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ABSTRACT. We study behavior in an information cascades setting where previous buyers
of a product leave noisy but informative ratings about its true quality. Although this
increases the amount of public information available, Yoon (2015) shows that ratings
can hurt welfare in some settings. In particular, the added public information causes
cascades to form earlier, but if agents stop purchasing then there are no new ratings to
break the inefficient cascade behavior. Although we find some evidence roughly in line
with the theory, those results are swamped by a strong tendency for subjects to purchase
even when public information suggests they should not.
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I. INTRODUCTION

In an information cascade consumers ignore their private information about a product’s
quality and rely instead on the past purchase decisions of others (see Banerjee, 1992;
Bikhchandani et al., 1992, e.g.). Consequently, these later purchase decisions provide no
new information for subsequent potential buyers. If the first few consumers are acting
on incorrect information, the entire market follows and welfare suffers.

Intuitively, this negative result might be avoided if early consumers could somehow
reveal their private information. For example, if consumers were to leave informative
feedback about their experience with the product, then erroneous cascades would be
avoided. Many consumers use Internet-based ratings systems to voluntarily provide
such feedback, so one might argue that the relevance of information cascades has been
greatly reduced by the proliferation of these ratings systems.1

†The authors thank Brian Rogers and Yaron Azrieli for their helpful comments and suggestions.
∗ Federal Reserve Bank of New York: john.conlon@ny.frb.org. The views expressed in this paper do not
necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System as a
whole.
∗∗ Department of Economics, The Ohio State University; healy.52@osu.edu.
†Institute of Economics and Finance, Nanjing Audit University; yoonyeochang@nau.edu.cn.
1Ratings websites are not only prevalent for Internet retail, but also allow consumers to review restau-
rants, doctors, stores, services, and even items purchased from brick-and-mortar stores (O’Guinn, 2015).
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This argument assumes that such ratings systems are indeed welfare enhancing.
Yoon (2015) evaluates this claim in a theoretical model and shows that in fact ratings
systems can decrease welfare in certain scenarios. Thus, the welfare impact of Internet
rating systems is a bit ambiguous.

In his setting consumers sequentially face a good of unknown quality (either high or
low) and must choose either to ‘purchase’ or ‘pass’. Each has a conditionally independent
private signal of the true quality. Those that purchase automatically leave a costless
and truthful rating about their experience, while those who pass do not. All future
consumers see who purchased as well as the ratings of those who purchased. Ratings
are simply binary messages: either ‘good’ or ‘bad’. Individuals’ experiences with the
good are idiosyncratic—for example, some consumers will have a bad experience even
though the product is high quality—so ratings are noisy, but informative.

For example, imagine that Ann dines at a low-quality restaurant but happens to re-
ceive excellent service from the waiter. Based on that, she leaves a truthful positive
review of her experience. Bob sees that Ann purchased, reads Ann’s positive review,
and has his own private signal about the restaurant’s quality. He updates his beliefs
based on those three sources of information and chooses optimally whether to purchase
or pass. If he chooses to purchase and has a bad experience, he will leave a negative
rating. Eventually, the accumulated ratings data will provide strong evidence that the
restaurant’s true quality is low, inducing consumers to pass.

Now consider the opposite scenario: the restaurant is truly of high quality, but the
first consumer (Ann) leaves a negative review. This might induce future consumers to
pass, leading to a cascade in which nobody dines at the restaurant. In this case ratings
cannot correct the cascade, because consumers must purchase to be able to provide a re-
view. Thus, ratings can correct cascades in which consumers are incorrectly purchasing,
but cannot correct cascades in which consumers are incorrectly not purchasing.

Finally, suppose that all three sources of information (purchase decisions, private sig-
nals, and ratings) are noisy, but the ratings data are the least noisy. Consequently, Bob
weights Ann’s review more than her purchase decision or his own private signal. In this
case the presence of ratings can accelerate the formation of cascades: just one or two
bad ratings can cause consumers to stop purchasing regardless of their private informa-
tion. Now cascades are forming quickly, and ratings are only helpful in correcting errors
when the cascade features purchasing behavior. Thus, ratings only help correct errors
when the true quality is low. When the true quality is high, Yoon (2015) concludes that
the presence of ratings can actually reduce consumer welfare.
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Our primary goal is to test this counterintuitive prediction. We run a laboratory test
of this theoretical setting. In the first treatment (“No Ratings”) subjects choose to pur-
chase or pass but leave no ratings. This is the standard information cascades setting,
except that one decision (purchasing) gives a risky payoff, while the other (passing) does
not. The second treatment (“Ratings”) is identical to the first except subjects are forced
to leave truthful but noisy ratings of the good when they purchase. To test the coun-
terintuitive prediction that ratings can be harmful, we make both private information
and ratings nearly uninformative, with ratings only slightly more informative. Under
our parameters, Yoon (2015) predicts that, when the quality is high, we will see more
incorrect cascades in the Ratings treatment than in the No Ratings treatment.

To our surprise, our primary result is unrelated to the theoretical predictions. We
find that subjects in all settings exhibit a strong preference for purchasing. They often
purchase even when the available public information strongly suggests the good is of low
quality. We estimate an econometric model of individual behavior that allows for various
biases and find that this is by far the most substantial deviation from risk-neutral profit
maximization. And it significantly affects market outcomes. Without this bias we should
see roughly equal frequencies of purchasing cascades and passing cascades in the No
Ratings treatment. Instead, purchasing cascades are nearly four times as common. This
bias has not been found in previous studies on information cascades perhaps because
(to our knowledge) all previous studies presented subjects with two risky choices, rather
than one risky choice and one safe choice. And it cannot be rationalized by risk aversion
because the subjects are biased toward the riskier choice. Instead, it appears to be either
a preference for small-stakes risk (much like casino gambling) perhaps combined with a
preference to avoid the more ‘boring’ choice of passing.

