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I. INTRODUCTION

Experimenters often find the BDM mechanism confusing to explain to subjects, and con-
sequently don’t trust its use. It is often phrased as some sort of auction, or in terms of
contingent payments based on some random numbers. But there’s a simpler way of ex-
plaining it as a list of binary choices, which I believe is very intuitive. In fact, there
is an entire class of elicitation mechanisms—which I call random binary choice (RBC)
mechanisms—that are procedurally identical to the BDM mechanism and can be ex-
plained in the same way. As we show in Azrieli et al. (2018), they are all incentive com-
patible under the assumption of monotonicity, which simply says that subjects never
choose dominated gambles. RBC mechanisms do not require expected utility prefer-
ences unless the subject also obeys the reduction of compound lotteries (or some similar
axiom).1 For evidence that this list presentation is effective, see Holt and Smith (2016).
†This comes from my work on epistemic game theory, entitled “Epistemic Game Theory Experiments:
Utility Elicitation and Irrational Play”. If you want to cite something, cite that. That paper previously
circulated as two separate projects, “Epistemic Conditions for the Failure of Nash Equilibrium” and “Pref-
erences, Rationality, and Belief Updating in Extensive-Form Games: Experimental Evidence”.
∗Dept. of Economics, The Ohio State University, Columbus, OH; healy.52@osu.edu.
1See Section VII and Azrieli et al. (2018) for details.
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II. EXPLAINING THE BDM MECHANISM FOR ELICITING VALUES

Suppose I want to run the BDM mechanism to find the subjects’ values for a cheese-
burger. The following (between the lines) is exactly what I would show to subjects:

I am going to ask you the following list of questions:

Q# Option A Option B

1 Would you rather have: Cheeseburger or $0.01
2 Would you rather have: Cheeseburger or $0.02
3 Would you rather have: Cheeseburger or $0.03
...

...
...

...
...

1,999 Would you rather have: Cheeseburger or $19.99
2,000 Would you rather have: Cheeseburger or $20.00

In each question you pick either Option A (the cheeseburger) or Option B (the money).
After you answer all 2,000 questions, I will randomly pick one question and pay you the
option you chose on that one question. Each question is equally likely to be chosen
for payment. Obviously you have no incentive to lie on any question, because if that
question gets chosen for payment then you’d end up with the option you like less.

I assume you’re going to choose the Option A in at least the first few questions, but
at some point switch to choosing Option B. So, to save time, just tell me at which dollar
value you’d switch. I can then ‘fill out’ your answers to all 2,000 questions based on your
switch point (choosing Option A for all questions before your switch point, and Option B
for all questions at or after your switch point). I’ll still draw one question randomly for
payment. Again, if you lie about your true switch point you might end up getting paid
an option that you like less.

At which dollar value would you switch?

The switch point they announce is their dollar value for the cheeseburger. That’s all
there is to it. I show why this is incentive compatible under fairly weak assumptions in
Section VII.

The choice of endpoints ($0.01 and $20) is of course arbitrary; we just need the range
to contain all possible valuations.

Past work on value elicitation has shown evidence of a WTP-WTA gap due to an en-
dowment effect. Notice that the procedure given above does not endow the participant
with anything; they simply choose between two options. Presumably this avoids any
endowment effects.
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III. ELICITING CARDINAL UTILITIES

Suppose I assume the subject satisfies expected utility and I want to know their cardinal
utility for a cheeseburger. If I set u($0.00) = 0 and u($20.00) = 1 (which is without loss
under expected utility), then there is some p∗ for which

u(Cheeseburger)= (1− p∗)u($0.00)︸ ︷︷ ︸
=0

+p∗ u($20.00)︸ ︷︷ ︸
=1

= p∗.

Thus, I can know their cardinal utility if I can find this indifference probability (often
called the probability equivalent, as opposed to the certainty equivalent). And I can
elicit that using the BDM procedure above, but with probabilities instead of certain
dollar payments:

Q# Option A Option B

1 Would you rather have: Cheeseburger or 1% chance of $20
2 Would you rather have: Cheeseburger or 2% chance of $20
3 Would you rather have: Cheeseburger or 3% chance of $20
...

...
...

...
...

