedasticity is often spelled ”heteroskedasticity.” While the former is seen more
often in literature, the latter is closer to the Greek word skedastos, which means ”capable of
being scattered.” The term was coined in 1905 by statistics pioneer Karl Pearson, who spelled
it with a “c.” Interestingly, the phrase first appeared in the journal Biometrika, and we now
have Econometrica - another case of the ”k to c” trend.
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9.4.2 Testing for Heteroscedasticity

There exist several tests for heteroscedasticity. Under the category of Lagrange
Multiplier (LM) tests, there are the Breusch-Pagan test, the Harvey-Godfrey
(or multiplicative heteroscedasticity) test, and the Park test, to name a few.
There’s also non-LM tests such as the Goldfield-Quandt test and the White
test.

The White test is very general, but nonconstructive (i.e., does not suggest
any hint of the nature of heteroscedasticity) and can also falsely classify a mis-
specification problem as a heteroscedasticity problem. For reference, the usual
statistic is V = s2 (X ′X)−1, which is asymptotically distributed as χ2

k−1, where
k is the number of regressors in the model, including the constant.

The Goldfeld Quant test is useful for testing whether the data can be
separated into groups of equal variance, usually separated along the range of
some X variable. To increase the power of the test, it is common to omit the
”intermediate” values which lie on the borders of the two group, thus distinctly
separating the groups. However, this represents a loss of information and is
somewhat undesirable. The procedure is to estimate a regression for each of the
two groups and then construct the statistic

F ∗n1−k,n2−k =
e′1e1/(n1 − k)
e′2e2/(n2 − k)

(9.8)

where large values of the statistic lead to a rejection of the null hypothesis
that the two groups have the same error variance.

The class of LM tests are similar and will be described jointly. Since we have
to estimate n values of σ2

t and k values of βi, we have n + k free parameters,
which is too many for our n observations to estimate. Therefore, we need to
make simplifying restrictions. The suggested restrictions are

σ2
t = α1 + α2Z2t + α3Z3t + ... + αpZpt (Breusch-Pagan) (9.9)

σt = α1 + α2Z2t + α3Z3t + ... + αpZpt (Glesjer) (9.10)

σ2
t = exp [α1 + α2Z2t + α3Z3t + ... + αpZpt] (Harvey-Godfrey) (9.11)

where Zi is some variable of known (measurable) values. These equations
are jointly known as auxiliary equations for the error variances. Note that
the Park test is simply a special case of the Harvey-Godfrey test and will not
be covered here. The procedure is as follows.

1. Regress Y against a constant and X. Obtain OLS estimates β̂ and the
residuals ût

2. Regress û2
t , ût, or ln[ût] against Zt according to one of the above auxiliary

equations.

3. Compute the test statistic LM = nR2. As in Section 8.8.5, we find that
this statistic is distributed as χ2

p−1, where p is the number of Z variables
used in the auxiliary regression.
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4. The p-value will be P[χ2
p−1 > LM ], which is a one-tailed test as described

previously.

5. Our H0 : αi = 0 ∀1 ≤ i ≤ p, i ∈ N can be rejected for sufficiently large
values of LM (or, sufficiently small p-values.)

Note that this auxiliary regression test is not actually what the original
authors suggested. For example, the original Glesjer test is actually a Wald
test. However, all of these tests are asymptotically equivalent and differ only in
the assumed specification of the error term. We therefore restrict our attention
to the more useful and computationally simple auxiliary regression technique.

Using the above auxiliary regressions, we can also perform a FGLS proce-
dure. As above, run the normal OLS procedure to obtain ût. Run the desired
auxiliary regression from the above three, where the Z variables will be the X
variables, their squares, and their cross products. So, the set of variables will be
{X1, X2, ..., Xk, X ′

1X1, X
′
1X2, ..., X

′
1Xk, X ′

2X2, X
′
2X3, ..., X

′
2Xk, ..., X ′

kXk} Run-
ning the auxiliary regression gives estimates for the coefficients on each Zi.
Substituting these estimated coefficients back into the regression equation gives
predicted values σ̂2

t . If using equation 9.9, we have wt = 1/
√

σ̂2
t . If using equa-

tion 9.10, we have wt = 1/σ̂t. If using equation 9.11, we have wt = 1/
√

σ̂2
t .

Note that in the first two equations we could observe negative predicted values of
variance. In the third equation, our estimates are ln[σ̂2

t ], so the exponentiation
forces these values to be positive, which is desirable.
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Time-Series Models

10.1 Introduction

Many studies involve gathering data on certain variables at regular time inter-
vals. For example, we may observe the variables (Yt, X1t, ..., Xkt) at points in
time t = 1, 2, ..., T . As long as the OLS assumptions remain intact, time-series
models present nothing different or unusual. However, time series data is quite
likely in practice to violate a few of the standard assumptions. Therefore, we
must examine those likely scenarios and how to deal with them.

10.2 Serial Correlation

Serial correlation (also called autocorrelation) is defined as correlation between
error terms across time in a time series model. Recall from Section 8.2 the dis-
cussion on why we include an error term in the model. If we gather time-series
data on (Y, X1, ..., Xk) but there exists some unobserved Xk+1 that affects Y ,
then we have a model misspecification. That missing variable will be ”embed-
ded” into the error term. However, it is likely that Xk+1 has some trend over
time, particularly if the unit of time between observations is fairly small. There-
fore, our error terms between observations will be correlated - particularly with
smaller time intervals. As an example, models of asset prices over time (such
as the price of a given stock) are almost serially correlated. This correlation
between error terms violates OLS Serial Independence assumption (A6.)

In general, we believe that our error terms εt have the following property

E [εε′] = σ2Ω (10.1)

where Ω is a positive definite matrix with the constant σ2 = Var [εt] along
the diagonal. Therefore, we assume constant variance of our error terms (ho-
moscedasticity,) but admit correlation.
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We define the autocovariances to be

Cov [εt, εt−s] = γs (10.2)

Note that γ is a function of the distance in time between the observations,
but not of the location in time of the observations. This is referred to as
stationairty. Stationarity means that the covariance between ε1 and ε3 is the
same as the covariance between ε1001 and ε1003. This assumption implies the
value σ2 from equation 10.1 is constant since σ2

t = Var [εt] = Cov [εt, εt] = γ0 =
Cov [εr, εr] = Var [εr] = σ2

r ∀r, t ∈ [1, 2, ..., T ]. In fact, this analysis lets us
rewrite equation 10.1 as

E [εε′] = γ0R (10.3)

where

R =




1 γ1
γ0

γ2
γ0

γ3
γ0

... γT−1
γ0

γ1
γ0

1 γ1
γ0

γ2
γ0

γT−2
γ0

γ2
γ0

γ1
γ0

1 γ1
γ0

γT−3
γ0

γ3
γ0

γ2
γ0

γ1
γ0

1 γT−4
γ0

...
. . .

...
γT−1

γ0

γT−2
γ0

γT−3
γ0

γT−4
γ0

... 1




or Rts =
γ|t−s|

γ0
(10.4)

R is referred to as the autocorrelation matrix.

10.3 Ignoring Serial Correlation

The proofs of unbiasedness and consistency of β̂OLS did not depend on the
Serial Independence assumption. Therefore, if we perform OLS estimates with
serially correlated errors, we will still derive unbaised and consistent estimates.
However, as in the case of general non-spherical disturbances, the Gauss-Markov
Theorem (Theorem 8.3) is no longer valid. Therefore, OLS estimates will not
be efficient. As a result, hypothesis tests based on the estimates will be invalid.
In fact, under certain conditions, the t-statistic will be grossly overestimated,
causing the experimenter to (possibly) reject H0 : β = 0 when it should not be
rejected at any reasonable level of significance.

blah - see Grether’s notes

10.4 Various Forms of Serial Correlation

Serial correlation can take on a variety of functional forms. In other words,
the manner in which εt and εt−s are related could be different across different
models. We now consider commonly assumed forms of correlation. The actual
type encountered clearly depends on the underlying theory and beliefs about
the dynamics of the data across time.
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10.4.1 AR(1) - 1st-Order Autoregressive Correlation

First-order autoregressive correlation (AR(1)) assumes that error terms follow
the behavior given by

εt = ρεt−1 + ut (10.5)
ρ ∈ (−1, 1) (10.6)

E [ut] = 0 ∀t (10.7)

E [utut] = σ2
ε < ∞ (10.8)

E [utut−s] = 0 ∀s 6= 0 (10.9)

Notice that we assume properties of u that would normally be assumed about
ε1.

AR(1) has a fairly easy functional form and is the most commonly assumed
among the variants. Mainly, AR(1) is often seen as a reasonable approximation
of more complex correlation structures. However, its simplicity gains more
than just tractability. Attempting to use more complex structures can be very
sensative to the data and might produce drastically different predictions under
very minor changes.

An important property of AR(1) is that Cov [εt, εt−s] 6= 0 ∀t, s, although
it can become quite small when |ρ| < 1. This is easily seen by iteratively
substituting the functional form for the correlation into itself to get

εt = ρ (ρ (ρ (... (ρε1 + u1) ...) + ut−2) + ut−1)+ut = ρt−1ε1+
t−1∑

i=0

ρiut+1 (10.10)

To devise a test of the correlation structure, the parameter ρ can easily be
estimated using

ρ̂ =

T∑
t=2

etet−1

T∑
t=1

e2
t

(10.11)

1These three assumption are often referred to as white noise (with zero mean) assump-
tions.
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10.4.2 AR(p) - pth-Order Autoregressive Correlation

Higher-order autoregressive correlation (AR(p)) assumes that error terms fol-
low the behavior given by

εt = θ1εt−1 + θ2εt−2 + ... + θpεt−p + ut (10.12)
θk ∈ (−1, 1) ∀k ∈ [1, 2, ..., p] (10.13)

E [ut] = 0 ∀t (10.14)

E [utut] = σ2
ε < ∞ (10.15)

E [utut−s] = 0 ∀s 6= 0 (10.16)

10.4.3 MA(1) - 1st-Order Moving Average Correlation

blah εt = ρut−1 + ut

10.4.4 MA(p) - pth-Order Moving Average Correlation

blah εt = θut−1 + θ2ut−2 + ... + θput−p + ut

10.5 Testing for Serial Correlation

10.5.1 Introduction

By far the most common test statistic for serial correlation is the Durbin-Watson
(DW) statistic. In fact, most computer packages generate the value of DW
regardless of whether or not the data is time-series, probably because it’s easy for
a computer to calculate once the residuals are known. However, an uninformed
researcher performing a regression on data that has no meaningful ordering
may see the DW statistic in the computer output and be alarmed that there is
a correlation problem. If there is no meaningful ordering to the data, then the
data ordering can be “re-shuffled” and the DW statistic will completely change.
The DW has other limitations which we will discuss shortly.

10.5.2 The Durbin-Watson Test

The DW test statistic is defined in terms of the residuals {et}t∈{1,2,...,T} as

DW =

T∑
t=2

(et − et−1)
2

T∑
t=1

e2
t

(10.17)
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In the AR(1) setting, we have2

DW = 2(1− ρ̂)− e2
1 + e2

T
T∑

t=1
e2
t

(10.18)

From this, we have that

lim
t→∞

DW = 2(1− ρ̂) (10.19)

DW ≈ 2(1− ρ̂) (10.20)

Some texts will claim that 2(1 − p̂) is a good approximation for the DW
statistic. However, calculating ρ̂ is nearly as difficult as calculating the true
DW statistic. Therefore, this simplification should only be used to note that

ρ ∈ [−1, 1]
approx
=⇒ DW ∈ [0, 4] (10.21)

ρ = 0 ⇒ DW = 2 (10.22)

To test whether or not serial correlation exists, the null hypothesis is H0 :
DW = 2. Since the distribution of DW isn’t very nicely behaved, we frequently
see charts of the upper and lower bounds (DWU and DWL) that depend on T
and k. Charts give upper and lower bounds for a one-tail 5% or 1% significance
level test since those are really the only levels for which charts have been tab-
ulated. Unfortunately, we cannot perform a two-tailed test Therefore, we have
only the following.

Possible Durbin-Watson Hypothesis Tests

• Testing for positive serial correlation (ρ > 0)

H0 : ρ = 0 (DW = 2)

H1 : ρ > 0 (DW < 2)

Reject H0 at α significance level if DW ≤ DWT,k,α
L

Do Not Reject H0 at α significance level if DW ≥ DWT,k,α
U

No conclusion if DWT,k,α
L ≤ DW ≤ DWT,k,α

U

• Testing for negative serial correlation (ρ < 0)

H0 : ρ = 0 (4−DW = 2)

H1 : ρ < 0 (4−DW < 2)

Reject H0 at α significance level if 4−DW ≤ DWT,k,α
L

Do Not Reject H0 at α significance level if 4−DW ≥ DWT,k,α
U

No conclusion if DWT,k,α
L ≤ 4−DW ≤ DWT,k,α

U

2For a tedious exercise, try showing this.
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10.5.3 Limitations of the DW Test

There are significant limitations to the DW test. These limitations make it
more surprising that statistical software packages include the DW statistic so
frequently. Since the DW test is somewhat often used in inappropriate situa-
tions, econometrics professors often will drill their students on the limitations
of the DW test so that they don’t make these mistakes.

1. If the data is not time-series (or order-dependent in some way,) then there
is no meaning to serial correlation and no need to test for it.

2. There exists an inconclusive range in the hypothesis tests between the up-
per and lower limits in which nothing can be said about serial correlation.
The Lagrange Multiplier (LM) Test should be used when the DW test is
inconclusive.

3. The DW test is invalid if lagged independent variables appear in the model
(see section 10.6.)

4. The DW test is powerful for testing ρ in the AR(1) setting. In other
serial correlation structures (such as AR(p),) ρ may not be indicative of
the true serial correlation pattern.

5. The DW test requires X to be nonstochastic.

For example, if the correlation structure were εt = ρεt−2+u, the DW statistic
would not indicate any correlation problems.

10.6 Lagged Independent Variables

For lagged independent variables, the model is of the form

Yt = α + β0Xt + β1Xt−1 + ... + βkXt−k + ut (10.23)

10.7 Lagged Dependent Variables

blah



Chapter 11

Explanatory Variable
Problems

11.1 Multicollinearity

Multicollinearity occurs when two explanatory variables have approximate linear
relationships. In other words, if two of the independent variables are very highly
correlated, then we have multicollinearity.

In the case of exact multicollinearity, two variables have an exact linear
relationship. This violates OLS Assumption 3 since the rank of the X matrix
would be less than k due to the fact that the columns would not be linearly
independent. This is a very extreme case and, if it were to occur, OLS estimates
simply wouldn’t exist as the matrix X ′X would be singular.