We do find that the presence of ratings reduces this purchasing bias. Purchasing
cascades are still far more common, but with ratings they are only 2.5 times as frequent
as passing cascades. Finally, the presence of ratings does break cascades, as expected.
This enables a second (or third or fourth) cascade to form within a single period. The
overall result is more cascades (of either type) in each period, with cascades lasting for
shorter periods of time.

Related Literature

Following the seminal theoretical works of Banerjee (1992) and Bikhchandani et al.
(1992)—and the experimental results of Anderson and Holt (1997)—many extensions
and applications of informational cascades have appeared in the literature. Herding
behavior has been found in settings as diverse as interviewing job applicants (Kubler
and Weizsacker, 2003), car purchasing (Grinblatt et al., 2008), and financial markets
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(Shachat and Srinivasan, 2011, Drehmann et al. 2007, Cipriani and Guarino 2008).
Celen and Kariv (2005) and Corazzini and Greiner (2007) look at the impact of reducing
the information available to players, while Feltovich (2002) and Kubler and Weizsacker
(2004) investigate settings in which players can pay to increase their information.

Quite a few studies investigate the extent to which players deviate from perfect Bayesian
play. Hung and Plott (2001), Noth and Weber (2003), Kraemer et al. (2006), and Goeree
et al. (2007) all find that players overweight their private signal relative to public in-
formation, though Dominitz and Hung (2009) do not replicate this result. Huck and
Oechssler (2000) find that even students in advanced economics courses fail to success-
fully employ Bayes’ rule in an exam setting, though Morone et al. (2007) find that agents
improve their play once the theory behind the experiments has been explained to them.
Celen et al. (2010) find that respondents react more strongly to public information when
it is presented as advice rather than just as a player’s previous decision.

Another branch of the literature looks at whether adding a stochastic component to
players’ decisions can explain their deviations from Bayesian rationality. Goeree and
Holt (2004), Goeree et al. (2007), and Kubler and Weizsacker (2004) all develop similar
models that include a random element in player’s choices. When players are aware that
others’ decisions are stochastic, they should understand that those decisions are less
informative. This would lead to an apparent underweighting of public information (and
overweighting of private information), as has been observed. But Goeree et al. (2007)
find that players overweight their private signal even more than the stochastic choice
theory would predict. We replicate this result in our setting, modulo the activity bias.

Our paper contributes to the literature in several ways. This experiment is the first
laboratory study to structure the decision problem similar to a true a purchasing de-
cision: purchasing is risky because payoffs depend on the state of nature, while not
purchasing guarantees a safe payoff. Though the theoretical predictions are identical
to the classical setting of Banerjee (1992) and Bikhchandani et al. (1992), the different
structure allows for (and, as we shall see, leads to) framing effects that do not appear
in other settings. In particular, we find that subjects overwhelmingly prefer to take the
risky choice. This ‘purchasing bias’ runs counter to the usual finding of risk aversion.

We also add a ratings component to the experiment in order to test the predictions
of Yoon (2015). According to his model, noisy yet informative ratings have a differen-
tial impact on welfare depending on the (randomly realized) quality of the product. If
the quality is low, ratings decrease the likelihood of an incorrect (purchasing) cascade,
whereas if the quality is high ratings increase the likelihood of an incorrect (passing)
cascade.
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Finally, we estimate a stochastic choice model similar to that of Goeree et al. (2007),
which incorporates three bias parameters to explain players’ choices. In addition to a
stochastic element, we allow for players to weight private information differently than
public information (as in Mobius et al., 2014, e.g.) and for players to prefer one deci-
sion to another intrinsically. We find a strong bias towards purchasing, which if ignored
would lead us to conclude that players overweight their private information. But when
taking into account this purchasing bias the overweighting of private information be-
comes much smaller and does little to explain players’ decisions.

II. THEORY

The Setting

Our experimental design is based on the theoretical model presented by Yoon (2015). A
set of individuals, indexed by i ∈ N = {1,2, . . . ,n}, sequentially chooses whether or not to
buy a product. The quality of the product is unknown, but is equally likely to be high
or low. We denote the realized quality by q ∈ {−1,1}, with the interpretation that −1
represents bad quality and 1 represents good quality.

Each agent sequentially chooses whether or not to buy the good. The purchase de-
cisions are denoted by xi ∈ {0,1}, where xi = 1 indicates that i purchased the good and
xi = 0 indicates that they did not purchase. All agents share a common value for the good
equal to qv, which equals v > 0 when q = 1 and −v < 0 when q =−1. After purchase, con-
sumers also experience a random, idiosyncratic shock θi to their utility. Payoffs are
zero to agents who do not purchase. Thus, the ex-post utility of agent i is given by
ui(xi|q,θi) = (qv+θi)xi. We assume each θi is independently drawn from a symmetric,
mean-zero distribution F that is identical across agents.2

Before the purchase/pass decision, agents receive a privately-observed random signal
si ∈ {−1,1} of the quality of the good. Each si is conditionally independent and is correct
(si = q) with probability p ∈ (0.5,1). Each agent also sees the purchase/pass decision of
all prior agents, and this is commonly known. Thus, the information available to agent
i > 1 at the time of purchase is given by (x1, x2, . . . , xi−1, si). Agent 1 observes only s1.