99 Would you rather have: Cheeseburger or 99% chance of $20
100 Would you rather have: Cheeseburger or 100% chance of $20

The instructions are almost identical to the BDM mechanism. Again, they announce a
switch point, I’ll draw one question randomly, and they’ll get paid based on their answer
to the chosen question. If they satisfy expected utility, their switch point probability will
be their u(Cheeseburger).

The choice of the $20 prize is arbitrary. All that matters is that every subject prefer
Option A in the first row and Option B in the last row.

Interpreting the switch point as a cardinal utility value obviously requires expected
utility. But even if the subject doesn’t satisfy expected utility, the elicited switch point
will still be a meaningful measure of their ‘value’ for the cheeseburger. And it will be
elicited truthfully as long as they obey monotonicity (see Section VII) and probabilistic
sophistication (Machina and Schmeidler, 1992).

For the lotteries in Option B it would be ideal to use a physical randomizing device.
In practice cardinal utilities would probably be elicited for dollar amounts rather than

cheeseburgers. That’s fine; to elicit u($10) simply replace every instance of “Cheese-
burger” with “$10.00”. In a game, if I want the cardinal utility of outcome ($5,$10)
(meaning, $5 for you, $10 for your opponent), I would have Option A be ($5,$10) and
Option B be a p% chance of ($20,$20). One player’s elicitation is chosen for payment
and the resulting payment is made to both players.
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IV. ELICITING BELIEFS ABOUT AN EVENT E

Suppose you want to know the subject’s belief that some event E will occur. You could
use a scoring rule, but that requires risk neutral expected utility. Instead, use an RBC
mechanism. This was first proposed by Grether (1981) (though it really comes straight
out of Savage, 1954) and studied formally by Karni (2009). Again, it’s just an RBC
mechanism so we can run it like the BDM described previously. The questions you’d ask
are as follows:

Q# Option A Option B

1 Would you rather have: $20 if E occurs or 1% chance of $20
2 Would you rather have: $20 if E occurs or 2% chance of $20
3 Would you rather have: $20 if E occurs or 3% chance of $20
...

...
...

...
...

99 Would you rather have: $20 if E occurs or 99% chance of $20
100 Would you rather have: $20 if E occurs or 100% chance of $20

Under probabilistic sophistication (Machina and Schmeidler, 1992), we can interpret
the switch point p∗ as as the subject’s probability belief of E. Even if they don’t satisfy
probabilistic sophistication, the switch point will serve as a measure of the subjects
‘likelihood’ of event E. Under monotonicity (see Azrieli et al., 2018) it will be elicited
truthfully.

An important caveat is that you need to be able to observe (and verify to the subjects)
whether or not E occurs before the end of the experiment. I am not aware of a strictly
incentive compatible way to elicit beliefs for events that cannot be observed and verified;
I imagine it’s impossible.

If you have multiple events (E1,E2, . . . ,En), you can elicit the subject’s probability for
each, using the above procedure for each E i. Then you randomly pick one i ∈ {1, . . . ,n}
to be paid, and pay for that elicitation as described above. This will still be incentive
compatible under monotonicity. You may or may not restrict the subject’s probabilities
to sum to one; that’s up to you.

You can even elicit second-order beliefs in a game using this mechanism. Or, at least,
a coarsening of those beliefs. Let D1 be the event that Player 1 plays ‘Defect’, and Dc

1
its complement. Ask Player 2 their beliefs about D1. Now, define B25

2 as the event that
Player 2’s elicited belief was between 0% and 25%, B50

2 as the event that Player 2’s
elicited belief was between 25% and 50%, and so on. Then elicit Player 1’s belief over
B25

2 , B50
2 , B75

2 , and B100
2 . The result is (a coarsening of) Player 1’s second-order belief.2

2Really you’d want to elicit beliefs over each Bi
2 ×D2 and Bi

2 ×Dc
2 to capture correlation in the hierarchy.
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V. ELICITING RISK AVERSION VIA HOLT-LAURY

The well-known Holt-Laury method of eliciting risk preferences is just another example
of an RBC mechanism:

Q# Option A Option B

1 Would you rather have: (10%,$2;90%,$1.60) or (10%,$3.85;90%,$0.10)
2 Would you rather have: (20%,$2;80%,$1.60) or (20%,$3.85;80%,$0.10)
3 Would you rather have: (30%,$2;70%,$1.60) or (30%,$3.85;70%,$0.10)
...