The more realistic case is that of near multicollinearity, where two vari-
ables have an approximate linear relationship. This is also somewhat more
problematic because the OLS procedure will yield unique estimates, so the in-
vestigator will not receive any sort of “warning” that the explanatory variables
are problematic. From this point forward, when we speak of multicollinearity,
we will mean near multicollinearity as exact multicollinearity is a somewhat
trivial case.

What will be the properties of multicollinearity? Note that the proof of the
Gauss-Markov Theorem (Theorem 8.3) required A3, which assumes no exact
multicollinearity. However, the theorem is not affected by highly correlated
explanatory variables - as long as they are not perfectly correlated. Therefore,
the theorem holds and the OLS estimates will still be BLUE. Furthermore, the
OLS estimates are still the Maximum Likelihood estimates.

The only major drawback to multicollinearity is the increased standard error
of the regression coefficients. It can be shown that if X2 and X3 are correlated
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with ρ2,3 < 1, then

Var
[
β̂2

]
=

σ2

(1−R2
2)S22

(11.1)

Var
[
β̂3

]
=

σ2

(1−R2
3) S33

(11.2)

Cov
[
β̂2, β̂3

]
=

−σ2ρ2,3(
1− ρ2

2,3

)√
S22S33

(11.3)

where R2
j is the R2 of a regression of the jth variable on the other variables,

S22 = SX2X2 =
∑n

i=1

(
X2i − X̄2

)2 and similar for S33.
Notice that these variances explode as the correlation between one X variable

and the others in the model (R2
j ) nears 1. Also, note that since the estimates are

BLUE, this increased variance is still the minimum variance possible. Therefore,
using correlated explanatory variables will inflate your estimates, but there is
guaranteed to be no better linear estimate than the OLS solution. Your choice
is therefore to admit the higher variance or to remove one of the correlated
variables.

In the absence of multicollinearity, we have that R2
j = 0 ∀j. As a conse-

quence, β̂j = SY j/Sjj ∀j. Therefore, the estimates are completely independent
of the inclusion of the other variable. So, the estimate of β̂j when Y is regressed
on all of the X’s will be identical to the estimate of β̂j when Y is regressed on
Xj alone. This is known as orthogonal regression.

Obviously, datasets are going to contain some multicollinearity. It is gener-
ally up to the researcher to determine whether or not the degree of correlation
between X variables is extreme. One measure often reported by software pack-
ages is the Variance Inflation Factor, or (VIF.) V IFk = 1/

(
1 + R2

k

)
. If

Perhaps the most instructive lesson from multicollinearity comes from the
practice of “model building” - where an investigator adds more and more ex-
planatory variables until the regression results are satisfactory. This procedure
is often abused as meaningless variables that happen to have some correlation
with the endogenous variable can get thrown into a model in order to help the fit.
However, as we pile on explanatory variables, we are likely to include variables
which are highly correlated. The result is that the estimate variances drastically
increase for both estimates, which drives up their t-statistics and makes both
variables seem insignificant. The investigator can be confused when a variable
that used to be highly significant suddenly becomes insignificant when a new
variable gets added to the model.

On the other hand, a good researcher may realize that in their particular in-
vestigation two highly correlated explanatory variables should both be included
in the model for underlying theoretical reasons even though multicollinearity
will hurt their significance level.
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11.2 Testing for Multicollinearity

There aren’t really any formal tests for multicollinearity since its detection is
straight-forward. The consequences of multicollinearity discussed above lead to
certain unusual situations that can be ”red flags” for multicollinearity.

1. High Correlation Coefficients

Any good researcher would run summary statistics for their variables to
look for red flags before attempting to fit their model. Correlation between
X variables is the definition of multicollinearity and can be spotted easily
through this analysis.

2. High R2 with Low Values of the t-statistic

We have seen that multicollinearity increases the estimate variances, which
in turn raises the t-statistics. However, we also know that adding variables
always increases the R2 of a regression. So, if we see a high R2 with very
low significance levels, it is most likely that multicollinearity exists. In
fact, a high R2 should normally correspond to a very good fit of the data,
so we should expect to see some fairly significant coefficient estimates, so
this situation is especially curious.

3. High F-Value for a Group of Coefficients that are Individually
Insignificant

If we run a test of joint significance over a group of X variables and
find that they are, as a group, highly significant while each coefficient is
apparently insignificant, we have a red flag for multicollinearity.

4. Coefficients Changing With Inclusion of New Variables

We saw that if ρ2,3 = 0, then β̂2 will be unaffected by the inclusion of X3

in the model. The contrapositive of this statement is that if β̂2 is affected
by the inclusion of X3 in the model, then ρ2,3 6= 0. So, if adding a new
variable changes the existing coefficients, multicollinearity is likely.

11.3 Measurement Error & Random Regressors

First note that if Y is measured with error, no OLS violation results. To see
this, note that

Y + u = Xβ + ε (11.4)
Y = Xβ + (ε− u)

where (ε− u) ∼ N
[
0, σ2

ε + σ2
u

]
, which completely conforms to the OLS as-

sumptions. Therefore, we will restrict our attention to models in which only the
explanatory variables are measured with error.
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We suppose that X is measured with error (or that it is random for some
other reason,) so that

X = Z + ε (11.5)

This problem can come about either when a variable is known to be measured
with error or if a proxy variable is used that approximately measures a desired
variable. For example, if we want to measure intelligence (”INTL”) but can only
observe IQ scores, we have a ”noisy” proxy for intelligence. We may assume
that IQ = INTL + ε, where ε ∼ N

[
0, σ2

ε

]
.

Assume the ”true” model is Y = Zβ+u, with error it becomes our estimated
model of the form

Y = (X − ε)β + u = Xβ + (u− εβ) = Xβ + w (11.6)

Further assume that Z, u, and ε are mutually independent.
Since our error term now contains ε, we have correlation between X and the

error term. Specifically, Cov [X,w] = Cov [Z + ε, u− εβ] = −βσ2
u

The OLS estimate will become inconsistent in this scenario.

plim b =
plim (1/n) X ′Y
plim (1/n) X ′X

(11.7)

=
plim (1/n) (Z ′ + ε′) (Zβ + u)
plim (1/n) (Z + ε)′ (Z + ε)

=
plim (1/n) (Z ′Zβ + Z ′u + ε′Zβ + ε′u)

plim (1/n) (Z ′Z + Z ′ε + ε′Z + ε′ε)

=
β plim (1/n) (Z ′Z)

plim (1/n) (Z ′Z) + σ2
ε

= β


 1

1 + σ2
ε

plim(1/n)(Z′Z)




Therefore, b is inconsistent as long as plim (1/n) (Z ′Z) is finite (which we
assume.) If σ2

ε > 0, then β is asymptotically attenuated (downwardly-biased.)



Chapter 12

Panel Data

12.1 Introduction

When time-series data is gathered that can be broken into cross-sectional blocks,
the result is panel data. In these data sets, researchers track distinct groups
across time. Agriculture studies frequently use panel data to study various crops
or fields across time.

12.2 The Model

Since our data are grouped both cross-sectionally and across time, it is appro-
priate to put both an i subscript and a t subscript on the variables. Further-
more, we add a “group-effect” variable to our model to capture a common effect
among all observations within a given group i. This group-effect term will be
an important aspect of our model, as we shall soon see. Formally, we have

Yit = αi + Xitβ + εit (12.1)

If αi is a constant term that depends on i, then we have a fixed effects
model where each cross-sectional group is assumed to have some fixed effect on
the response variable. For example, if a farmer has multiple fields, there may
be one field that naturally has a higher yield than the others. If it is assumed
that this difference is constant for the entire field, then a fixed effects model is
reasonable.

If αi is a random variable similar to the error term, but is drawn only once
for each group (i.e., it does not have a t subscript.) This model is a random
effects model since the group-level effect is considered random instead of fixed.
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12.3 Fixed Effects Models

Since αi is assumed constant, it should be thought of as a model parameter and
not a variable. The subscript is prehaps misleading. We do not directly observe
αi, so it must be estimated. Instead of using the subscript notation, we will use
dummy variables to give α the desired “behavior” in our model. We write

Yit = Dα + Xitβ + εit (12.2)

where D is an nT × n matrix and α is a column vector described by

D =
[

d1 d2 ... dn

]
(12.3)

α′ =
(

α1 α2 ... αn

)
(12.4)

Here, dg is a column vector of nT ones and zeros indicating whether a given
observation belongs to the gth group. Formally, if ii,t is the group of the obser-
vation i, t, then dg is a vector of indicator functions.

dg =




χ{i1,1=g}
χ{i1,2=g}

...
χ{i1,T =g}
χ{i2,1=g}

...
χ{i2,T =g}

...
χ{in,T =g}




(12.5)

Note that
∑n

g=1 dgit = 1 ∀t, so that for any given observation i, t, we have only
one dummy variable “switched on.”

This is more confusing that it perhaps needs to be, but dummy variables
are a clever way to switch on and off our variable αi as we scan through our
observations i, t.

blah - a lot more can be said on this topic!

12.4 Random Effects Models

blah



Chapter 13

Systems of Regression
Equations

13.1 Introduction

In this chapter, we consider the case of multiple regression equations that appear
to be completely independent, but it is known that there exists some inherent
“link” between the various equations. If we estimate the equations indepen-
dently, we are effectively throwing away information about how the various
equations are linked. Statisticians abhor the idea of discarding information (as
well they should,) so we analyse what can be done with these “linked” equations.

13.2 The Seemingly Unrelated Regressions Model

We assume a list of regressions that appear to be independent, estimable equa-
tions. However, there exists an underlying correlation structure (for some the-
oretical reason) between the error terms of the models. For example, a series of
regressions may be run on each cross-sectional unit of a given panel data set. If
stock prices of two companies are tracked over time along with some explanatory
variables, for example, this panel data could be used to generate two regressions
– one for each company. However, there is likely to be correlation between the
two regression error terms as stock prices tend to have natural correlations.

We take as an example the regressions of two firms, i and j

Yi = Xiβ + εi (13.1)
Yj = Xjβ + εj (13.2)

with T observations each and where we know (for some reason) that

E
[
εiε

′
j

]
= σijI

(T ) (13.3)

Notice that E [εitεjs] = 0 in this setup for all t 6= s.
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At this point, the uninterested reader can skip the development that follows
and proceed to the conclusions in subsection 13.2.1.

We diverge for a moment to introduce the Kronecker product. This ma-
trix operator multiplies on matrix into another term-by-term. Formally, if

A =




a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm


 B =




b11 b12 · · · b1s

b21 b22 · · · b2s

...
...

. . .
...

br1 br2 · · · brs


 (13.4)

then

A⊗B =




a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

an1B an2B · · · anmB


 (13.5)

Note that in the Kronecker product, the matrix on the right side of the ⊗
symbol gets inserted into the matrix on the left side, term-by-term. Also note
that A and B had dimensions of n ×m and r × s, respectively, so A ⊗B has
dimensions nr ×ms. Finally note that Kronecker products can be applied to
vectors, as well as to scalars1.

Theorem 13.1 For any nonsingular matrix A and any matrix B,

(A⊗B)−1 = A−1 ⊗B−1 (13.6)

Theorem 13.2 For any nonsingular matrix A,and matricies C and D such
that CD exists,

C (A⊗ I)D = A⊗ CD (13.7)

The proofs are omitted.

Stacking the regression equations gives



Y1

Y2

...
Ym


 =




X1 0 · · · 0
X2 · · · 0

...
...

. . .
...

0 0 · · · Xm







β1

β2

...
βm


 +




ε1

ε2

...
εm


 (13.8)

which can be written as

Y(mT×1)= X(mT×mk)β(km×1)+ε(mT×1) (13.9)

where the matrix dimensions are included as superscripts.

1The Kronecker product of two scalars is identically equal to their scalar product.
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Note that this combined model is itself a nice regression equation. However,
we know that there is correlation between observations, so we must use a GLS
procedure. This means the covariance matrix for this new equation needs to be
determined. For a given observation t, the covariance matrix would be

E [εtε
′
t] = Σt=




σ2
1 σ12 · · · σ1m

σ21 σ2
2 · · · σ2m

...
...

. . .
...

σm1 σm2 · · · σ2
m


 ∀t (13.10)

However, within a single regression, the T observations are assumed to be
homoscedastic. Therefore, putting it all together gives

E [εε′] = Σ⊗I(T ) = V (13.11)

From Theorem 13.1 we know that V−1 = Σ−1 ⊗ I(T ). Recall that β̂GLS =(
X ′Ω−1X

)−1
X ′Ω−1Y . Therefore, we have that

β̂SUR =
(
X ′Ω−1X

)−1
X ′Ω−1Y (13.12)

Denote the i, jth element of Σ−1 as γij . Expanding β̂SUR and using Theorem
13.2 gives

β̂SUR =




γ11X
′
1X1 γ12X

′
1X2 · · · γ1mX ′

1Xm

γ21X
′
2X1 γ22X

′
2X2 · · · γ2mX ′

2Xm

...
...

. . .
...

γm1X
′
mX1 γm2X

′
mX2 · · · γ2mX ′

mXm




−1 


∑m
j=1 γ1jX

′
1Yj∑m

j=1 γ2jX
′
2Yj

...∑m
j=1 γ1jX

′
mYj




(13.13)

It is noteworthy that the inverted matrix above is the asymptotic covariance
matrix of the estimate. Also note that FGLS is the more practical procedure
here since the correlation will rarely be known. The appropriate FGLS proce-
dure is to run the separate regression equations and use the residuals of each
equation to estimate the values of σij . Specifically, σ̂ij is estimated using the
diagonal elements of eie

′
j , which is assumed to be constant but obviously may

not be so. Therefore, we take their average to get σ̂ij = (e′iej)2. This generates
an estimate of Σ and the SUR model can be estimated.

2Yes, we have switched from eie
′
j to e′iej . Note that the trace of eie

′
j equals e′iej , which

equals
PT

t=1 eitejt.
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13.2.1 SUR Conclusions

We have used the fact that the original, homoscedastic equations have some
inter-equation correlation structure to develop a larger GLS regression equation
that does have heteroscedasticity. Therefore, the results of this combined re-
gression will have all of the properties of a standard GLS model. Furthermore,
by using the correlation structure, we may have gained some efficiency. In fact,
we generally gain efficiency unless one of the following is true3.

• The equations have no inter-equation correlation structure (E
[
εtiε

′
jt

]
=

0 ∀t, i 6= j.)

• The equations all have the same explanatory variables (Xi = Xj)

If there in fact does exist some efficiency gain, then

• The efficiency gain is larger as the correlations increase.

• The less correlated are the X variables across equations, the greater the
efficiency increase.

3These are sufficient conditions for the SUR-OLS equivalence, but may not be necessary.



Chapter 14

Simultaneous Equations

14.1 Introduction

In simultaneous equations, we have multiple equations, but introduce the pos-
sibility of endogenous variables appearing in equations. In other words, the
dependent variable of one equation may be appear as an explanatory variable
in another.