The above description completely characterizes our No Ratings experimental treat-
ment and is close to the model of Banerjee (1992) and Bikhchandani et al. (1992).3

In our Ratings treatment, each consumer who purchased the good also posts a public
statement of whether or not they experienced positive ex-post utility from the good. The
rating is not a strategic decision: all consumers who purchased the good are forced to

2Formally, symmetry means F(−θi)= 1−F(θi) for all θi ≥ 0. This implies F(v)≥ 1/2 since v > 0.
3A slight difference is that consumers here experience risk and random utility shocks when purchasing,
but not when passing.
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post a rating, and all ratings must be truthful. Consumers who passed post an ‘empty’
rating. Formally, consumer i posts a rating yi ∈ {−1,0,1}, where

yi =


−1 if xi = 1 and ui(1|q,θi)< 0
0 if xi = 0
1 if xi = 1 and ui(1|q,θi)≥ 0

Later consumers see the (truthful) ratings of all earlier consumers, so the information
available to consumer i with ratings becomes ((x1, y1), (x2, , y2), . . . , (xi−1, yi−1), si).4

Suppose that the support of θi is contained in [−v,v), so that qv+ θi is positive if
and only if q = 1. In that case the rating of any one consumer who purchased would
be perfectly informative about the quality of the good. To eliminate this trivial case,
we assume F(v) < 1. Now when the quality is low (q = −1) a consumer who purchases
will leave a negative rating if θi ≤ v, which occurs with probability F(v). And when the
quality is high (q = 1) a consumer who purchases will leave a positive rating if θi ≥−v,
which occurs with probability 1−F(−v) = F(v). Thus, ratings of those who purchase
act as conditionally independent public signals of the good’s true quality, and each of
those signals is accurate with probability F(v). The ‘empty’ ratings of those who don’t
purchase are completely uninformative.

Herds, Cascades, and Equilibrium Predictions

We carefully distinguish between herds and information cascades, following both Smith
and Sorensen (2000) and Celen and Kariv (2004). A herd is said to occur when consec-
utive agents make identical purchasing decisions. An information cascade (or, simply, a
cascade) is a herd that happens because the purchase decisions of the preceding agents
lead to posterior beliefs under which herding behavior is optimal.5 In other words, a
cascade is a type of rational herd.6

Suppose we observe in our data all players from i to i′ making the same purchas-
ing/passing decision. We will call it a purchasing herd if x j = 1 for all j ∈ {i, . . . , i′}, and
a passing herd if x j = 0 for all such j. A herd is correct if it is either a purchasing herd
in the high state or a passing herd in the low state; otherwise it is incorrect. If i′ = n
we say the herd is terminal; otherwise it is transitory. These descriptors also apply to
cascades.

4Technically, the inclusion of x j for j < i is superfluous since yj is sufficient for x j.
5These concepts were made distinct by Smith and Sorensen (2000); see also Celen and Kariv (2004, 2005).
6Other types of herds could be rational, too. Smith and Sorensen (2000) study herds and cascades as
equilibrium phenomena, so all herds and cascades are rational. In an experimental setting, however,
some herds may not be rational.
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Consider either treatment and suppose players are in equilibrium. When consumer
i is about to move, let bi represent the public belief that the quality is high (meaning,
the Bayesian posterior that q = 1, given ((x1, y1), . . . , (xi−1, yi−1))). This combines with i’s
private signal to generate a posterior belief r i. Specifically, the Bayesian posterior is

r i = bi p
bi p+ (1−bi)(1− p)

I(si=1) +
bi(1− p)

bi(1− p)+ (1−bi)p
I(si=−1),

where I(·) is an indicator function. Since θi is mean-zero and unknown at the time of
purchase, consumers choose xi = 1 if and only if r i ≥ 1/2. But if bi < 1− p then r i will
be less than 1/2 regardless of si. In that case, consumer i will not purchase even if her
signal is positive. Similarly, if bi > p then r i > 1/2 regardless of si, so i will purchase even
if her signal is negative. Once this occurs, consumer i+1 will know that i’s purchase was
not informative, meaning bi+1 = bi. Consequently, i+1 also ignores his private signal
and chooses xi+1 = xi. All future consumers j > i will also choose x j = xi regardless of
their signals, giving an information cascade. In the data this will appear as a terminal
herd.

For i > 1 let D i = ∑
j<i(2x j −1) be the number of consumers prior to i who purchased

(encoded as +1 in the sum) minus the number who passed (encoded as −1).7 In the No
Ratings treatment, an information cascade occurs in equilibrium starting at consumer
i if and only if |D i| ≥ 2. In particular, if D i ≥ 2 then a purchasing cascade occurs, and
if D i ≤ −2 then a passing cascade occurs. No further updating occurs once a cascade
begins, so both types of cascades are terminal. Cascades here may or may not be correct,
and an incorrect purchasing cascade is just as likely to occur as an incorrect passing
cascade.

Now consider the Ratings treatment. In a purchasing cascade consumers continue to
leave ratings, causing the public belief to update. If the purchasing cascade is incorrect
(the state is bad), then with positive probability enough negative feedback will accumu-
late so that bi < p, at which point the cascade breaks. Thus, purchasing cascades may
not be terminal. Even if the purchasing cascade is correct it is possible that enough neg-
ative ratings appear to break the cascade. And when ratings are relatively noisy (as in
our experiment), this becomes more common. In passing cascades, however, the public
belief does not update, so all passing cascades are terminal.

Although ratings reduce incorrect purchasing cascades in the low state, they can ac-
tually make incorrect passing cascades more frequent in the high state. To see this,
suppose p = 1/2+ε for some small ε (private signals are almost completely uninforma-
tive, as are previous purchase decisions), and F(v)= 1/2+ε+δ for some small δ (ratings
are only slightly more informative than private signals). Suppose the quality is high and

7Technically D i is a function of the observed history; we omit this as an argument to simplify exposition.
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the public belief rises above p (which is 1/2+ε). The group will enter a correct purchas-
ing cascade. But ratings will continue to cause the public belief to update. And these
ratings are often inaccurate, so it is reasonably likely that a string of negative ratings
will drop the public belief back below 1/2+ε, breaking the correct cascade.

If the good is truly low quality then ratings are helpful: correct cascades (passing
cascades) are terminal, while incorrect cascades (purchasing cascades) are likely to be
transitory. But if the good is high quality then ratings are harmful: correct cascades
(purchasing cascades) may be transitory, while incorrect cascades (purchasing cascades)
are always terminal. One might suspect that ratings help prevent incorrect cascades
from forming in the first place, but recall that ratings disproportionately affect beliefs
so it only takes a few incorrect ratings early on to trigger an incorrect cascade. Incor-
rect cascades are relatively less likely, but the overall incidence of cascades increases
significantly with ratings.