...
...

...
...

9 Would you rather have: (90%,$2;10%,$1.60) or (90%,$3.85;10%,$0.10)
10 Would you rather have: (100%,$2;0%,$1.60) or (100%,$3.85;0%,$0.10)

Here, (10%,$2;90%,$1.60) means a 10% chance of $2.00 and a 90% chance of $1.60,
for example.

One row is chosen randomly for payment. You can have them answer every question
or simply announce a switch point. The subject’s risk attitude is then inferred from
their switch point. Often a functional form is assumed for the subject’s cardinal utility
(such as CARA) and a parameter estimated from the switch point. But even if that
functional form is incorrect the switch point will still be a meaningful measure of the
subject’s tolerance for risk. And it will be elicited truthfully as long as the subject obeys
monotonicity (see Azrieli et al., 2018).

Obviously you can change the exact lotteries given, the number of rows, whether the
probabilities vary or the dollar amounts vary, et cetera. Again, the Option B lotteries
should be played out using a physical, objective randomizing device such as a Bingo
cage.
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VI. ELICITING AN ENTIRE PREFERENCE RELATION

Suppose there is a finite set of objects in X = {a,b, c, . . . ,m,n} and you want the subject’s
preference relation over X .3 A simple way to elicit that is to ask them to rank all objects
in X , and then you pick two objects randomly and pay them the one they rank higher.
This was done in Bateman et al. (2007) and Crockett and Oprea (2012), for example.

But that method is theoretically equivalent to the following RBC mechanism:

Q# Option A Option B

1 Would you rather have: a or b
2 Would you rather have: a or c
3 Would you rather have: a or d
...

...
...

...
...

n−1 Would you rather have: a or n
n Would you rather have: b or c

n+1 Would you rather have: b or d
...

...
...

...
...

2n−3 Would you rather have: b or n
...

...
...

...
...

(n−1)n
2 Would you rather have: m or n

In other words, you ask them every possible pairwise comparison and pick one ran-
domly for payment. Normally we’d ask for a switch point to reduce the number of de-
cisions down to one, but this list has no natural ordering. Instead, having the subject
provide one unified ranking does shrink their decision from (n−1)n/2 questions down to
one. In practice that’s how you’d use the mechanism. The point of this exercise is just
to show that it is equivalent to an RBC, and therefore is incentive compatible under the
exact same assumption (monotonicity) as all the other RBC mechanisms.

3If X is infinite you can use this procedure to elicit the preference relation over some finite grid on X .
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VII. UNDERSTANDING MONOTONICITY AND INCENTIVE COMPATIBILITY

All RBC mechanisms are incentive compatible under monotonicity. Here I provide some
intuition for this claim; see Azrieli et al. (2018) for full details.

Suppose there are six binary questions of the form {ai,bi} for i ∈ {1, . . . ,6}. The subject
announces their choice in each and the experimenter rolls a die to determine which
is paid. Assume the subject’s true preference is ai Â bi in each i. Now consider the
(random) payment he gets if he announces truthfully, versus what he gets if he lies on
the third question:

Question Chosen for Payment: 1 2 3 4 5 6

Payment if Truthful: a1 a2 a3 a4 a5 a6= = Â = = =

Payment if Lying on 3rd Question: a1 a2 b3 a4 a5 a6

Here’s the important point:

The random payment he gets by lying is dominated (state-by-state) by the ran-
dom payment he gets when he tells the truth.

This is obviously true for any lie, not just ones with a single deviation. So as long as
the subject doesn’t prefer dominated random payments, he will never lie. This leads to
the following definition and result from Azrieli et al. (2018). In this definition, a random
payment is an ‘act’ f that maps the chosen question (denoted by ω) into a choice object.

Definition 1 (Dominance & Monotonicity). Say that act f dominates act g (according
to º) if f (ω)º g(ω) at every ω. A subject satisfies monotonicity if ‘ f dominates g’ implies
that ‘ f is preferred to g’. (Note: Nothing is assumed if f does not dominate g.)

Theorem 1. If a subject satisfies monotonicity then any RBC mechanism will be incen-
tive compatible (the subject will report truthfully).