In general, a system of M equations with M endogenous variables and K
exogenous variables can be written as

γ11Y1t + γ21Y2t + ... + γM1YMt + β11X1t + ... + βK1XKt = ε1t

γ12Y1t + γ22Y2t + ... + γM2YMt + β12X1t + ... + βK2XKt = ε2t

... (14.1)
γ1MY1t + γ2MY2t + ... + γMMYMt + β1MX1t + ... + βKMXKt = εMt

Or, in matrix notation,
YtΓ + Xtβ = εt (14.2)

Y variables in the above equation are considered endogenous, while X vari-
ables are exogenous. The investigator must properly define endogeneity based
on the underlying theory. For example, in a supply and demand model, variables
such as income, rainfall, and taxes will usually be exogenous to the model while
quantity and price are certainly endogenous. Note that any lagged variables are
typically considered exogenous since their value is predetermined.

14.2 Ignoring Simultaneity

If we ignore the fact that the structural equations for a simultaneous system
of equations and estimate each equation separately, we will generate biased
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and inconsistent estimates. This implies that all forecasts, predictions, and
hypothesis tests will be invalid.

To see this, consider the structural equations for the following macroeco-
nomic model of consumption C, income Y , and investment I.

C = α + Y β + u (14.3)
Y = C + I (14.4)

Solving for the reduced form equations gives

C =
α

1− β
+

β

1− β
I +

1
1− β

u (14.5)

Y =
α

1− β
+

1
1− β

I +
1

1− β
u (14.6)

If we estimate Equation 14.3 on its own, then we violate the assumption that
Y · u = 0 since we know from the reduced form equations that Y is correlated
with u. The violation of this assumption gives us biasedness since

β̂ = (Y ′Y )−1
Y ′C = (Y ′Y )−1

Y ′ (Y β + u) = β + (Y ′Y )−1
Y ′u (14.7)

Thus the expected value of the estimate is not equal to the true value. It
can also be shown that

lim
n→∞

β̂ = β +
(1− β)σ2

u

σ2
I + σ2

u

6= β (14.8)

Therefore, β̂ is inconsistent. The fraction in the above expression is known
as the simultaneous equaton bias. Unbiasedness and inconsistency render
the estimation useless in about every respect, so this error is severe.

14.3 Recursive Systems

As a side note, we introduce the concept of recursive systems. If Γ is an upper-
triangular matrix, then we have a recursive system of the form

Y1t = f1 (Xt) + ε1t

Y2t = f2(Y1t, Xt) + ε2t

... (14.9)
YM = fM (Y1t, Y2t, ..., YM−1,t, Xt) + εMt

These are nice identifiable systems since Y1 is clearly determined by X, which
are then combined to determine Y2, and so on.
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14.4 Indirect Least Squares (Reduced Form Es-
timation)

It may be that a certain model lists multiple equations that have common
variables among them. For example, we might have a model for the corn market
whose structural equations are

QD = α0 + α1P + α2Y + u (14.10)
QS = β0 + β1P + β2R + v (14.11)
QS = QD (14.12)

where P is price, Y is income, and R is rainfall.
In this above example, we can solve for P and plug this equation into the

equation for Q = QD = QS. This gives the reduced form equations

P =
(

β0 − α0

α1 − β1

)
+

( −α2

α1 − β1

)
Y +

(
β2

α1 − β1

)
R +

(
v − u

α1 − β1

)

P = γ0 + γ1Y + γ2R + ε1 (14.13)
Q = (α0 + α1γ0) + (α1γ1 + α2)Y + (α1γ2)R + ε2

Q = µ0 + µ1Y + µ2R + ε2 (14.14)

where the γ and µ coefficients are equal to the equivalent terms in paren-
theses above.

The reduced form of the general system of equations represented in Equation
14.2 is

Yt = Xt

(−βΓ−1
)

+
(
εtΓ−1

)
= Xt (Π) + (νt) (14.15)

This implies a completeness condition that states that Γ−1 must exist
(Γ nonsingular) for this reduced-form solution to exist. We refer to Π as the
reduced form coefficients and νt as the reduced form errors.

Since we assume E [εt] = 0, E [εtε
′
t] = Σ, and E [εtε

′
s] = 0 ∀t 6= s, then it will

be true that E [νt] = 0 and E [νtν
′
t] = Γ−1′ΣΓ−1 = Ω

It can be shown that the reduced form estimator Π̂ is consistent. Therefore,
plim Π̂ = Π. Furthermore, as long as X doesn’t contain lagged jointly dependent
variables, then E

[
Π̂

]
= Π, so we have unbiasedness as well. This means that the

reduced form will be helpful in estimating the structural equation parameters if
we can solve for the structural estimates given only the reduced form estimates.

In each equation we will have one exogenous Y variable be the dependent
variable1, so it will have a coefficient of 1. This is just a normalization and not

1Note that endogenous and dependent are not synonyms. Dependent variables are neces-
sarily endogenous, but definitely not vice versa.
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a true restriction. However, our theory may impose other restrictions on the
model. In equations 14.10 through 14.12, we have two exogenous variables (Y
and R) and two endogenous variables (Q and P ,) but all four variables do not
appear in both equations (as their coefficients are assumed to be zero.) Their
absence is a result of the implicit assumption that quantity supplied does not
depend on income and quantity demanded does not depend on rainfall. These
underlying restrictions in fact make the equations estimable, as we will see.

14.4.1 The Identification Problem

The question at hand is if we estimate the reduced form equation and get
estimates γ̂ and µ̂, will we be able to uniquely solve for α̂ and β̂? Can we
go back to our structural form from our reduced form estimates? This question
is a matter of computability, but is fundamental because if we know a priori
that we will be unable to deduce our structural form parameters, then we should
not spend time and energy to do so.

There are three possible outcomes when trying to go from reduced form
estimates back to estimates of a given structural equation. It will either be
impossible, uniquely possible, or there will exist an infinite number of possi-
ble solutions (although there will be some restrictions on the possible values.)
These conditions, respectively, are called unidentified (or underidentified,)
exactly identified, and overidentified. This problem in general is referred
to as the identification problem.

One good example of underidentification is the familiar graph of linear sup-
ply and demand schedules. If we gather observations of (pt, qt), we are (by
assumption) observing different equilibria of the system. As we observe differ-
ent equilibria points, it could be that the demand line has shifted, the supply
line has shifted, or both have shifted. In fact, the demand and supply lines
could be shifted such that any point in R2 is an equilibrium point. There-
fore, if we allow the slopes and intercepts of each line to be free, then we can
never estimate all four parameters using only the two equations. Given some
string of observed equilibrium points, we could construct a variety of supply
and demand equations that shift in such a way to generate the data observed.
These two possibilities cannot be separated using our data. Therefore, they are
observationally equivalent.

The brute-force method of proceeding is to take the structural equation,
write out the reduced form, and express the reduced form coefficients in terms of
the structural form coefficients. Then, if you are able to solve for the structural
coefficients in terms of the reduced form coefficients, you have identification.
This method will highlight exactly which equations are identifiable.

A more analytical approach is to consider necessary and sufficient conditions
for identifiability. Recall from equation 14.1 that we have M2 coefficients on the
endogenous variables to estimate using only M equations. This is impossible
without further restrictions. Restrictions that can be made are
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1. Normalizations - such as setting γij = 1 for the dependent variable

2. Identities - equations such as QS = QD restrict the model.

3. Exclusions - we know that rainfall won’t affect quantity demanded, so we
exclude R from the QS equation.

4. Other Restrictions - such as linear restrictions, restrictions on disturbance
covariance matrix, and nonlinearities.

Given enough restrictions, we can whittle down the number of parameters
until we have an estimable system of equations. This gives us the order condi-
tion.

14.4.2 The Order Condition

The order condition is a sufficient condition for avoiding unidentifiability but
only a necessary condition for exact identifiability. So, if it is satisfied, we
can exclude the possibility of the equation being unidentified, but we cannot
guarantee a unique solution.

The order condition looks at how many of the total number of variables in
the system are not present in a given structural equation. If we have enough
variables omitted from an equation, then identification is possible. Let Mj and
Kj be the number of included endogenous and exogenous variables in equation
j, respectively, and let M∗

j and K∗
j be the number of excluded endogenous and

exogenous variables in equation j.

Condition 14.1 If an equation j is identified, then K∗
j ≥ Mj − 1.

Remark 14.1 This is easy to remember. Just say ”excluded exogenous vari-
ables ≥ included endogenous variables − 1”

It is important to stop here and note that some textbooks use a misleading
statement of the order condition. Here, we have assumed that Mj includes
the dependent variable. We subtract 1 from Mj to get the number of non-
dependent endogenous variables. Some textbooks define Mj to be the number
of non-dependent endogenous variables. For those books, M = Mj +M∗

j +1. In
that case, the order condition is K∗

j ≥ Mj . When reading a text on this topic,
make sure you understand which definition is being used.

Satisfying the order condition only guarantees that the equation is not
unidentified. We require a further condition to achieve exact identification.
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14.4.3 The Rank Condition

The rank condition is a sufficient condition for exact identifiability. It is
conceptually more difficult than the order condition.

Recall from equation 14.15 that Π = −βΓ−1. Therefore, ΠΓ = −β. The jth

column of this matrix is ΠΓj = −βj , which applies to the jth equation in our
system. In Γj , we have one γji = 1 and we have several γjk = 0. These are the
restrictions in our model. For each of these restrictions, label πj as the element
of Πj associated with the γji = 1 restriction, Π̄j as the elements of Πj associated
with the γjk = 0 restriction, and Π̃j as the remaining unrestricted elements. Let
π∗j , Π̄∗j , and Π̃∗j be defined equivalently, but for the omitted variables. Putting
this all together, we have

ΠΓ = −β (14.16)
ΠΓj = −βj (14.17)

[
πj Π̃j Π̄j

π∗j Π̃∗j Π̄∗j

] 


1
−γj

0


 =

[
βj

0

]
(14.18)

Expanding this matrix equation gives

βj = πj − Π̃jγj (14.19)

π∗j = Π̃∗jγj (14.20)

Finally, in this setup, we have our rank condition.

Condition 14.2 If Rank
[
Π̃∗j

]
= Mj, then equation j is exactly identified.

This condition is hardly intuitive. There is an equivalent rank condition
(with its own equivalent order condition) that is easier to use, particularly since
it does not require taking the inverse of a big coefficient matrix.

Define

A =
[

Γ
β

]
=




1 A1

−γj A2

0 A3

−βj A4

0 A5




(14.21)

where we simply move the coefficients for the jth equation to the first column
and leave the other coefficients ambiguously labelled A1, ..., A5. Note that the
columns of A are linearly independent. If they weren’t, then two of the structural
equations would be linearly dependent and one could be eliminated.
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It can be shown that if there exists some non-trivial (i.e., non-zero) vector
fj such that [

A3

A5

]
[fj ] = A0fj = 0 (14.22)

then the structural equation might be able to take on an alternate form and
the two would be observationally equivalent (i.e., inseparable.) So, to make this
impossible, we require

RankA0 = M − 1 (14.23)

so that fj has only the trivial solution, since fj = A−1
0 0 = 0.

The number of rows of A0 is the total number of excluded coefficients, K∗
j +

M∗
j . The number of columns of A is M , so the number of columns of A0 is

M − 1. If the number of rows is less than the number of columns, then it
must be that the rank of A0 is less than the number of columns, which means
the rank is less than M − 1. So, it is necessary for the number of rows to be
greater than or equal to the number of columns. If K∗

j + M∗
j ≥ M − 1, then

K∗
j ≥ Mj − 1, which is the order condition from above. Therefore, satisfying

this rank condition also satisfies the necessary order condition.

If K∗
j > Mj − 1, then we have an overidentified equation. Therefore, for

exact identification, we must satisfy the rank condition and have equality in the
order condition.

To operationalize this concept, we will consider an example shortly. The
following list summarizes the algorithm for checking the rank condition of the
jth equation.

1. Stack the Γ matrix on top of the β matrix.

2. Move the jth column (which corresponds to the jth equation) to the first
column.

3. For any non-zero entry in the first column, remove the entire row.

4. Remove the first column, which now consists of all zeros.

5. If the rank of the resulting matrix is equal to the number of columns, then
the rank condition is satisfied.

If we satisfy the rank (and order) conditions, then we have that the ILS
procedure is consistent and efficient. If X contains no lagged jointly dependent
variables, then ILS is also unbiased. Therefore, under exact identification, ILS
provides us with BLUE estimates for the structural equations.

In reality, ILS procedures are not often used because most estimable models
are overidentified. In these cases, the ILS procedure will only produce linear
restrictions on the possible structural form coefficients. There exist other meth-
ods of estimation that do not have this sensitivity to identification. Before
proceeding, we consider a useful ILS example.
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14.4.4 Klein’s Macro Model 1: An ILS Example

The following widely-used macro model serves as a good ILS example.

The structural equations for consumption, investment, wages, output, prof-
its, and capital stock are

Ct = α0 + α1Pt + α2Pt−1 + α3 (W p
t + W g

t ) + ε1t (14.24)
It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2t (14.25)

W p
t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t (14.26)

Xt = Ct + It + Gt (14.27)
Pt = Xt − Tt −W p

t (14.28)
Kt = Kt−1 + It (14.29)

The endogenous variables are

Yt =
[

Ct It W p
t Xt Pt Kt

]
(14.30)

The exogenous variables are

Xt =
[

1 W g
t Gt Tt At Pt−1 Kt−1 Xt−1

]
(14.31)

The combined model Y Γ = Xβ + E gives the parameter matrices

Γ =




1 0 0 −1 0 0
0 1 0 −1 0 −1
−α3 0 1 0 1 0

0 0 −γ1 1 −1 0
−α1 −β1 0 0 1 0

0 0 0 0 0 1




(14.32)

β =




α0 β0 γ0 0 0 0
α3 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 γ3 0 0 0
α2 β2 0 0 0 0
0 β3 0 0 0 1
0 0 γ2 0 0 0




(14.33)

We will look at the consumption equation only. First, consider the necessary
order condition. Of the 6 endogenous variables, 3 are included. Of the 8 exoge-
nous variables, 5 are excluded. Therefore, 5 = K∗

1 ≥ (M1 − 1) = 2. This means
we apparently have an overidentified equation. Specifically, it is overidentified
by (at least) 3 restrictions. However, since it is not unidentified, we proceed to
demonstrate the sufficient condition.
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We proceed to check the sufficient rank condition by identifying those sub-
matrices of coefficients on variables that do not appear in the consumption
equation. These are the rows from the two matrices above that have zeros in
the first column (which corresponds to the first equation.) This gives the matrix




0 1 0 −1 0 −1
0 0 −γ1 1 −1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 γ3 0 0 0
0 β3 0 0 0 1
0 0 γ2 0 0 0




=
[

0 A3

0 A5

]
(14.34)

Of course, we can drop the first column to get

A0 =
[

A3

A5

]
=




1 0 −1 0 −1
0 −γ1 1 −1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 −1 0
0 γ3 0 0 0
β3 0 0 0 1
0 γ2 0 0 0




(14.35)

Since we have more rows in A0 than columns, we (again) over-satisfy the or-
der condition. For the rank condition, we know that the rank cannot be greater
than 5 since we have only 5 columns. So, we need only to find 5 linearly inde-
pendent rows. The other 3 will consequently be linearly dependent. Choosing
rows 3 through 7 gives us the required number of independent rows (check this
for yourself,) thus proving that RankA0 = 5.