In our experiment we test this case where private signals are fairly uninformative,
and ratings information is only slightly more informative. Based on the above discussion
and the calculations from Yoon (2015), we derive the following testable hypotheses. We
state them as hypotheses about herds, not cascades, since we cannot distinguish the two
in our data.

Hypothesis 1. When quality is low there will be fewer incorrect herds with ratings
than without.

Hypothesis 2. When quality is high there will be more incorrect herds with ratings
than without.

Hypothesis 3. Without ratings all herds will be terminal.

Hypothesis 4. With ratings all passing herds will be terminal, but purchasing herds
will often be transitory.

III. EXPERIMENTAL DESIGN

Our experimental design was based on that of Goeree et al (2007), and computerized us-
ing zTree (Fischbacher, 2007). We recruited undergraduates from Ohio State University
using ORSEE (Greiner, 2015). In the experiment, the state of the world was represented
as a jar that could either be red (the “Red Jar”, representing the good state) or blue (the
“Blue Jar”, representing the bad state). In each round the color of the jar was equally
likely to be red or blue, but subjects were not shown the chosen color until the conclusion
of the round. Thus, we called this the “Unknown Jar”.

If the Unknown Jar is the Red Jar, it contains five red and four blue balls. If it is
the Blue Jar, it contains five blue and four red balls. Each subject is privately shown a
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single draw from the Unknown Jar, with replacement. This private signal si is therefore
correct with probability p = 5/9.

On their turn, each subject is asked to choose between two options: “Jars” or “Pass”.
Choosing Jars gives the subject a lottery that pays 20 points if the Unknown Jar is Red
and −20 points if the Unknown Jar is Blue. Thus, the Jars option represents purchasing
the good (xi = 1), which has potential payoffs of v = 20 and −v = −20. Choosing Pass
(xi = 0) gives the subject a guaranteed payoff of zero.

In the model, the true value is augmented by an idiosyncratic shock θi. This is im-
plemented in the experiment by adding a second car called the “Points Jar”. It contains
three balls labeled “+30”, one ball labeled “0”, and three balls labeled “−30”. Subjects
privately draw one ball from the Points Jar and the amount on the drawn ball is added
(or subtracted) from their earnings for the round. The probability mass function of the
idiosyncratic shock is therefore given by f (−30)= 3/7, f (0)= 1/7, and f (30)= 3/7.

Since v = 20 we have that F(v) = 4/7, which is slightly greater than p = 5/9, though
both are quite close to 1/2 and therefore fairly uninformative. Our experiment corre-
sponds to the example described in the theory section wherein p = 1/2+ ε and F(v) =
1/2+ε+δ for small ε and δ.

Participants are randomly and anonymously assigned to groups of eight or nine each
period and randomly assigned an ordering in that group (from 1 to n). They make their
purchase/pass decisions sequentially and are able to see whether each participant before
them chose Jars or Pass.

Those in the ratings treatment play the exact same game but are also able to see
the previous decision-makers’ ratings. Ratings were not a strategic choice variable; a
previous participant’s rating is “Positive” if her total points from both the Unknown
Jar and Points Jar is positive. Otherwise her rating is “Negative”. Recall that ratings
match the sign of the state variable with probability F(v)= 4/7. If a previous participant
chooses Pass then no rating is provided.

We ran four sessions of the No Ratings treatment and six sessions of the Ratings
treatment. In each session there were either ten or twenty rounds.8 Groups, orderings
within groups, and the color of the Unknown Jar were randomly redrawn each round.
There were either 16 or 18 participants per session—depending on how many subjects
showed up—giving two groups of either 8 or 9 in every round. Participants were paid
$15 plus $0.10 per point earned.

8Originally, we planned to have sessions consist of ten rounds each. However, during the first session we
found that participants were able to complete rounds more quickly than we anticipated, so we increased
the number of rounds to twenty for the subsequent sessions.
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IV. RESULTS

Empirical Definition of Herds and Cascades

For our data analysis, we define a herd as any string of sequential identical purchase/pass
decisions. Thus, a new herd begins whenever anyone chooses a different purchase/pass
decision than their immediate predecessor. This definition allows for herds of length
one, and guarantees that all decisions are a part of some herd.

The proper definition of a cascade would require information on subjects’ beliefs,
which are not available in this experiment. Instead, we calculate for every consumer
i what the public belief bi would be if they were Bayesian, and define player i to be in a
cascade if (1) his purchase/pass decision matches that of his predecessor (xi = xi−1), and
(2) either bi < 4/9 and xi = 0 (a passing cascade), or bi > 5/9 and xi = 1 (a purchasing
cascade). When calculating the public belief bi, we apply the assumption that previous
players j < i follow their private signal if b j ∈ [4/9,5/9], that players who follow an exist-
ing cascade reveal no new information (b j = b j−1), and that players who deviate from an
existing cascade are revealing their private signal. This is identical to how the public
belief updates in equilibrium, with the intuitive refinement that any (probability-zero)
deviation from a cascade is assumed to come from a player who followed their private
signal.

A cascade is then identified as a sequence of consecutive players who choose the same
action and have all been identified as in a cascade by the above criteria. Whenever a
player does not follow his immediate predecessor the cascade ends. With ratings a pur-
chasing cascade can also end because of negative ratings, even when no player deviates
in their purchase/pass decision. Notice that every cascade is a strict subset of some herd
in our data; indeed, the first player i in a given herd cannot be part of a cascade since
xi 6= xi−1. We cannot have cascades of length n, though we can have cascades of length
one. According to our definition, if player i deviates from an existing cascade but players
i+1 and i+2 return play to the original cascade behavior, a new herd is said to begin
at i+1 and a new cascade begins at i+2 (assuming bi+2 is still less than 4/9 or greater
than 5/9).9
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Purchasing Passing
No Ratings 0.82 0.22

Ratings 1.03 0.40
TABLE I. Cascades per period, by treatment and by type.
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FIGURE I. Fraction of (A) herds and (B) cascades that are incorrect when
true quality is low.