Notice: Incentive compatibility does not require expected utility. But there is a caveat:
If the choice objects are lotteries then monotonicity combined with the reduction of
compound lotteries implies expected utility preferences over the space of choice objects.
Thus, if we do not trust expected utility but do trust reduction, then we should not trust
the RBC mechanisms. Similarly, if choice objects are (possibly ambiguous) acts then
monotonicity combined with the ‘order reversal’ axiom of Anscombe and Aumann (1963)
implies ambiguity neutrality. Thus, if we believe subjects are ambiguity averse but we
believe they satisfy order reversal, then we should not trust the RBC mechanisms. See
Azrieli et al. (2018) for a more complete discussion of this issue.
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VIII. NOTES & SOME RELATED LITERATURE

In theory it doesn’t matter what distribution you use to draw the question for payment,
as long as each question has positive probability of being drawn (or, more generally, is
non-null in the sense of Savage, 1954). In practice you want the subject to believe each
question might matter, so the uniform distribution seems like the best (and simplest)
choice. Alternatively, you may choose a distribution that puts more probability on the
questions that are more likely to be at the subjects’ switch points, since the subject
will be nearly indifferent on those questions. The increased probability will offset that
indifference. But such a non-uniform distribution will probably be more complicated to
explain.

In a belief elicitation setting, Holt and Smith (2016) compare performance of the RBC
mechanism presented as a list versus the same mechanism presented as depending on
the realization of a randomly-drawn probability. Subjects report posterior beliefs upon
observing a signal, and those reported posteriors are compared to the Bayesian posterior.
Deviations from the Bayesian posterior are smallest with the list presentation, though
both presentations outperform the (binarized) quadratic scoring rule.

In Brown and Healy (2018) we show that subjects do not report truthfully when we
present the RBC as one list on a single screen, but do report truthfully when each row
is given on a separate screen and in a random order. We argue that the list causes
subjects to view all the choices as one large choice rather than separate choices, and this
causes them to report a different answer. In most applications of the RBC mechanisms,
however, asking each row separately is simply not practical. Given the results of Holt
and Smith (2016), I would just stick with the list presentation. Even in Brown and
Healy (2018) the chosen row ended up being an unbiased estimate of the subject’s true
preferences, so the failure of incentive compatibility caused no real problem in that
particular experiment. It’s just that Brown and Healy (2018) show it might be a problem
in other experiments.

Some experimenters will randomly select one subject for payment. This is also in-
centive compatible under monotonicity, so using an RBC mechanism and paying one
randomly-selected subject is incentive compatible if and only if the RBC mechanism is
incentive compatible when all subjects are paid.4 In other words, there is no loss (in
theory) to using this procedure. In practice, however, it does ‘dilute’ the probability with
which each decision is chosen, which may alter behavior.5

4There is one subtle caveat: Paying one randomly-selected subject alters the state space of the random-
ization device because it now must select a question number and a subject number. I assume here that if
monotonicity holds for one state space, it holds for the other.
5If behavior is altered then either monotonicity is violated or actual behavior does not conform to a fixed
preference relation. The latter occurs if choice is stochastic, for example.
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The BDM mechanism comes from Becker et al. (1964). Cardinal utility elicitation was
first done by Mosteller and Nogee (1951), though they paid for every decision. I’m not
sure who was the first to elicit cardinal utilities using an RBC mechanism. To my knowl-
edge, belief elicitation using an RBC mechanism was first done by Grether (1981), and
independently discovered by several subsequent authors, including Holt (1986), Mobius
et al. (2013), and Karni (2009). But it really just comes straight out of Savage (1954),
who also mentions the idea of paying for one randomly-selected question and attributes
it to Wallis and Allais. The risk aversion elicitation comes from Holt and Laury (2002),
though there are many other methods suggested, some of which are also equivalent to
(variations of) an RBC mechanism.

There are several papers offering tests and critiques of mechanisms that pay for one
randomly-chosen decision. These include Starmer and Sugden (1991), Cubitt et al.
(1998), Cox et al. (2014b,a), Harrison and Swarthout (2014), Baillon et al. (2014), and
Brown and Healy (2018). A full review of this literature is far beyond the scope of this
note.
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