We therefore have the rank condition satisfied and the order condition ”over-
satisfied.” The conclusion is that the equation is overidentified, so if we were to
estimate the reduced form coefficients and try to use them to solve for α0, ..., α3,
we would only be able to specify a range of values that would work.

14.5 Lagrange Multiplier Test for Omitted Vari-
ables

blah
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14.6 Conclusion

In simultaneous equations applications, we have seen that OLS is inconsistent
and should thus be avoided. Furthermore, we demonstrated that ILS may be
appropriate if we know our equations are exactly identified. Unfortunately, this
is a stringent condition and is not normally met in real applications.

In the next section, we will examine general estimation procedures that are
well adapted for the simultaneous equations application. However, they are
general enough to merit a separate chapter. As you read on, remember that
simultaneous equations is a specific application of the procedures introduced in
the next section.



Chapter 15

Correlation Between
Regressors and Error

15.1 Introduction

The OLS assumptions imply that X be uncorrelated with ε. If we violate OLS
assumption A2 (non-random regressors,) then we lose the fact that Cov[Xtεt] =
01. This could happen in a simultaneous equations setting or when we mea-
sure our explanatory variables with error (so that they are random variables.)
We saw in the Section 14.2 that this nonzero covariance causes estimate in-
consistency, which makes our estimates effectively useless. In that particular
framework, endogenous variables have a random component as they are de-
pendant on equations of other variables. Therefore, in some of the structural
equations, we have random explanatory variables.

In any of these cases, we need to deal with this problem in order to make
useful inferences. One particular answer for simultaneous equations is Indirect
Least Squares. However, if we have an identification problem or if we have
exogenous variables measured with error, we need an alternative solution.

15.2 Instrumental Variables

A desirable solution to the problem of regressors correlated with error would
be to replace the ”bad” regressors with some instrumental variables that
are not correlated with the error term, but are highly correlated with the X
variables they replace. We define Z to be the matrix of variables after the

1Violating this assumption may not be either sufficient or necessary for creating correlation
between ε and X. It is presented as an example.
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”bad” regressors have been replaced by their instrumental variables. So, if we
had three X variables and X2 was correlated with the error term, then

X =
[
X1

...X2

...X3

]
Z =

[
X1

...Z2

...X3

]
(15.1)

where Z2 is the ”instrument” for X2. Note that Z will have at least as many
variables as X.

If Z is uncorrelated with the error term, we will arrive at consistent estimates.
Use of the IV procedure is quite general - it can be applied whenever correlation
exists between regressors and the error term. Therefore, OLS is in fact a special
case of IV estimation.

Unfortunately, the general setup of instrumental variables does not offer
suggestions for what variables Z to use. It assumes that the investigator can find
desirable ”instruments” for their purpose. We will proceed with the assumption
that the ideal instruments have been found. In two-stage least squares, we will
see how this problem can be circumvented.

We proceed on the following assumptions:

1. We have L instrumental variable regressors Z and K original X variables,
where L ≥ K (typically L = K.)

2. E [εi|Xi] = ηi

3. E [ηi] = 0

4. Var [ηi] = κ2 < ∞
This implies that Var [εi] = σ2 + κ2, so variation around ε is partly due
to variation of the regressors.

5. Cov [Xi, εi] = Cov [Xi, ηi] = γ

This implies that plim 1
nX ′ε = γ by Khinchine’s Weak Law of Large Num-

bers.

6. E
[
x2

ik

]
= QXX,kk

7. E
[
z2
il

]
= QZZ,ll

This implies that plim 1
nZ ′Z = QZZ (a PSD matrix)

8. E [zilxik] = QZX,lk

This implies that plim 1
nZ ′X = QZX (an L×K matrix of rank K)

9. E [εi|zi] = 0

This implies that plim 1
nZ ′ε = 0
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Note that the standard OLS model fits in the IV framework with η = 0,
γ = 0.

If η 6= 0, then E [b|X] = β + (X ′X)−1
X ′η 6= β, so we have unbiased-

ness of the standard (unadjusted) OLS estimate b. Furthermore, plim b =
β+plim

(
1
nX ′X

)−1 plim
(

1
nX ′ε

)
= β+Q−1

XXγ 6= β, so we don’t have consistency
either (which we’ve seen.)

We use the following to develop our IV estimator.

Y = Xβ + ε (15.2)
Z ′Y = Z ′Xβ + Z ′ε (15.3)

plim
(

1
n

Z ′Y
)

= plim
(

1
n

Z ′Xβ

)
+ plim

(
1
n

Z ′ε
)

(15.4)

plim
(

1
n

Z ′Y
)

= plim
(

1
n

Z ′X
)

β (15.5)

[
plim

(
1
n

Z ′X
)]−1 [

plim
(

1
n

Z ′Y
)]

= β (if L = K) (15.6)

plim
(
(Z ′X)−1

Z ′Y
)

= β (15.7)

plim
(
β̂IV

)
= β (15.8)

So, by choosing β̂IV = (Z ′X)−1
Z ′Y , we have developed a consistent esti-

mator, as long as L = K.
The following are properties of β̂IV

1. β̂IV
a∼ N

[
β, σ2Q−1

ZXQZZQ−1
XZ

]

2. σ̂2 = 1
n

∑n
i=1

(
yi −X ′

iβ̂IV

)2

3. Est.Asy. Var
[
β̂IV

]
= σ̂2 (Z ′X)−1 (Z ′Z)(X ′Z)−1

If we have more variables in Z than we do X, then Z ′X will not be non-
singular. We need to ”shrink” Z down to having only K variables. Instead of
throwing away information by simply removing L−K variables from Z, we will
instead project the columns of X into the column space of Z to get

X̂ = Z (Z ′Z)−1
Z ′X (15.9)

which gives β̂IV =
(
X̂ ′X

)−1

X̂ ′Y =
(
X ′Z (Z ′Z)−1

Z ′X
)−1

X ′Z (Z ′Z)=1
Z ′Y

Note that the estimated asymptotic variance remains unchanged (check this
yourself.)
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15.3 Two-Stage Least Squares

Two-stage least squares is a method of developing instrumental variables from
nothing more than the original variables. We use the OLS procedure to generate
predicted values of the problem variables and then substitute those predicted
values in as the instruments for the variables.

The procedure is as follows:

1. Identify all ”problem” regressors W . These are explanatory variables that
are either endogenous (in a simultaneous equations setting) or random.

2. For all of these problem variables, generate predicted values Ŵ using an
OLS model with all non-problematic variables as regressors.

3. Substitute the predicted values into the original model and estimate the
model using OLS (or whatever procedure is important.)

Using this method will generate consistent estimates since it can be shown
that the predicted values are valid instrumental variables, and we know that
the IV procedure produces consistent estimates.

Furthermore, 2SLS (2 Stage Least Squares) is identical to ILS when applied
to an exactly identified equation.

Example 15.1 The following supply & demand model is proposed

Demand: q = α0 + α1p + α2y + u (15.10)
Supply: q = β0 + β1p + β2r + β3f = v (15.11)

where y is income, p is price (endogenous,) r is rainfall, and f is fertilizer.
Since p is endogenous in this model, we generate predicted values p̂ using

p = γ0 + γ1y + γ2r + γ3f + ε (15.12)

We choose this particular regression for p because it contains all ”non-
problematic” exogenous variables in the model. The OLS estimate gives us a
vector p̂ of (non-random) predicted values. We then substitute these values into
our structural equations.

Demand: q = α0 + α1p̂ + α2y + u (15.13)
Supply: q = β0 + β1p̂ + β2r + β3f = v (15.14)

This procedure will yield consistent estimates of the structural equations.



Chapter 16

Qualitative Response
Models

16.1 Introduction

Here we consider various models that have discrete variables as the dependent
term. For example, we may want to model the probability that a smoker dies
of lung cancer, but all we can observe is death by lung cancer or death by other
causes. In order to study this in a statistical model, we must first “code” the
observations and then develop a model with desirable properties from which we
can derive desirable estimators of the model parameters and make inferences
about the effect of other variables on our dependent term. We will find that
there are several ways to develop desirable estimates for the parameters.

16.2 Linear Probability Model

The linear probability model is the “original” binary response model. It is
basically an OLS extension and suffers from various problems. Most notably,
these models can predict probabilities outside the unit interval. Furthermore,
several OLS assumptions on the error variance are violated. Regardless, we
will quickly develop this model to give an understanding of the problems that
arise.

In a linear probability model, the dependent variable is binary, where Yt ∈
{0, 1}. We observe only 1’s and 0’s in our data, but we’re actually interested in
P[Yt = 1|X] = pt. Since our linear model is written as Yt = α + βXt + ut, then
P[Yt = 1] = P[ut = 1 − α − βXt]. Note that ut ∈ {1 − α − βXt,−α − βXt}.
Therefore, ut is properly modelled as a binomial random variable. As before, we
assume that E[ut] = pt(1−α−βXt)+(1−pt)(−α−βXt) = 0. Solving for pt gives
pt = α+βXt, with variance E[u2

t ] = σ2
t = pt(1−α−βXt)2+(1−pt)(−α−βXt)2 =

pt(1− pt) = (1− α− βXt)(α + βXt).

115
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Notice that the variance calculated directly depends on Xt, so we have that
σ2

t 6= σ2
s . Therefore, the linear probability model suffers from heteroscedasticity.

As before, we can use a FGLS procedure to recover asymptotically efficient
estimates. However, this model is not restricted to Ŷt ∈ (0, 1). Note that if
Ŷt 6∈ (0, 1), then σ̂2

t = Ŷt(1− Ŷt) ≤ 0, which is nonsensical.
Another problem is that the coding of {0, 1} is somewhat arbitrary. If we

used {0, 2} or {5, 19}, we would get drastically different results. If our vari-
able can take on multiple values, we may code them {0, 1, 2}, but again this is
arbitrary and can lead to various problems.

The only advantage of the linear probability model is that the coefficients
have a very natural interpretation. If β̂i = 0.02, then we claim that an increase
of Xi by one unit (and all else constant) leads to a 0.02 increase in the response
probability.

Because of the various problems in this model, we avoid using linear proba-
bility models in favor of the more desirable models described below.

16.3 The Log-Odds Ratio

Our goal is to estimate P [Yi = j] = θj , which we assume is constant across
observations i, but not across categories j..

Define the log-odds ratio as

λj = log
[

θj

1− θj

]
(16.1)

Assume that θj takes the logistic distribution, so

θj =
eXjβ

1 + eXjβ
(16.2)

The log-odds ratio is therefore

λj = log




eXjβ

1+eXjβ

1

1+eXjβ


 = log

[
eXjβ

]
= Xjβj (16.3)

We now have that the log-odds ratio is linear in our variables X and our
parameters β.

Before considering how to estimate β̂j , let’s look at how it will be interpreted.
What we would like to know is how θi changes with a per-unit change in Xij .
Taking the derivative gives

∂θi

∂Xij
= θi(1− θi)βj ⇒ βj =

∂θi/∂Xij

θi(1− θi)
(16.4)
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The best way to understand the coefficient is to pick an “average” data point
Xi for some “average” individual i. For this “typical” data observation, we can
say that ∂θi/∂Xij = θ̂i(1 − θ̂i)β̂j . A simulation of various Xi values could be
used to study the effect on θi. Unfortunately, our analysis is sensitive to the
individual and data point chosen, so we must analyze the results for only specific
scenarios.

We don’t observe θi or β. However, we do observe relative frequencies. Let
Rj =

∑nj

i=1 {Yi = j} be the number of times outcome j was observed. We
estimate θj by θ̂j = Rj/nj , the relative frequency of ”successes” of outcome j.
The log-odds ratio can then be estimated by

λ̂j = log

(
θ̂j

1− θ̂j

)
(16.5)

and we can now use the linear model

λ̂ = Xβ + ε (16.6)

to estimate β. However, we have heteroscedasticity among our error terms, so
weighted least squares is the appropriate estimate technique. To do WLS, we
divide by the square root of the variance.

This example is actually the binary logit model introduced in the next sec-
tion. However, it is transformed into a linear model through the log-odds trans-
formation.

16.4 Binary Logit & Probit Models

In a simple dichotomy (or, binary) model, our response variable takes one of
two possible values, which we code {0, 1}. For example, if a certain dosage
of a drug causes death in a rat, we label the observation a ”0”, otherwise we
label it a ”1”. The standard assumption is that there exists some underlying
(or, latent) variable Y ∗ that is truly driving behavior. In our rat example, Y ∗

t

would represent the maximum dosage that the tth rat can handle before dying
(also known as the rat’s tolerance,) possibly plus or minus some constant. Of
course, we can only observe Y and not Y ∗. Our “true” model in this example
will be Y ∗

t = Xtβ − ut, where Yt = 1 {Y ∗
t > 0} + 0 {Y ∗

t ≤ 0} = {Y ∗
t > 0}. If c

as the actual dosage being given the rats, then a rat will survive if his tolerance
is sufficiently high. We know that tolerance Tt = Y ∗

t + k for some constant k.
If Tt > c, then the rat can withstand the dosage and will survive and we will
observe Yt = 1 (survival.) This is equivalent to T − c > 0, or Y ∗

t > 0 (by setting
the arbitrary constant k = c.) Therefore, the condition Y ∗

t > 0 can be thought
of as the rat withstanding the dosage.
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The probability of a “success” (withstanding the dosage) is written as

θt = P[Yt = 1] = P [Xtβ − ut > 0] = P[Xtβ < ut] = Fut (Xtβ) (16.7)

where Fut(·) is the cdf of the error terms ut.
The difference between a logit model and a probit model is in the as-

sumption of this distribution F .
In the logit model, we assume that ut is distributed by the logistic distribution

θt = Fut(Xtβ) =
1

1 + e−Xiβ
=

eXtβ

1 + eXtβ
(16.8)

In the probit model, we assume that ut/σ is distributed by the standard
normal distribution

θt = Fut(Xtβ) = Φ(Xtβ) =
∫ Xtβ

−∞

1√
2π

e−
λ2
2 dλ (16.9)

where Φ(·) is the notation for the standard normal cdf function (which does
not have a closed-form representation.)

Can you guess the distribution function of ut in the linear probability model
from Section 16.21?