Tests of the Main Hypotheses

To set the stage, we first measure the average number of cascades per period, broken
down by treatment and by cascade type. The result is shown in Table I, which pro-
vides broad evidence for our three major findings: First, subjects purchase far more
often than they pass. In the No Ratings treatment we should expect the frequencies
of purchasing cascades and passing cascades to be roughly equal. Instead, purchasing
cascades are nearly four times as common. Second, the presence of ratings reduces this
bias. Purchasing cascades are still far more common, but now only 2.5 times as frequent
as passing cascades. Finally, the presence of ratings breaks cascades, enabling more
cascades to form per period.

Our first hypothesis from the theory is that, when quality is low, fewer (incorrect)
purchasing herds will be observed in the ratings treatment because ratings will correct
any such cascade. Figure I restricts attention to periods in which the true state was low
9Goeree et al. (2007) use a more stringent definition of cascades, requiring that they begin at the first i
for which bi ∈ [0,4/9)∪ (5/9,1] and that they continue unbroken through player n. This is sensible since
those authors do not study ratings; with ratings cascades can be broken (and reformed) in equilibrium.
This difference inspires our definition.
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FIGURE II. Fraction of (A) herds and (B) cascades that are incorrect when
true quality is high.

and shows the fraction of herds (panel A) or cascades (panel B) that were incorrect. The
first nine bins show the frequency by herd or cascade length, while the tenth is the sum
over all lengths. The overall difference does move in the direction of the hypothesis, but
is not statistically significant either for herds (Fisher test p-value 0.673) or for cascades
(p-value 0.200). For cascades this lack of significance comes because the frequency of
length-one cascades is substantially higher with ratings. These length-one cascades
occur because the public belief moves in larger increments with ratings—when moving
either up or down—so there are more opportunities for the public belief bi to rise above
5/9 with ratings. In that scenario, if subject i purchases but leaves a negative rating
then i+1 is likely not to purchase, giving a cascade of length one. With ratings there
is no negative public signal so subject i + 1 is much more likely to purchase as well,
extending the cascade.

A particularly surprising result is that the total fraction of incorrect herds and cas-
cades (the last set of bars) is above one half for either treatment: If purchase decisions
and ratings convey any information, incorrect herds should be less common than correct
herds. The failure arises because subjects systematically purchase (or, choose “Jars”)
too frequently. When the true state is low, this purchasing bias leads to incorrect herds
and cascades.

Our second hypothesis is that, counter-intuitively, ratings will increase the number
of (incorrect) passing herds when the quality is high. In Figure II we see that these
herds are not common—again because subjects purchase so often—and that differences
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FIGURE III. Fraction of (A) herds and (B) cascades that are terminal in
the treatment without ratings.

between treatments are small or non-existent. The Fisher test p-value for a treatment
difference is 1.000 for herds and 0.671 for cascades. We also note that almost all of these
incorrect passing herds (and cascades) are short-lived, rarely lasting more than three
decisions. Again, this is evidence that subjects have a strong bias towards purchasing.

Our final two hypotheses focus on whether cascades are transitory or terminal. First,
consider the No Ratings treatment. In theory, all cascades should be terminal without
ratings because no new information is provided to break a cascade once it begins. To
the contrary, panel (A) of Figure III reveals that only a small fraction of herds are ter-
minal. This is in line with previous experimental results that suggest players choose
stochastically, breaking cascades (Kubler and Weizsacker, 2004; Goeree et al., 2007,
e.g.). Purchasing herds do tend to be terminal more often than passing herds (Fisher
p-value < 0.001), again because subjects have a propensity to purchase. We obtain a
similar result for cascades (p-value < 0.001), though purchasing cascades tend to be
even longer-lived and are more often terminal than not. Overall, we clearly reject the
hypothesis that cascades in the No Ratings treatment are all terminal.

In the Ratings treatment we hypothesize that passing cascades will be be terminal,
but purchasing cascades will often be broken via ratings data. In Figure IV we see that
the prediction is also not true. All types of herds and cascades are terminal less than
40% of the time. In fact, passing herds are terminal less often than purchasing herds
(Fisher p-value 0.002). This is again explained by the purchasing bias, causing subjects
to break out of passing herds but conform with purchasing herds.
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FIGURE IV. Fraction of (A) herds and (B) cascades that are terminal in
the treatment with ratings.

Comparing treatments, we find no difference in the fraction of purchasing herds that
are terminal (Fisher p-value 0.291) and no difference in the fraction of passing herds
that are terminal (p-value 0.406). With cascades, however, we do see a difference. In the
Ratings treatment there are significantly fewer purchasing cascades that are terminal
than in the No Ratings treatment (p-value < 0.001). There are actually more terminal
passing cascades in the Ratings treatment than in the No Ratings treatment, but the
significance of this difference is marginal (p-value 0.071). The reduction in terminal
purchasing cascades is exactly in line with theory, though the (insignificant) increase in
terminal passing cascades is not.

We can expand on this last result by examining the distribution of purchasing and
passing herd lengths for each treatment. This is shown (for herds and cascades) in Fig-
ure V. When looking at herds (panels A and C), the difference between treatments is not
substantial. The average length of purchasing herds drops from 2.93 to 2.71, and the
average length of passing herds drops from 1.69 to 1.64. Neither of these distributions
is significantly different (Mann-Whitney p-values 0.332 and 0.861, respectively), so we
conclude that the presence of ratings does not have a large impact on how frequently
players mimic the actions of their immediate predecessor. But if we focus on cascades—
which are a type of rational herd—we do see a treatment difference. Purchasing cas-
cades drop in average length from 3.22 decisions without ratings to 2.24 decisions with
ratings. In fact, the distribution of cascade lengths in the Ratings treatment is stochas-
tically dominated by the distribution in the No Ratings treatment, if we exclude the
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FIGURE V. Lengths of purchasing and passing herds and cascades, by treatment.

one cascade of length 8 in the Ratings treatment. A Mann-Whitney test confirms that
these distributions are significantly different (p-value < 0.001). Passing cascade lengths
drop from 2.26 on average to 1.71 on average—and the distributions have a stochas-
tic dominance relationship if we exclude the one passing cascade of length seven—but
the difference in the distributions is only marginally significant (Mann-Whitney p-value
0.092). Again, these results are qualitatively in line with the theoretical prediction: neg-
ative ratings eventually break long purchasing cascades, but do not have a large impact
on passing cascades.
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In the next subsection we turn to individual-level analysis. We will find that the re-
duction in purchasing cascades in the ratings treatment is largely driven by a reduction
in the purchasing bias, apparently due to subjects focusing more on public information
when ratings are introduced. This suggests that the theory’s prediction was right, but
for the wrong reason.

An Econometric Model of Individual Behavior

To study individual decisions we estimate an econometric model whose parameter es-
timates will allow us to identify the relative importance of various biases in subjects’
decision-making. Its construction is similar to the models of Goeree and Holt (2004),
Kubler and Weizsacker (2004), and Goeree et al. (2007), among others.

First, it has been observed that subjects often overweight their own private informa-
tion. So we allow for non-Bayesian updating that incorporates this bias. Specifically, we
assume that the posterior belief is given by

r i = bi pα

bi pα+ (1−bi)(1− p)α
I(si=1) +

bi(1− p)α

bi(1− p)α+ (1−bi)pα
I(si=−1),

where α> 0 is a parameter that represents the weight on private information. If α= 1
then we have the Bayesian formula. An agent with α> 1 overweights private informa-
tion, while an agent with α < 1 underweights private information. Algebraic manipu-
lation of this updating rule yields a convenient linear form in terms of log odds ratios,
given by

log
(

r i

1− r i

)
= log

(
bi

1−bi

)
+α

[
log

(
p

1− p

)
I(si=1) + log

(
1− p

p

)
I(si=−1)

]
.

Second, we allow for a natural bias toward one decision or another. This is done simply
by augmenting the utility function. Specifically, we alter the ex-post utility function of
agent i to ui(xi|q,θi) = (qv+ θi +β)xi, where β represents a bias toward purchasing
behavior.10 If β > 0 then the agent is biased toward purchasing, and if β < 0 then the
agent is biased toward passing. Our aggregate results suggest excessive purchasing, so
we expect our estimate of β will be positive.

Finally, we allow for stochastic choice. Given beliefs r i (which may be biased by α) and
an ex-post utility function ui(xi|q,θi) (which may be biased by β), consumer i calculates
the expected utility of purchasing and passing, which we denote here simply by EU1 and
EU0, respectively. He then purchases the good with probability

Pr(xi = 1|EU1,EU0,λ)= exp(λEU1)
exp(λEU1)+exp(λEU0)

,

10Of course, the ratings players leave are still determined by their un-augmented ex-post utility.
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where λ≥ 0 is a noise parameter that captures the subject’s sensitivity to payoffs. The
model predicts perfect best response as λ→∞, and uniform random choice when λ= 0.
The maximum likelihood estimate of λ is sensitive to the scaling of payoffs; for the
purposes of this estimation we normalize v to one.11 With this normalization a risk-
neutral subject with private belief r i and purchasing bias β will prefer to purchase if
r i − (1− r i)+β ≥ 0, or r i +β/2 ≥ 1/2. Thus, we can also interpret a bias of β as being
equivalent to a β/2 increase in the subject’s private belief about the true state being
positive. It could also be interpreted as a proxy for risk preferences, with β> 0 indicating
risk-loving behavior. We are forced to be agnostic about these varied interpretations as
our experiment was not designed to tease apart their differences.

We assume all subjects employ the same parameter values and that this is common
knowledge. The public belief is therefore adjusted accordingly. For example, a lower
value of λ would imply that previous purchase decisions are less informative, causing
the current player to weight them less in their own belief updating. If α = 0 then his
updating adjustment is fully Bayesian, given the noise in others’ behavior. If α> 0 then
the subject puts even less weight on past play because of his own non-Bayesian bias.

Previous ratings data are truthful, so λ does not affect how ratings enter into the
updated public belief. But α does. Summarizing, λ affects the randomness in choice and
also shifts the weight on previous purchasing data, while α shifts the weights on both
previous purchasing data and ratings data.

The purchasing bias β also alters the subjects’ belief updating process. If previous
subjects are prone to purchase (β > 0) then purchasing decisions are less informative
than passing decisions. The reverse is true if they are prone to passing (β < 0). But β
does not affect how previous ratings data are incorporated. Only α affects the weight
placed on ratings data.

Our model is parameterized by the triple (α,β,λ). The unbiased equilibrium is a spe-
cial case of our simple model where α= 1, β= 0, and λ→∞. We estimate the parameters
of our model via a grid search, finding the parameter vector that maximizes the log like-
lihood of our data. We do this for each treatment separately, and for both treatments
combined. We also look at how the fit of the model is affected by ‘shutting down’ various
parameters, to understand the relative importance of each in predicting actual behavior.

11Since the distribution of θi is symmetric its expectation is zero regardless of its scaling, so there is no
need to normalize its value.
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Econometric Model Parameter Estimates

The maximum likelihood estimates are shown in Table II. Recall that we ran more ses-
sions of the Ratings treatment, so the log likelihood values are not directly comparable
across treatments.