16.5 Binary Model Estimation

16.5.1 Maximum Likelihood Estimates

The likelihood of a single observation (or, the probability of observing a single
observation) is simply

P[Yt = 1]YtP[Yt = 0](1−Yt) = Fu (Xtβ)Yt (1− Fu (Xtβ))(1−Yt) (16.10)

Therefore our likelihood function and log-likelihood function for all T obser-
vations are

L(β|X) =
T∏

t=1

Fu (Xtβ)Yt (1− Fu (Xtβ))(1−Yt) (16.11)

L(β|X) =
T∑

t=1

Yt log [Fu(Xtβ)] +
T∑

t=1

(1− Yt) log [1− Fu (Xtβ)] (16.12)

1The answer is that ut is modelled as if it were distributed uniformly, so that Fu(Xtβ) =
Xtβ, meaning that Pt = Xtβ. However, this is somewhat of a trick question since Xtβ does
not necessarily lie in [0, 1]. Therefore Xtβ is not a proper pdf.
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Note that in the Logit Model, these would be

L(β|X) =
T∏

t=1

(
eXtβ

1 + eXtβ

)Yt (
1

1 + eXtβ

)(1−Yt)

(16.13)

L(β|X) =
T∑

t=1

Yt log
[

eXtβ

1 + eXtβ

]
+

T∑
t=1

(1− Yt) log
[

1
1 + eXtβ

]
(16.14)

Our goal is to maximize L(β|X). The first-order conditions are that β̂ solves

∂L
∂β

=
T∑

t=1

YtXtfu(Xtβ̂)

Fu(Xtβ̂)
+

T∑
t=1

(1− Yt)Xt

(
−fu(Xtβ̂)

)

1− Fu(Xtβ̂)
=

T∑
t=1

(
Yt

Fut
+

Yt − 1
1− Fut

)
Xtfut =

T∑
t=1

(
Yt − Fut

Fut(1− Fut)

)
Xtfut = 0

where Fut = Fu(Xtβ̂) and fut = fu(Xtβ̂)2.

The value β̂MLE solves this equation. However, we don’t have a nice closed-
form representation of this solution. Instead, there exist other methods of cal-
culating estimates equivalent to β̂MLE , such as the Minimum χ2 Method and
the Method of Scoring.

Of course, we need to comment on the second-order conditions (sufficient
conditions) for the maximization problem. This condition is equivalent to
∂2L/∂β2 being a negative definite matrix (i.e., concavity of the objective func-
tion.) The proof is rather technical, but it can be shown that global concavity
exists for logit and probit models3.

Remark 16.1 The MLE estimator is consistent and asymptotically normal as
long as we assume differentiability of Fu(·) (which must be a proper cdf) and
that lim

T→∞

[
(1/n)

∑T
t=1 X ′

tXt

]
is finite and nonsingular4. Specifically

√
n

(
β̂ − β0

)
d−→ N(0, A−1) (16.15)

where

A = lim
T→∞

[
1
T

T∑
t=1

fu(Xtβ)2

Ft(Xtβ) (1− Fu(Xtβ))
X ′

tXt

]
(16.16)

2A useful sidenote is that for any distribution F (x), the quotient f/(1 − F ) is called

the hazard rate and is typically denoted H(x). Note that the hazard rate Hu(Xtβ̂) could
be substituted into the first-order condition if desired. Hazard rates appear often in the
mechanism design literature.

3See Amemiya’s Advanced Econometrics Harvard Press 1985, Chapter 9 for a proof.
4Again, see Amemiya’s 1985 book for a proof.
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We now turn to alternate estimation procedures for the QR model that are
equivalent to the MLE. These are useful since the MLE solution doesn’t have a
nice closed form.

16.5.2 Minimum χ2 Estimates

blah There are actually several variations on the MINχ2 method.

16.5.3 Method of Scoring

The method of scoring is an iterative procedure that generates estimates of
β for the QR model that are equivalent to the MLE solution.

16.5.4 Non-Linear Weighted Least Squares (NLWLS)

blah

16.5.5 Method of Scoring and NLWLS Equivalence

blah. They’re equivalent.

16.6 Multinomial Models

Multinomial models set up very similar to binary models, except that the re-
sponse variable can take on more than two values. For example, we may want to
model the factors that determine who drives to work, who rides a bus to work,
and who takes the subway. In such a model, the dependent variable (mode of
transportation) can take on three possible values.

In general, we will assume that we have T independent observations, each
of which has mt possible alternatives for the dependent variable. The model is
thus

P [Yt = j] = Ftj (Xβ) t ∈ {1, 2, ..., T} j ∈ {1, 2, ..., mt} (16.17)

Note that j 6= 0 since Ft0 = 1−∑mt

j=1 Ftj . Also note that mt depends on t
since not all alternatives will be available for all observations. Some commuters
may not be able to take the subway, for example.

The log-likelihood function is

L (β|X) =
T∑

t=1

mt∑

j=0

{Yt = j} log [Ftj (Xβ)] (16.18)

To find the MLE, we set the score (∂L/∂β) equal to zero and solve for β̂.
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Most of the MLE properties that exist in the binary case will still be true
here. Also, the equivalence between the method of scoring and NLWLS is main-
tained.

16.6.1 Independence of Irrelevant Alternatives

Definition 16.1 A probability measure P satisfies Independence of Irrelevent
Alternatives, or (IIA) if for any nonempty sets of alternatives S and T and
some pair of alternative choices (i, j) ∈ S,

Pi|S
Pj|S

=
Pi|S∪T

Pj|S∪T
(16.19)

where Pi|S is the probability of i being chosen when given only the set of
alternatives S.

Theorem 16.2 IIA implies that the probability of choosing some alternative i
from the set S is identical to the conditional probability of choosing i from

Theorem 16.3 S ∪ T given that some alternative from S ∪ T will be chosen.
Formally,

Pi|S =
Pi|S∪T∑

j∈S

Pj|S∪T
(16.20)

Proof. Since (i, j) ∈ S ∪ T , then the IIA statement can be manipulated to
get

Pi|S∪T

Pj|S∪T
=
Pi|S
Pj|S

(16.21)

Pi|S∪TP
k∈S Pk|S∪T

Pj|S∪TP
k∈S Pk|S∪T

=
Pi|S
Pj|S

(16.22)

If the numerators (and denominators) of these two equations are equal, then
we have our result. However, we can only conclude that they are proportional.
So,

Pi|S∪T∑
k∈S Pk|S∪T

= δPi|S (16.23)

Pj|S∪T∑
k∈S Pk|S∪T

= δPj|S (16.24)
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Summing over all alternatives in S for the first equation gives

∑

i∈S

Pi|S∪T∑
k∈S Pk|S∪T

=
∑

i∈S

δPi|S (16.25)

∑
i∈S Pi|S∪T∑
k∈S Pk|S∪T

= δ
∑

i∈S

Pi|S (16.26)

1 = δ (16.27)

Therefore, the only possible constant of proportionality is δ = 1. So, the
numerators and denominators of equation 16.22 are each equal, proving the
theorem.

In the logit model, we have that Pi|S = exp(Xiβ)P
j∈S exp(Xjβ) , so Pi|S/Pj|S =

exp(Xiβ)
exp(Xjβ) , which doesn’t depend on any other alternative k. Therefore, the IIA
property holds for logit models. However, it does not hold for all models. The
probit model and the nested logit violate this property, for example.

The ”Red Bus, Blue Bus” problem proposed by McFadden is often used
as a strong argument against IIA, but is in reality an argument showing the
importance of ”nesting” highly related choice alternatives. blah.

16.7 Ordered Models

blah

16.8 Hypothesis Tests

blah see Amemiya 1985 Ch9
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Chapter 17

Prelim Problems Solved

The following problems have been selected to be either instructive in some gen-
eral way or to be good practice problems in preparation for the prelim exams1.

17.1 Probability Problems

17.1.1 Drug Testing

Problem 1 A particular heart disease has a prevalence of 1/1000 people. A
test to detect this disease has a false positive rate of 5% (meaning 5% of healthy
people incorrectly are tested as being ill.) Assume that the test diagnoses cor-
rectly every person who has the disease. What is the chance that a randomly
selected person found to have a positive result actually has the disease?

Solution 1.1 The answer is just less than 2%. This counter-intuitive problem
is often given to doctors to show how ”bad” they are at statistics. Apparently,
the question was given to a group of 60 Harvard Medical Students. Almost half
said 95%, the average answer was 56%, and 11 students answered correctly. It
is an example of ”base rate neglect.”

We use Bayes’ Rule (1.36) to solve this problem. Let I indicate ”infected”,
N indicate ”not infected”, and T indicate ”positive test result.”

P[I|T ] =
P [T |I]P [I]

P [T |I]P [I] + P [T |N ]P [N ]
=

(1) (1/1000)
(1) (1/1000) + (0.05) (999/1000)

=

1
1 + 0.05 ∗ 999

=
1

50.95
= 0.01 962 7 ≈ 2%

The reason so many people get this problem wrong is that they ignore the
fact that the rarity of the disease (the ”base weight”) outweighs the seemingly

1Peter piper picked a peck of pickled peppers.

125
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small error in the test. In a group of 100,000 people, we would expect 100 to be
infected. From the other 99,900 people, we expect 4995 of them (5%) to return
false positives. That’s 5095 positive test results, of which only 100 are accurate.
Therefore, 100 out of 5095 is our answer, which reduces to 1/50.95 and matches
our above answer.

17.1.2 The Birthday Problem

Problem 2 Assume the probability that a person is born on any given day
is 1/365 (and exclude Feb. 29th.) Given a set of k individuals, what is the
probability that at least two of them have the same birthday?

Solution 2.1 To solve this, consider the compliment event of no matches.
P [at least one match] = 1− P [no matches]

The probability of no matches can be solved as a counting problem.
P [no matches] = # ways to have no matches

# possible outcomes = 365·364·...· (365−k+1)
365k =

(
365!

(365−k)!

)
/

(
365k

)

Here we are assigning birthdays to individuals, so birthdays are like buckets
and individuals are like balls - we have n birthdays and k individuals. It makes
sense to assign multiple individuals the same birthday, but it doesn’t make sense
to assign multiple birthdays to the same individual. The number of ways to
assign birthdays to individuals without any matches is choosing birthdays without
replacement. Since individuals are distinct, order matters. Therefore, we use the
formula n!/ (n− k)!. For the denominator, we are looking at all possible ways to
assign birthdays to individuals. Although order still matters (since individuals
are still distinct,) we now allow replacement. Therefore, we use the formula nk.

17.1.3 The Monty Hall Problem

Problem 3 Behind 3 labelled doors (A, B, and C) are randomly placed two
goats and a car. A contestant (who values cars much more than goats) is asked
to choose one of the three doors. After the choice is made, Monty Hall (who
knows the location of the car) opens one of the two unchosen doors - making
sure to open a door containing a goat. If both unchosen doors contain goats,
he chooses between them with equal probability. He then asks the contestant to
choose between the door first chosen or the remaining closed door. Whatever
lies behind the chosen door will be given to the contestant Which option, if any,
gives the highest probability of revealing the car? Should our contestant stay or
switch?

Solution 3.1 This exercise in conditional probability emphasizes the impor-
tance of defining events properly. Let ”A” be the event that the car is behind
door A, and so on. Let MB be the event that Monty opens door B, and so on.
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Assume (without loss of generality) that the contestant chooses door A. The
probability that the prize is behind the chosen door given that it’s not behind
door B is

P [A|MB ] =
P [A ∩MB ]
P [MB ]

=
P [MB |A] P [A]

P [MB ]

P [A] = 1/3 since the prizes are placed randomly. If the car is behind door A,
then it is assumed that Monty chooses the remaining doors with equal probability.
Therefore, P [MB |A] = 1/2.

To solve P [MB ], we need to consider all possible outcomes:
{A ∩MB , A ∩MC , B ∩MC , C ∩MB}
The event that B is chosen is {A ∩MB , C ∩MB}. The probability of this

event is P [A ∩MB ] + P [C ∩MB ].

P [MB ] = P [A ∩MB ] + P [C ∩MB ]
= P [MB |A]P [A] + P [MB |C]P [C]
= (1/2) (1/3) + (1) (1/3) = 1/2

Putting all of this information together, we have

P [A|MB ] =
P [MB |A] P [A]

P [MB ]
=

(1/2) (1/3)
(1/2)

=
1
3

Given that Monty opens door B, the car can’t be behind door B. Therefore,

2
3

= P
[
(A|MB)C

]
= P [C|MB ]

So, if our contestant stays with his originally chosen door, his probability of
winning the car is 1/3, but if he switches to the remaining unopened door, his
probability of winning the car doubles to 2/3.

A good way to explain this problem without using statistics is to consider the
following. What if there were 1,000,000 doors and, after the contestant chose
one, Monty opened 999,998 other doors. Clearly, the chance that the contestant
chose the right door on the first guess is 1/1,000,000. When Monty opens all
but one other door, it becomes obvious that the remaining door almost certaintly
contains the prize. In effect, when Monty opens doors, he ”compresses” the
probability weight on all the other doors into the one door he leaves closed.

17.1.4 Conditional Probability 1

Problem 4 If X and U are independent random variables symmetric about
zero, prove that P [U > 0|X < U ] ≥ P [U < 0|X < U ]
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Solution 4.1 For the first part, we use Baye’s rule

P [U > 0|X < U ] =
P [X < U |U > 0]P [U > 0]

P [X < U |U > 0]P [U > 0] + P [X < U |U < 0]P [U < 0]
(17.1)

=
P [X < U |U > 0]

P [X < U |U > 0] + P [X < U |U < 0]
(17.2)

=
P [X < U |U > 0]
P [X < U ]

(17.3)

Similarly,

P [U < 0|X < U ] =
P [X < U |U < 0]
P [X < U ]

(17.4)

Substituting these values gives

P [U > 0|X < U ] ≥ P [U < 0|X < U ] (17.5)
P [X < U |U > 0]
P [X < U ]

≥ P [X < U |U < 0]
P [X < U ]

(17.6)

P [X < U |U > 0] ≥ P [X < U |U < 0] (17.7)
P [X < U & U > 0]

P [U > 0]
≥ P [X < U & U < 0]

P [U < 0]
(17.8)

P [X < U & U > 0] ≥ P [X < U & U < 0] (17.9)
∫ ∞

0

(∫ u>0

−∞
f (x) dx

)
f (u) du ≥

∫ 0

−∞

(∫ u<0

−∞
f (x) dx

)
f (u) du (17.10)

∫ ∞

0

(∫ u>0

−∞
f (x) dx

)
f (u) du ≥

∫ 0

−∞

(∫ u<0

−∞
f (x) dx

)
f (u) du (17.11)

Note that by symmetry of U around zero,
∫ ∞

0

(
1
2

)
f (u) du =

1
2

∫ ∞

0

f (u) du =
1
4

=
1
2

∫ 0

−∞
f (u) du =

∫ 0

−∞

(
1
2

)
f (u) du

(17.12)
Similary, by symmetry of X around zero,

∫ u>0

−∞
f (x) dx >

1
2

>

∫ u<0

−∞
f (x) dx (17.13)

Therefore, we have that
∫ ∞

0

(∫ u>0

−∞
f (x) dx

)
f (u) du ≥

∫ ∞

0

(
1
2

)
f (u) du =

1
4

=
∫ 0

−∞

(
1
2

)
f (u) du ≥

∫ 0

−∞

(∫ u<0

−∞
f (x) dx

)
f (u) du (17.14)

Of course, this proof requires symmetry of both X and U .
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17.1.5 Conditional Probability 2

Problem 5 Assume X and Y are independent random variables with cdfs of
FX (x) and FY (y) respectively where P [X ≥ 0] = P [Y ≥ 0] > 0 and P [X > a] ≥
P [Y > a] ∀a ≥ 0 and with strict inequality for some a ≥ 0. Show that P [X > Y |X, Y > 0] >
1/2

Solution 5.1 First use the definition of conditional probability.