Specification 1 estimates the full model. First, estimates of β range from 0.10 to 0.16.
This is a fairly strong purchasing bias, equivalent to a 5 to 8 percentage point increase
in the subjects’ private beliefs about the true state, regardless of their observed history.

Our estimated value of λ is roughly in line with Goeree et al. (2007), but our α is lower.
This difference may stem from the purchasing bias described above: Rational subjects
should place low weight on previous purchasing decisions in our experiment because
subjects purchase far too often. If they fail to make this adjustment, they will appear
to be putting too much weight on public information (and too little on private signals),
causing α to decrease. When ratings are present α even drops below one. But notice
that when we restrict α= 1 (in specification 2) the estimates of β and the log likelihoods
barely change. Thus, the full model’s predictions are fairly insensitive to changes in α,
and we cannot conclusively argue that subjects are non-Bayesian in our experiment.

The role of β appears more important: restricting β to zero (specification 3) notice-
ably alters α and decreases the predictive power of the model. This suggests that the
purchasing bias is a much more robust and fundamental phenomenon in our data.

Comparing treatments (in the full model), we find that the presence of ratings reduces
the purchasing bias and shifts subjects from overweighting private information (α > 1)
to overweighting public information (α< 1). The reduction in the purchasing bias should
reduce the overall incidence of purchasing cascades, though we do not expect the shift
in α to have a large effect given its relatively unimportant role in prediction. This pre-
diction is confirmed by the earlier results: We see somewhat fewer incorrect purchasing
cascades with ratings (panel B of Figure I), and many fewer terminal purchasing cas-
cades with ratings (comparing panel B of Figures III and IV).

V. DISCUSSION

Though our experiment was designed to study the counterintuitive predictions of Yoon
(2015), our primary result is instead that subjects in this experiment had a strong
propensity to purchase, even when public information suggested the good was of low
quality. One might posit that subjects prefer to purchase out of altruism, because pur-
chasing the good generates a rating which is useful for future consumers. But we see an
even stronger propensity to purchase when no ratings are present, so this explanation
can only explain part of the observed bias.
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Treatment
Specification Both No Ratings Ratings

1

α 0.87 1.25 0.68
β 0.12 0.16 0.10
λ 7.10 5.85 7.82

Log L -1901.2 -655.3 -1243.2

2

α ==Restricted to 1==
β 0.13 0.13 0.13
λ 6.45 6.88 5.96

Log L -1901.3 -655.7 -1244.3

3

α 0.47 0.59 0.34
β ==Restricted to 0==
λ 11.83 10.77 13.72

Log L -1973.4 -697.2 -1274.1

4

α ==Restricted to 1==
β ==Restricted to 0==
λ 7.16 7.63 6.63

Log L -1988.2 -701.1 -1285.7
TABLE II. Maximum likelihood estimates of the econometric model pa-
rameters, by treatment.

The apparent bias toward purchasing in the No Ratings treatment could be due to loss
aversion. Subjects may enter the experiment with an expectation of positive payoffs, and
therefore view a guaranteed payoff of zero (given by not purchasing) to be unappealing.
Purchasing exposes the subject to the possibility of an even larger loss, but perhaps
risk-seeking preferences in the domain of losses will lean subjects toward purchasing
behavior. In other words, a prospect theory explanation may apply here, but would
require fairly specific parameter values to capture this bias.

Recall, however, that all subjects received $15 in addition to their earnings from the
task. So any loss aversion explanation would require that the reference point for losses
either be quite high (relative to standard experiment payments), or be independent of
the fixed $15 payment. We believe the latter is more plausible, as the experiment earn-
ings are focal within the interface, and these can be negative.

An alternative explanation is that subjects simply find the purchase option to be more
‘interesting’ or ‘active’ than the pass option. This sort of activity bias has been docu-
mented in past studies as well, including Patt and Zeckhauser (2000); Lei et al. (2001);
Bar-Eli et al. (2007); Carrillo and Palfrey (2011); and Atiker et al. (2011).

Our current design was not created to test these various explanations since we did
not anticipate this result, so such an investigation remains an open question for future
research.



20 CONLON, HEALY & YOON

REFERENCES

Anderson, L. R., Holt, C. A., 1997. Information cascades in the laboratory. American
Economic Review 87, 847–862.

Atiker, E., Neilsen, W. S., Price, M. K., 2011. Activity bias and focal points in extensive
games, University of Tennessee working paper.

Banerjee, A. V., 1992. A simple model of herd behavior. Quarterly Journal of Economics
107, 797–817.

Bar-Eli, M., Azar, O. H., Ritov, I., Keidar-Levin, Y., Schein, G., 2007. Action bias among
elite soccer goalkeepers: The case of penalty kicks. Journal of Economic Psychology
28, 606–621.

Bikhchandani, S., Hirshleifer, D., Welch, I., 1992. A theory of fads, fashion, custom, and
cultural change as informational cascades. Journal of Political Economy 100, 992–
1026.

Carrillo, J. D., Palfrey, T. R., 2011. No trade. Games and Economic Behavior 71, 66–87.
Celen, B., Kariv, S., 2004. Distinguishing informational cascades from herd behavior in

the laboratory. American Economic Review, 484–498.
Celen, B., Kariv, S., 2005. An experimental test of observational learning under imper-

fect information. Economic Theory 26 (3), 677–699.
Celen, B., Kariv, S., Schotter, A., 2010. An experimental test of advice and social learn-

ing. Management Science 56 (10), 1687–1701.
Cipriani, M., Guarino, A., 2008. Transaction costs and informational cascades in finan-

cial markets. Journal of Economic Behavior & Organization 68 (3), 581–592.
Corazzini, L., Greiner, B., 2007. Herding, social preferences and (non-) conformity. Eco-

nomics Letters, 74–80.
Dominitz, J., Hung, A. A., 2009. Empirical models of discrete choice and belief updating

in observational learning experiments. Journal of Economic Behavior & Organization
69 (2), 94–109.