P [X > Y |X,Y > 0] =
P [X > Y & X, Y > 0]

P [X, Y > 0]
(17.15)

Next use the fact that the variables are independent.

P [X > Y |X, Y > 0] =
P [X > Y > 0]
P [X, Y > 0]

(17.16)

=
P [X > Y > 0]

P [X > 0]P [Y > 0]
(17.17)

=

∫∞
0

∫∞
y

fX (x) dxfY (y) dy

(1− FX (0)) (1− FY (0))
(17.18)

=

∫∞
0

(1− FX (y)) fY (y) dy

(1− FX (0)) (1− FY (0))
(17.19)

≥
∫∞
0

(1− FY (y)) fY (y) dy

(1− FX (0)) (1− FY (0))
(17.20)

=

∫∞
0

fY (y) dy − ∫∞
0

FY (y) fY (y) dy

(1− FX (0)) (1− FY (0))
(17.21)

=
(1− FY (0))−

[
1
2FY (y)2

]∞
0

(1− FX (0)) (1− FY (0))
(17.22)

=
(1− FY (0))− 1

2

(
1− FY (0)2

)

(1− FX (0)) (1− FY (0))
(17.23)

=
1
2 − FY (0) + 1

2FY (0)2

(1− FX (0)) (1− FY (0))
(17.24)

=
1
2 (1− FY (0))2

(1− FX (0)) (1− FY (0))
(17.25)

=
1
2

(1− FY (0))
(1− FX (0))

(17.26)

=
1
2

(17.27)

The inequality in Equation 17.20 comes from the fact that P [X ≥ a] ≥
P [Y ≥ a] ∀a ≥ 0, which implies that (1− FX (a)) ≥ (1− FY (a))∀a ≥ 0.

The fraction in Equation 17.26 is equal to one since P [X ≥ 0] = P [Y ≥ 0]
implies that 1− FX (0) = 1− FY (0).
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17.2 Transformation Problems

Problem 6 Let X have pdf fX (x) = 2
9 (x + 1), −1 ≤ x ≤ 2. Define Y = X2.

Find fY (y).

Solution 6.1 First note the range of Y to be y ∈ [0, 4]. Also note that X2 is
not monotonic over the entire domain of Y , so we will partition the problem
accordingly.

FY (y) = P [Y ≤ y] (17.28)

= P
[
X2 ≤ y,−1 ≤ X < 0

]
+ P

[
X2 ≤ y, 0 ≤ X ≤ 2

]
(17.29)

= P [X ≥ −√y,−1 ≤ X < 0] + P [X ≤ √
y, 0 ≤ X ≤ 2] (17.30)

= P [max [−√y,−1] ≤ X < 0] + P [0 ≤ X ≤ max (
√

y, 2)] (17.31)
= P [max [−√y,−1] ≤ X < 0] + P [0 ≤ X ≤ √

y] (17.32)
= FX (0)− FX (max [−√y,−1]) + FX (

√
y)− FX (0) (17.33)

=
{

FX

(√
y
)− FX

(−√y
)
if −√y > −1

FX

(√
y
)− FX (−1) if −√y ≤ −1 (17.34)

=
{

FX

(√
y
)− FX

(−√y
)
if 0 ≤ y < 1

FX

(√
y
)
if 1 ≤ y ≤ 4 (17.35)

= (FX (
√

y)− FX (−√y)) {0 ≤ y < 1}+ FX (
√

y) {1 ≤ y ≤ 4} (17.36)

At this point, we have an acceptable expression of FY (y). We differentiate
to get

fY (y) =

(
fX

(√
y
)

2
√

y
− fX

(−√y
)

2
(−√y

)
)
{0 ≤ y < 1}+

fX

(√
y
)

2
√

y
{1 ≤ y ≤ 4}

(17.37)

=
fX

(√
y
)

+ fX

(−√y
)

2
√

y
{0 ≤ y < 1}+

fX

(√
y
)

2
√

y
{1 ≤ y ≤ 4} (17.38)

Finally, substituting in the expression for fX (x) gives the final answer.

fY (y) =
2
9

(√
y + 1

)
+ 2

9

(
1−√y

)

2
√

y
{0 ≤ y < 1}+

2
9

(√
y + 1

)

2
√

y
{1 ≤ y ≤ 4}

(17.39)

=
2

9
√

y
{0 ≤ y < 1}+

(
1
9

+
1

9
√

y

)
{1 ≤ y ≤ 4} (17.40)

17.3 E[Y |X] Problems

Problem 7 If X and Y are continuous random variables, show that

EY [[Y − E[Y |X]] |X] = 0 (17.41)
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Solution 7.1 Breaking this apart and solving gives

EY [Y |X]− EY [EY [Y |X] |X] = EY [Y |X]− EY [EY [Y |X]] =
EY [Y |X]− EY [Y |X] = 0

Problem 8 If X and U are independent standard normal random variables and
Y = X + U , then prove or disprove the following:

Question 8.1 E [Y |X = t] is increasing in t

Question 8.2 E [X|Y = t] is increasing in t

Question 8.3 What if X and U are nonconstant, independent random vari-
ables symmetric about zero, but not necessarily normal?

Solution 8.1 First be warned that we are asked to ”prove or disprove.” Never
forget that this opens the door for false statements!

The first part is the simplest. E [Y |X = t] = E [X + U |X = t] = E [t + U ] =
t +E [U ] = t. Clearly t is increasing in t, so we have our proof. Once again, we
did not require normality, so this proof extends to the more general question.

The second part is the trickiest. There are two traps here. First, it is tempt-
ing to say

E [X|Y = t] = E [X|X + U = t] = E [X|X = t− U ] (17.42)
= E [t− U ] = t− E [U ] = t (17.43)

However, this statement is incorrect. It is not true that E [X|X = t− U ] =
E [t− U ] .

Fortunately, we have Theorem 3.5 that says X|Y ∼ N
(
µX + ρ (σX/σY ) (y − µY ) , σ2

X

(
1− ρ2

))
if X and Y are normal. Since Y is the sum of two standard normals, Y ∼
N (0, 2) by Theorem 3.6. Therefore,

E [X|Y = t] = µX + ρ (σX/σY ) (y − µY ) (17.44)
= 0 + ρ (1/2) (t− 0) (17.45)

= t
ρ

2
(17.46)

which is clearly increasing in t. However, since Theorem 3.5 applies only to
normal random variables, we have not answered the more general case.

Normally distributed variables have nice single-peaked and continuous den-
sity functions. If a counter-example exists to disprove this statement for the
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general case, it would likely be an example with discrete, multi-peaked den-
sities. In fact, a good counter example is the variables X ∈ {−1, 0, 1} and
U ∈ {−10, 0, 10}. For this example, we can assume that P assigns equal weight
(1/3) to each of the 3 outcomes for each variable, but we really don’t need any as-
sumptions about P at all. We know that Y ∈ {−11,−10,−9,−1, 0, 1, 9, 10, 11},
therefore t can only take those values. Furthermore, E [X|Y = t] is completely
deterministic. If t = −11, then we know that X = −1, so E [X|Y = −11] = −1.
Continue this procedure through the 9 possibilities.
E [X|Y = −10] = 0
E [X|Y = −9] = 1
E [X|Y = −1] = −1
E [X|Y = 0] = 0
E [X|Y = 1] = 1
E [X|Y = 9] = −1
E [X|Y = 10] = 0
E [X|Y = 11] = 1
These expectations have been listed in order of increasing t, but the value

E [X|Y = t] is certainly not increasing. Therefore, we have our counterexample.
This is a very tough question because very few counterexamples do exist. Even
in this example, E [U |Y = t] is (weakly) increasing in t.

17.4 Gauss-Markov Problems

Problem 9 Prove that

min
g(X)

E
[
(Y − g(X))2 |X

]
= E [Var[Y |X]] (17.47)

Solution 9.1 This is essentially a version of the Gauss-Markov Theorem proof.
We use the usual trick of adding and subtracting E[Y |X] to our equation to
proceed. Also note that the expectation operators in the given equation are ex-
pectations over Y with X being fixed.

EY

[
(Y − g(X))2 |X

]
= EY





(Y−E (Y |X)) + (E (Y |X)︸ ︷︷ ︸

“the usual trick”

− g(X))




2

|X




(17.48)
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= EY

[
(Y − E [Y |X])2 + (E [Y |X]− g(X))2

+2 (Y − E [Y |X]) (E [Y |X]− g(X)) |X
]

= EY

[
(Y − E [Y |X])2 |X

]
+ EY

[
(E [Y |X]− g(X))2 |X

]

+ 2 (E [Y |X]− g(X))EY [(Y − E [Y |X]) |X]︸ ︷︷ ︸
=0 by Problem 7

= EY

[
(Y − E [Y |X])2 |X

]
+ EY

[
(E [Y |X]− g(X))2 |X

]

> EY

[
(Y − E [Y |X])2 |X

]
∀g(X) 6= E[Y |X]

Therefore, to minimize EY

[
(Y − g(X))2

]
, we choose g(X) = E [Y |X], which

is our least-squares solution. Substituting this into our expression and using
Definition 1.30 gives

E
[
(Y − g(X))2 |X

]
= E

[
(Y − E [Y |X])2 |X

]
= E [Var [Y |X]] (17.49)

17.5 Basic Binary Models

Problem 10 Consider the following regression model

Y =
{

1 if Xβ − u > 0
0 if Xβ − u ≤ 0 (17.50)

Assume u s independent of X and u ∼ Fu(·), where Fu(·) is known. Find
E [Y |X] and write out the sample analogue of E [Y − E [Y |X]]2 for this model.
Develop an estimator of β based on this statistic.

Solution 10.1 Before beginning, note that this looks suspiciously like the rat
tolerance problem posed in Section 16.4. We know from that section that P [Y = 1] =
P [u < Xβ] = Fu (Xβ). Given this fact, we know that E [Y |X] = P [Y = 1] =
Fu (Xβ), which we will use in our sample analogue.

The sample analogue of an expectation is an average, so we’ll use as our
analogue for E [Y − E [Y |X]]2

1
n

n∑

i=1

(Yi − Fu (Xiβ))2 (17.51)

Using the weak law of large numbers confirms that our sample analogue con-
verges (in probability) to the expectation. This statistic we’ve generated is also
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the MSE, or mean-squared error. Recall that the OLS estimate minimizes the
mean-squared error, so we shall use the same technique here to develop our
estimate.

Goal: minβ
1
n

∑n
i=1 (Y − Fu (Xβ))2. The FOCs are

1
n

n∑

i=1

2 (Yi − Fu (Xiβ)) (−f (Xiβ)Xi) = 0 (17.52)

n∑

i=1

Xif(Xiβ) (F (Xiβ)− Yi) = 0 (17.53)

∑
Xif(Xiβ

∗)F (Xiβ
∗) =

∑
XiYi (17.54)

Although we can’t get a nice solution to this problem, we can say that β∗ that
satisifies these first-order conditions will be our estimate. Furthermore, it is the
estimate that minimizes residuals and therefore appears to be a BLUE estimate,
though this should be checked formally.

17.6 Information Equality - OLS

Problem 11 Verify the Information Equality for β in the linear OLS model,
assuming ε ∼ N

[
0, σ2I

]
. Use this result and the fact that the OLS estimate

is BLUE to show that Var [b] = σ2 (X ′X)−1. Do NOT calculate this variance
directly.

Solution 11.1 First recall the information equality:

I (θ) ≡ Eθ [s(θ)s(θ)′] = −E
[
∂2L(θ)
∂θ ∂θ′

]
(17.55)

Since ε ∼ N
[
0, σ2I

]
, then Y ∼ N

[
Xβ, σ2I

]
. Therefore, the likelihood of yi

given xi is

f(yi|Xi) =
1√
2πσ

exp

[
−1

2

(
yi −Xiβ

σ

)2
]

(17.56)

So, the likelihood function is

L(Y |X) = f(Y |X) =
n∏

i=1

1√
2πσ2

exp

[
−1

2

(
yi −Xiβ

σ

)2
]

(17.57)

=
(
2πσ2

)−n/2
exp

[
− 1

2σ2

n∑

i=1

(yi −Xiβ)2
]

=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
(Y −Xβ)′ (Y −Xβ)

]
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The log-likelihood function is

L(Y |X) = −n

2
log [2π]− n

2
log

[
σ2

]− 1
2σ2

(Y −Xβ)′ (Y −Xβ) (17.58)

We want to differentiate with respect to β, so we get the following

s(β) =
∂L(Y |X)

∂β
= − 1

2σ2

∂

∂β
(Y ′Y − Y ′Xβ − β′X ′Y + β′X ′Xβ) =

− 1
2σ2

(−2X ′Y + 2X ′Xβ) =
1
σ2

X ′(Y −Xβ) =
1
σ2

X ′ε

Since we have that E [X ′ε] = 0, then we get our first result that E [s(Y |X)] =
0, which agrees with Lemma 5.5.

Taking second derivatives of the log-likelihood gives

∂2L(Y |X)
∂β ∂β′

=
1
σ2

∂

∂β
X ′(Y −Xβ) = − 1

σ2
X ′X (17.59)

Taking the negative expectation over Y |X is equivalent to multiplying the
above by −1. So,

−EY

[
∂2L(Y |X)

∂β ∂β′
|X

]
=

1
σ2

X ′X (17.60)

So, the right side of the information equality will be

−E
[
∂2L(Y |X)

∂β ∂β′
|X

]
= EY [s(β) s(β)′] (17.61)

The information matrix for the linear model is therefore

I(β) = E

[(
1
σ2

X ′ε
)(

1
σ2

X ′ε
)′
|X

]
=

X ′X
σ4

E [εε′] =
1
σ2

X ′X (17.62)

Combining equations 17.62 and 17.60 gives the information equality

I(β) =
1
σ2

X ′X = −EY

[
∂2L(Y |X)

∂β ∂β′
|X

]
(17.63)

Finally, we know that the OLS estimate is BLUE. Therefore, it achieves a
Cramer-Rao Lower Bound of

Var [b] = CRLB = I (β)−1 = σ2 (X ′X)−1 (17.64)

which give the final result that Var [b] = σ2 (X ′X)−1.
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17.7 Information Equality - Binary Logit

Problem 12 Define the score and Hessian for the binary logit model. Demon-
strate the information equality. Do any special properties of the Hessian suggest
an easy estimation method other than MLE?

Solution 12.1 To solve this, we will use F (Xiβ) in place of the more compli-
cated logistic distribution, and substitute the actual distribution in when needed.

The likelihood function is

L (β) =
2∏

i=1

(F (Xiβ))Yi (1− F (Xiβ))1−Yi (17.65)

L (β) =
2∏

i=1

(F (Xiβ))Yi (1− F (Xiβ))1−Yi (17.66)

L (β) =
2∑

i=1

(Yi log [F (Xiβ)] + (1− Yi) log [1− F (Xiβ)]) (17.67)

Taking the first derivative gives the score

s(β) =
2∑

i=1

(
Yi

f (Xiβ)
F (Xiβ)

Xi + (1− Yi)
−f (Xiβ)

1− F (Xiβ)
Xi

)
(17.68)

At this point, we substitute the logistic distribution back in to get a formula
for the hazard rate h (Xiβ) and take its derivative

F (Xiβ) =
exp (Xiβ)

1 + exp (Xiβ)
(17.69)

f (Xiβ) =
(1 + exp (Xiβ)) X ′

i exp (Xiβ)− exp (Xiβ)X ′
i exp (Xiβ)

(1 + exp (Xiβ))2
=

X ′
i exp (Xiβ)

(1 + exp (Xiβ))2

(17.70)
f (Xiβ)
F (Xiβ)

=
1

1 + exp (Xiβ)
X ′

i = h (Xiβ) (17.71)

∂h (Xiβ)
∂β

=
−1

(1 + exp (Xiβ))2
X ′

iXi (17.72)

Also note that

f (Xiβ)
1− F (Xiβ)

=
exp (Xiβ)

1 + exp (Xiβ)
X ′

i = F (Xiβ)X ′
i (17.73)

Substituting into the score gives

s(β) =
2∑

i=1

(Yih (Xiβ)Xi − (1− Yi)F (Xiβ)X ′
i) (17.74)
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Taking the derivative
H (β) = (17.75)

Solution 12.2 Alternate approach (unfinished!) blah
Let f = f (Xiβ) , f ′ = ∂f/∂β and F = F (Xiβ). Taking second derivatives

gives

H (β) =
2∑

i=1

(
Yi

Ff ′ − f2

F 2
X ′

iXi − (1− Yi)
(1− F ) f ′ + f2

(1− F )2
X ′

iXi

)
(17.76)

17.8 Binary Choice Regression

Problem 13 Define the Binary Choice Model as

Y =
{

1 if Xβ − ε > 0
0 otherwise (17.77)

where ε is independent of X and has some known continuous cdf F (ε).
Find E[Y |X] for this model. How would you estimate β? How would you

estimate E [Y |X]?

Solution 13.1 To answer this question, refer back to the Binary Logit & Probit
discussion in Section 16.4.
E [Y |X] = E

[
χ{Xβ−ε>0}

]
= P [Xβ − ε > 0] = F (Xβ)

The “correct” method for estimating β would be maximum likelihood esti-
mation. This is covered in Section 16.5.1 in sufficient detail. Another possible
option is to minimize the distance between Yi and E [Yi|X] across all i simulta-
neously. To do this, we would set up the equation

min
β

n∑

i=1

(Yi − F (Xiβ))2 (17.78)

and solve for the first- and second-order conditions. This is equivalent to the
normal equations in the OLS procedure.

If asked this on an exam, it would be best to use the MLE method as it is
the technique actually used in practice.
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17.9 MLE, Frequency, and Consistency

Problem 14 Assume that Yi ∈ {0, 1}. Let P [Yi = 1] = θ and
∑n

i=1 Yi = R.

1. Show that R/n is the MLE estimate of θ.

2. Calculate the variance of
√

n
(
θ̂ − θ

)

3. Construct a consistent estimator of the variance of
√

n
(
θ̂ − θ

)

4. Construct a simple Wald statistic to test H0 : θ = 1/2

Solution 14.1 To perfom MLE, we set up the likelihood function, take its log,
and look at the FOC’s.

L (θ) = θR (1− θ)n−R (17.79)
L (θ) = R log [θ] + (n−R) log [1− θ] (17.80)

∂L (θ)
∂θ

=
R

θ∗
− (n−R)

1− θ∗
= 0 (17.81)

R− nθ∗

θ∗ (1− θ∗)
= 0 (17.82)

θ∗ =
R

n
= θ̂MLE (17.83)

The finite-sample variance calculation is more brute-force.

Var
[√

n
(
θ̂ − θ

)]
= n Var

[
θ̂ − θ

]
(17.84)

= n Var

[
n∑

i=1

Yi

n

]
+ n Var [θ] (17.85)

=
n

n2

n∑

i=1

Var [Yi] + 0 (17.86)

=
1
n

n Var [Y1] (17.87)

= E
[
(Y1 − θ)2

]
(17.88)

= E
[
Y 2

1 − 2Y1θ + θ2
]

(17.89)

= E
[
Y 2

1

]− 2θ2 + θ2 (17.90)

= P {Y1 = 1} − θ2 (17.91)

= θ − θ2 (17.92)
= θ (1− θ) (17.93)
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17.10 Bayesian Updating

Problem 15 A random variable p is known to have a Beta distribution with
parameters α and β, denoted B [α, β]. The pdf is given by

fp (p) =
Γ (α + β)
Γ (α) Γ (β)

pα−1 (1− p)β−1 (17.94)

E [p] =
α

α + β
(17.95)

Var [p] =
αβ

(α + β)2 (α + β + 1)
(17.96)

We now observe k successes in n independent binary trials (say, flips of
an unfair coin) with a probability of success in each flip of p. If our prior
distribution for p is B (α, β), what is our posterior after the trials are observed?
What happens as the number of trials goes to infinity?

Solution 15.1 Recall the Bayesian formula

π(p|k) =
π(p)f (k|p)

fk(k)
=

f (p, k)
fk(k)

(17.97)

Here, our prior is a Beta distribution and our observed data follows a bino-
mial distribution. k is our data and p is our parameter to estimate. We will
use the following solution process:

1. Use the two known distributions to calculate the joint distribution f(p, k).

2. Integrate the joint distribution to get the marginal distribution fk(k)

3. Divde the joint by the marginal to get the posterior distribution.

To get the joint distribution f(k, p), we multiply the prior and the observed
distributions

f (k, p) =
(

Γ (α + β)
Γ (α) Γ (β)

pα−1 (1− p)β−1

)((
n

k

)
pk (1− p)n−k

)
(17.98)

=
(

n

k

)
Γ (α + β)
Γ (α) Γ (β)

pk+α−1 (1− p)n−k+β−1

Integrating over [0, 1] (the possible values of p) gives

fk (k) =
∫ 1

0

(
n

k

)
Γ (α + β)
Γ (α) Γ (β)

pk+α−1 (1− p)n−k+β−1
dp (17.99)

=
(

n

k

)
Γ (α + β)
Γ (α) Γ (β)

∫ 1

0

pk+α−1 (1− p)n−k+β−1
dp

=
(

n

k

)
Γ (α + β)
Γ (α) Γ (β)

(
Γ (k + α) Γ (n− k + β)

Γ (n + α + β)

)
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The last step in this set of equations is quite tricky. Recall that Γ(α) =∫∞
0

tα−1e−tdt and work from there.
We know have all the pieces of our puzzle.

π (p|k) =
f (k, p)
fk (k)

(17.100)

=

(
n
k

) Γ(α+β)
Γ(α)Γ(β)p

k+α−1 (1− p)n−k+β−1

(
n
k

) Γ(α+β)
Γ(α)Γ(β)

(
Γ(k+α)Γ(n−k+β)

Γ(n+α+β)

)

=
Γ (n + α + β)

Γ (k + α) Γ (n− k + β)
pk+α−1 (1− p)n−k+β−1

= B [(k + α) , (n− k + β)]

So, our posterior is of the same form as our prior - a Beta distribution.
However, the parameters have updated with the addition of new information.
The new mean and variance are

E [p] =
k + α

n + α + β
(17.101)

Var [p] =
(k + α) (n− k + β)

(α + n + β)2 (α + n + β + 1)
(17.102)

As n increases to infinity (and k increases with it in proportion,) the mean
converges to k/n and the variance converges to 0. The important thing to notice
is that as we gain more and more data, we rely less and less on our prior beliefs
and update ”completely” on the observed data.

17.11 “Research” Problems

All of these problems pretend that you are a researcher performing some statis-
tical analysis on some data you’ve gathered. The questions almost always have
some discussion of model misspecification and endogeneity.

Problem 16 You have the following variables:

• yit = 1 if running for reelection, 2 if running for higher office, 0 if retiring

• xit1 = 1 for Democrat, 0 for Republican

• xit2 = 1 if scandal while in office, 0 otherwise

• xit3 = amount of ”pork barrel” benefits flowing to the incumbent’s
district while in office

• xit4 = difference between ideology rating of candidate and district
(rated by Americans for Democratic Action.)

• xit5 = 1 if Senate seat is open in that state, 0 otherwise
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• uit ∼ N
[
0, σ2

]
, E [uituis] = 0 ∀t, s

Answer the following questions

1. You run the OLS model yit = α+xit1β1 +εit, but the “true” model should
include both xit1 and xit2. If, in the true model, β1 > 0, β2 > 0, and
σxit1,xits

= 0.5, then what effect will this have on your model?

2. Show how you would test to see if xit2 through xit5 have a significant
impact on the model (and should therefore be included.)

3. If the true model contains all 5 variables, but εit = uit− ρεi(t−1), and you
ran a model including all 5 variables but ignoring this autocorrelation, what
effect will this have on your ability to estimate the coefficients? What will
happen to the standard errors of your coefficients? How can you correct
for this?

4. A colleague argues that the ”pork” variable is endogenous to the decision
of an incumbent to run. In other words, candidates who know they’re
going to run again work harder to get more ”pork” into their districts,
while those retiring won’t.

(a) How would this affect your OLS results?

(b) What can you do to eliminate these problems? What are the proper-
ties of your new estimators?

5. Another colleague warns that your response variable is discrete, not con-
tinuous..

(a) Is this a problem for your OLS results?

(b) Have you violated OLS assumptions?

(c) How might you estimate the parameters in your model to fix these
problems?

Solutions:
First, demean each variable so that we can ignore the constant term.

Solution 16.1 If we run the restricted model, the omitted variable (X2) goes
into the error term. So, εit = xit2β2 + uit. Therefore, our estimate will be

β̂1 = (X ′
1X1)

−1
X ′

1 (X1β1 + X2β2 + u) (17.103)

= (X ′
1X1)

−1
X ′

1X1β1 + (X ′
1X1)

−1
X ′

1X2β2 + (X ′
1X1)

−1
X ′

1u

= β1 + (X ′
1X1)

−1
X ′

1X2β2 + (X ′
1X1)

−1
X ′

1u

In expectation, the first term is β and the third term is 0, but the middle
term is positive (since X1 is positively correlated with X2 and β2 > 0, all by
assumption.) Therefore, we have an upward bias in our estimate of β1.
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Solution 16.2 There are several tests available. The most straight-forward is
to run the restricted model (using only X1) and get a vector of residuals ûR.
We then regress these residuals on the omitted variables to see if the ”observed
error” in our restricted model is highly correlated with the omitted variables.
If nR2

AUX (which is distributed χ2
k−m, k = 5,m = 4) is large, we reject the

hypothesis that 0 = β2 = ... = β5.

Solution 16.3 This is a case of AR(1). Ignoring serial correlation will still
give unbiased estimates (and consistent,) though they will be inefficient (because
they won’t acheive a Cramer-Rao Lower Bound.) The variance of the OLS
estimate will be

Var [b] = E
[
(b− E [b]) (b− E [b])′

]
(17.104)

= E
[(

(X ′X)−1
X ′ (Xβ + ε)− β

)(
(X ′X)−1

X ′ (Xβ + ε)− β
)′]

= E
[(

β + (X ′X)−1
X ′ε− β

)(
β + (X ′X)−1

X ′ε− β
)′]

= E
[
(X ′X)−1

X ′εε′X (X ′X)−1
]

= (X ′X)−1
X ′ΩX (X ′X)−1

If there were no serial correlation, then Ω = σ2I(T ). Note that if we used
the GLS estimator β̂, we would have

Var
[
β̂
]

= E
[(

β̂ − β
)(

β̂ − β
)′]

(17.105)

= E
[(

X ′Ω−1X
)−1

X ′εε′X
(
X ′Ω−1X

)−1
]

=
(
X ′Ω−1X

)−1
X ′Ω−1X

(
X ′Ω−1X

)−1

=
(
X ′Ω−1X

)−1

Compare the two variances by the following

Var
[
β̂
]

?
< Var [b] (17.106)

(
X ′Ω−1X

)−1 ?
< (X ′X)−1

X ′ΩX (X ′X)−1 (17.107)

I(T ) ?
< (X ′X)−1

X ′ΩX (X ′X)−1 (
X ′Ω−1X

)
(17.108)

(X ′X)−1
X ′ΩX (X ′X)−1 (

X ′Ω−1X
)− I(T ) ?

> 0 (17.109)

This condition should be true since the matricies are all positive definite...
but it’s not established by this argument. Regardless, we know that the GLS
estimate will produce unbiased, consistent, and efficient estimates and should
therefore be used to correct this problem. If Ω is unknown, we can use a FGLS
procedure instead.
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Solution 16.4 Ignoring endogeneity between variables is a serious offense.

1. It creates correlation between the endogenous explanatory variable and the
error term in the model, so the estimates will be biased and inconsistent.

2. To correct this, consider either finding an instrumental variable to replace
the endogenous variable, or perform a Two-Stage Least Squares procedure.
To do this, regress the endogenous variable on all exogenous variables in
the model to get predicted values for the endogenous variables. Those can
be inserted into the original equation. This gives cosistent estimates that
(usually) are asymptotically normally distributed.

Solution 16.5 Since we have a discrete model, this is a serious problem for
our OLS model.

1. A predicted value of 1.5 is meaningless.

2. This introduces fairly serious heteroscedasticity into the model since the Y
terms take very limited numbers of values. This means that e = Y −Xβ
can only take on 3 possible values for a given (X,Y ) observation. Even
more seriously, the assumption that E [ε|X] = 0 forces the probability of
each Y value to be seriously constrained. Formally,

E [ε|X] = P0 (0−Xβ) + P1 (1−Xβ) + (1− P0 − P1) (2−Xβ) = 0
(17.110)

where Pi = P [Y = i] ∀i ∈ {0, 1, 2}. Solving for P0 gives a function in
terms of P1 and thus forces these two probabilities to be related in a specific
way. If they aren’t, then the error term is not of zero conditional mean,
violating an OLS assumption.

3. We need to switch to a qualitative response (QR) model instead of a linear
model. A trichotomous probit would be appropriate since the errors are
assumed to be normally distributed. If they were of a logistic distribution,
we could use logit. This would estimate the probabilities of each action
being taken.

Problem 17 You have a dataset with the following variables:

• Vidt = % of voters in each district who voted for the incumbent (1972-
1994)

• Sidt = campaign expenditures of incumbent

• Scdt = campaign expenditures of challenger

• Qidt = quality of the challenger. coded 1 if challenger held previous polit-
ical office, 0 otherwise.

Assume the “true” model is Vidt = β1 + β2Sidt + β3Scdt + β5Qidt + µidt.
Assume βj > 0 ∀j and all variables have positive correlation.
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1. If you exclude Qidt, will the coefficients you estimate allow you to make
correct inferences about the effects of the other variables? Will your esti-
mate of β2 be correct? If not, will it be over- or under-estimated?

2. Now you estimate the correct model, but find a problem. The data comes
from the same geographic area in 2-year intervals over 22 years. Is the
OLS estimator still BLUE?

3. You also note that your data comes from very different geographic areas of
different sizes and demographic characteristics. Is this a problem? Will
OLS estimates still be BLUE?

4. You run the full model. A colleague tells you that the impact of incumbent
expenditures on vote shares has a diminishing marginal return. How would
you re-estimate the model to take this into account? Is the OLS estimator
still appropriate?

5. A colleague says ”studies show that there is endogeneity between incumbent
expenditures and vote shares.” What do they mean? Does this violate an
OLS assumption in your model? How can you deal with this? Show how
your solution will yield consistent estimates.

Solution 17.1 Excluding the variable will cause overestimation of the remain-
ing coefficients

Solution 17.2 This indicates serial correlation. The OLS estimates are no
longer efficient, so they’re not BLUE.

Solution 17.3 This is heteroscedasticity. The OLS estimates are not BLUE
because they’re not efficient.

Solution 17.4 This is a non-linearity. You can transform the variable Sidt to
something like log [Sidt]. The OLS estimator will still be appropriate, but the
meaning of the coefficient will not be as transparent.

Solution 17.5 Endogeneity causes unbiasedness. It violates the assumption
that the explanatory viables are uncorrelated with the error term, which is also
the cause of the unbiasedness. Use a two-stage least squares procedure to deal
with this. We know that 2SLS is consistent.
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Chapter 18

Background

This chapter provides a toolbox of theorems and definitions that are frequently
used in asymptotic analysis. Many of these topics also appear in the previous
sections of this book, but are repeated here for easier reference.

18.1 Probability, Measures, and Integration

We know that P is a measure that assigns real numbers to elements in Ω. In
effect, P measures the ”size” of those elements. The measure P defined over a
set of elements determines the collecive ”size” of the whole set. Equivalently, a
function f (x) ∈ R assigns a ”size” to each value x and

∫
I⊂R f (x) dx measures

the collective ”size” of the points in some interval I. Therefore, the measure P
and the operator

∫
perform the same function. For probabily measures defined

over the real line, it is easy to see that they are identical.
Throughout this part of the book, we often interchange

∫
and P between

theorems and definitions. For example, a theorem that applies to the
∫

operator
will apply to the P operator.

18.2 Convergence

Recall the following definitions.

Definition 18.1 A random variable Xn converges in probability to a con-
stant c if lim

n→∞
P [|Xn − c| > ε] = 0 ∀ε > 0. We denote this by plim Xn = c and

c is called the ”probability limit” of Xn. An alternative notation is Xn
p−→ c.

Another alternative notation is Xn = c + op (1), which will be explained later.

Definition 18.2 A random variable Xn converges almost surely to a con-
stant c if P

[
lim

n→∞
|Xn − c| > ε

]
= 0 ∀ε > 0. We denote this by Xn

a.s.−→ c.
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A good way to think of almost sure convergence is that there exists some
”good set” Ω∗ ⊂ Ω such that Xn converges to c for all ω ∈ Ω∗, and this ”good
set” has probability 1. Therefore, the states of the world in which Xn does not
converge to c have zero measure (or, are zero-probability events.)

Convergence almost surely is a stronger condition than convergence in prob-
ability, but it has the important property that increased sampling is guaranteed
to maintain almost sure convergence, while convergence in probability may or
may not be maintained as sampling is increased. To see this, define

Ωn,ε =
{
ω ∈ Ω : supm≥n |Xm (ω)− c| ≤ ε

}
=

{
ω ∈ Ω : Xn

a.s.−→ c
}

(18.1)

Γn,ε = {ω ∈ Ω : |Xn (ω)− c| ≤ ε} =
{

ω ∈ Ω : Xn
p−→ c

}
(18.2)

Note that Ωn,ε ⊆ Ωn+k,ε ∀k > 0, but Γn,ε 6⊆ Γn+k,ε necessarily. The con-
clusion is that if a state of the world ω is drawn and, for some n, |Xn − c| ≤ ε,
then we know that as n increases, ω will still be an element of Ωn,ε, but ω may
not necessarily be an element of Γn,ε. For example, if after 100 observations we
find that Xn is within ε of c and we have almost-sure convergence, then Xm is
guaranteed to be within ε of c for all m > n, but this may not be true if we
only have convergence in probability.

Definition 18.3 A random variable Xn converges in distribution to a ran-
dom variable X (or, Xn Ã X) if P [f (Xn)] −→ P [f (X)] for all bounded,
continuous functions f : R→ R.

Note that this definition is equivalent to our previous definition that required
the cdf of Xn to converge to the cdf of X pointwise since the pdf functions are
always bounded and continuous by assumption. This new definition will be
more applicable to asymptotic analysis.

Definition 18.4 Let {Xn} be a sequence of random variables. The sequence is
bounded in probability if, ∀ε > 0, ∃Mε > 0, Nε 3 ∀n > Nε

P [|Xn| > Mε] < ε (18.3)

We say that Xn = Op (1) (”Xn is big oh p 1”, as opposed to ”little oh p 1”
which we will see later.)

Theorem 18.1 (Continuous Mapping Theorem) Let Xn Ã X, T : R →
R, and PX {x ∈ R : T is continuous at x} = 1. Then T (Xn) Ã T (X).

The proof of this theorem is a direct consequence of the definition of con-
vergence in distribution.

Theorem 18.2 (Slutsky’s Theorem) If Xn Ã X and plim Yn = 0 then Xn +
Yn Ã X.
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18.2.1 Limits and Integration

This subsection deals with conditions under which the limit of a sequence of
integrated elements equals the integral of the limit of the sequence.

The following theorem gives conditions under which the limit of the integral
of a sequence of functions is equal to the integral of the limit. In fact, the name
of the theorem identifies those conditions (instead of identifying the result of
the theorem.)

Theorem 18.3 (Monotone Convergence Theorem) Let (Ω,A, µ) be a mea-
sure space (µ need not be a probability measure.) If {fn} is a sequence of func-
tions such that fn : Ω → R and

1. 0 ≤ f1 (ω) ≤ f2 (ω) ≤ ... ∀ω ∈ Ω ({fn} is monotone)

2. fn (ω) −→ f (ω) ∀ω ∈ Ω ({fn} is convergent)

then f is measruable and

limn→∞

∫

Ω

fn (ω) dµ (ω) =
∫

Ω

f (ω) dµ (ω) (18.4)

For a sequence of sets (or events) {An}, we construct the following limit
concept.

Definition 18.5 For any sequence of sets {Aj}∞j=1, define {An i.o.} = ∩k≥1∪j≥k

Aj. This is the set ”An infinitely often.”

The set An infinitely often is the set of points that remains in the sets of the
sequence as n goes to infinity.

Now consider an increasing or decreasing sequence {An}. We first prove a
very convenient lemma, followed by a theorem about the probability measure
defined on a monotone sequence of sets (sequences where each set includes or is
included in all subsequent sets in the sequence.)

Lemma 18.4 For any sequence of sets {Aj}∞j=1, there exists a disjoint sequence
{Bj}∞j=1 of sets such that Bj ⊂ Aj ∀j, ∪n

j=1Aj = ∪n
j=1Bj ∀n ≥ 1, and ∪Bj =

∪Aj.
Proof. See Helms p. 43

Theorem 18.5 Let {Aj}∞j=1 is a sequence of events.

1. If A1 ⊂ A2 ⊂ ... and A = ∪∞j=1Aj, then P [A] = limn→∞ P [An]

2. If A1 ⊃ A2 ⊃ ... and A = ∩∞j=1Aj, then P [A] = limn→∞ P [An]
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Proof. This is an application of the Monotone Convergence Theorem given
above. Let fn (ω) = An and f (ω) = A. Let the measure in the MCT be P and
the result is immediate.

Theorem 18.6 (Borel-Cantelli Lemma)1 If A1A2, ... ∈ A and
∑∞

i=1 P [Ai] <
∞ then P {An i.o.} = 0. In other words, the limit set of {An} is of measure
zero w.r.t P.

Proof. Since the sequence {∪j>kAj}∞k=1 is a decreasing sequence by con-
struction and {An i.o.} = ∩∞k=1 ∪j≥k Aj,

P [{An i.o.}] = limk→∞ P [∪j≥kAj ] (18.5)

by Theorem 18.5.
Using Boole’s Inequality (Theorem 1.19), we have that

P [∪j≥kAj ] ≤
∞∑

j=k

P [Aj ] (18.6)

Therefore, ∀k ≥ 1

0 ≤ P [{An i.o.}] ≤
∞∑

j=k

P [Aj ] (18.7)

Since
∑∞

i=1 P [Ai] converges, then the terms P [An] approach zero as n be-
comes very large. Consequently, the right side of the above equation tends to
zero as k →∞. The inequalities of the equation are independent of k, and thus
P [{An i.o.}] = 0.

Theorem 18.7 (Dominated Convergence Theorem) Let {fn} be a sequence
of measurable functions on Ω where f (ω) = limn→∞ fn (ω) exists for each
ω ∈ Ω. If there exists a measurable function g such that

1.
∫
Ω

g (ω) dµ (ω) < ∞
2. supn |fn (ω)| ≤ g (ω) ∀ω ∈ Ω

then

1.
∫
Ω
|f (ω)| dµ (ω) < ∞

2. limn→∞
∫
Ω

fn (ω) dµ (ω) =
∫
Ω

f (ω) dµ (ω)

1The Borel-Cantelli Lemma must have been a lemma in the original publication, but is
now quite famous and most often appears as its own theorem despite the name.
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18.3 Law of Large Numbers

There do exist several laws of large numbers. However we only recall the most
important here.

Theorem 18.8 (Khinchine’s Weak Law of Large Numbers) If X1, ..., Xn

are independently drawn and identically distributed (iid) with mean µ, then
X̄

p−→ µ.

We can illustrate the weak law of large numbers with a computer simulation.
For each n from 1 to 10,000, we generate a sample of n bernoulli observations
Xi where P [Xi = 1] = p and P [Xi = 0] = (1− p). For each n, we calculate
X̄n = (1/n)

∑
Xi. The resulting graph for p = 0.5 is

REMOVED

This picture clearly shows that averages converge to population means, but it
illustrates the fact that convergence may be a slow process. Even with several
thousand observations there may exist significant variation between observed
sample averages. Another important thing to notice is that the rate of conver-
gence slows as n → ∞. This implies that if increased sampling has a constant
positive marginal cost, then there exists some n∗ where the cost of an additional
observation outweighs the expected gains in reduced estimator variance.

We now focus on a more general law of large numbers especially applicable
to estimation procedures such as maximum likelihood.

blah

18.4 Central Limit Theorems

Much like the Laws of Large Numbers, there exist various Central Limit Theo-
rems that depend on the assumptions on the sample X1, ..., Xn. However, since
the theorems concern the convergence of a function of random variables to the
normal distribution, we use only the convergence in distribution concept.

Theorem 18.9 (Univariate Linberg-Levy Central Limit Theorem) If
X1, ..., Xn are independently drawn and identically distributed (iid) with mean
µ < ∞ and variance σ2 < ∞, then

√
n

(
X̄n − µ

) d−→ N
[
0, σ2

]
(18.8)
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Note that we could scale the left-hand side by σ to get a slightly more useful
form √

n

(
X̄n − µ

σ

)
d−→ N [0, 1] (18.9)

One particular generalization of the central limit theorems is the delta
method.

Theorem 18.10 If Yn satisfies a central limit theorem for some θ (so,
√

n (Yn − θ) d−→
N

[
0, σ2

]
), then for a function g such that g′(θ) exists and is nonzero, then

√
n (g (Yn)− g (θ)) d−→ N

[
0, σ2 (g′ (θ))2

]
(18.10)

The proof of the delta method requires the Taylor series expansion of g(Yn)
around Yn = θ.

There also exist central limit theorems for situations where the variables
are drawn from distributions of different means and variances. These are less
common.

Finally, there exists a related Theorem for the Maximum Likelihood Esti-
mator, which is a direct consequence of property 2.

Theorem 18.11 If X1, X2, ..., Xn are iid f (x|θ) and θ̂ is the MLE estimate
of θ, then (under some regularity conditions on f (x|θ))

√
n

(
τ

(
θ̂
)
− τ (θ)

)
d−→ N

[
0, I [θ]−1

]
(18.11)

where I [θ]−1 is the Cramer-Rao Lower Bound for the estimate θ.

Theorem 18.12 (Glivenko-Cantelli) Let X1, ..., Xn be iid with measure P ,
which has cdf F . Then

Proof. For each t ∈ (0, 1), let Q (t) = inf {x ∈ R : F (x) ≥ t} be the ”quan-
tile transformation” function.

Note that if, for some t, F has a ”flat spot” from x0 to x1, then Q (t) =
x0. If, on the other hand, F ”jumps over t′” at x (limxn↑x F (xn) = t0 and
F (x) = t1, where t1 > t′ > t0,) then Q (t′) = x since cdfs are right-continuous.
In short, the interval [Q (t) ,∞) = {x ∈ R : F (x) ≥ t}. So, for all t ∈ (0, 1),
F (x) ≥ t ⇐⇒ x ≥ Q (t).

Take Y ∼ U [0, 1]. For each x ∈ R, we have that P {Q (Y ) ≤ x} = P {Y ≤ F (x)} =
F (x). Thus Q (Y ) has cdf F .

Draw Y1, ..., Yn iid U [0, 1] and let zi = Q (Yi)∀i = 1, 2, ..., n.
Thus,

supx∈R |P| (18.12)
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