Drehmann, M., Oechssler, J., Roider, A., 2007. Herding with and without payoff exter-
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APPENDIX A. TRANSITIONS OF PUBLIC BELIEFS

In this section we calculate the transition of public beliefs, according to Bayes’s rule.
These calculations are adapted from Yoon (2015).

No Ratings Treatment: General Case

(1) When bi ∈ (1− p, p), the public belief is intermediate and the agent i’s choice follows
her own private signal si. In this case, her choice fully delivers her signal information
to the later agents, i.e., xi = si.

bi+1 =


bi p

bi p+ (1−bi)(1− p)
if xi = 1

bi(1− p)
bi(1− p)+ (1−bi)p

if xi = 0

(2) When bi = 1− p, the agent i chooses xi = 0 if her private signal is also si = 0. If
si = 1, however, she is now indifferent between xi = 1 and xi = 0 . In this case, the agent
i chooses xi = 0 with probability 1/2 even when si = 1. Hence, if xi = 1, it simply implies
that si = 1, but xi = 0 does not always mean that si = 0.

bi+1 =


bi p

bi p+ (1−bi)(1− p)
if xi = 1

bi(2− p)
bi(2− p)+ (1−bi)(1+ p)

if xi = 0

(3) When bi = p, similarly, xi = 1 does not fully deliver the agent i’s private signal
information while xi = 0 implies si = 0.

bi+1 =


bi(1+ p)

bi(1+ p)+ (1−bi)(2− p)
if xi = 1

bi(1− p)
bi(1− p)+ (1−bi)p

if xi = 0

(4) When bi ∈ [0,1− p)∪ (p,1], the agent i simply follows the majority and ignore her
private signal, si. Thus her action does not deliver any information.

bn+1 = bn for xi ∈ {0,1}.

Ratings Treatment: General Case

(1) When bi ∈ (1− p, p), the agent i’s choice follows her private signal and she also gives
ratings when she chooses xi = 1.



bi+1 =



bi pF(v)
bi pF(v)+ (1−bi)(1− p)F(−v)

if xi = 1 & yi = 1

bi pF(−v)
bi pF(−v)+ (1−bi)(1− p)F(v)

if xi = 1 & yi =−1

bi(1− p)
bi(1− p)+ (1−bi)p

if xi = 0

(2) When bi = 1− p, xi = 0 does not fully deliver her private information while xi = 1
implies si = 1 and the agent i provides rating informationo conditional on si = 1.

bi+1 =



bi pF(v)
bi pF(v)+ (1−bi)(1− p)F(−v)

if xi = 1 & yi = 1

bi pF(−v)
bi pF(−v)+ (1−bi)(1− p)F(v)

if xi = 1 & yi =−1

bi(2− p)
bi(2− p)+ (1−bi)(1+ p)

if xi = 0

(3) When bi = p, xi = 1 only partially deliver the agent i’s signal information.

bi+1 =



bi(1+ p)F(v)
bi(1+ p)F(v)+ (1−bi)(2− p)F(−v)

if xi = 1 & yi = 1

bi(1+ p)F(−v)
bi(1+ p)F(−v)+ (1−bi)(2− p)F(v)

if xi = 1 & yi =−1

bi(1− p)
bi(1− p)+ (1−bi)p

if xi = 0

(4) When bi ∈ [0,1−p), agent i always choose xi = 0 and no information is not provided
to the later agents including ratings information.

bi+1 = bi for xi ∈ {0,1}

(5) When bi ∈ (p,1], agent i always choose xi = 1 and her choice does not deliver her
private signal information. In this case, however, she gives a rating which deliver her
ex-post payoff deliver information.

bi+1 =


biF(v)

biF(v)+ (1−bi)F(−v)
if xi = 1 & yi = 1

biF(−v)
biF(−v)+ (1−bi)F(v)

if xi = 1 & yi =−1

No Ratings Treatment: Experimental Parameters

In our experimental setting, we assume b0 = 1/2, p = 5/9 and F(v) = 4/7. Therefore, the
dynamics of the public beliefs are the following:

(1) When bi ∈ (
4
9

,
5
9

),

bi+1 =


5bi

bi +4
if xi = 1

4bi

5−bi
if xi = 0

(2) When bi = 4/9,



bi+1 =


5bi

bi +4
= 1

2
if xi = 1

13bi

14−bi
= 26

61
if xi = 0

(3) When bi = 5/9,

bi+1 =


14bi

13+bi
= 35

61
if xi = 1

4bi

5−bi
= 1

2
if xi = 0

(4) When bi ∈ [0,
4
9

)∪ (
5
9

,1],

bn+1 = bn for xi ∈ {0,1}.

Ratings Treatment: Experimental Parameters

(1) When bi ∈ (
4
9

,
5
9

),

bi+1 =



5bi

3+2bi
if xi = 1 & yi = 1

15bi

16−bi
if xi = 1 & yi =−1

4bi

5−bi
if xi = 0

(2) When bi = 4/9, .

bi+1 =



5bi

3+2bi
= 4

7
if xi = 1 & yi = 1

15bi

16−bi
= 3

7
if xi = 1 & yi =−1

13bi

14−bi
= 26

61
if xi = 0

(3) When bi = 5/9,

bi+1 =



56bi

39+17bi
= 70

109
if xi = 1 & yi = 1

42bi

52−10bi
= 105

209
if xi = 1 & yi =−1

4bi

5−bi
= 1

2
if xi = 0

(4) When bi ∈ [0,
4
9

),

bi+1 = bi for xi ∈ {0,1}

(5) When bi ∈ (
5
9

,1],

bi+1 =


4bi

3+bi
if xi = 1 & yi = 1

3bi

4−bi
if xi = 1 & yi =−1



APPENDIX B. EXPERIMENTAL INSTRUCTIONS: NO RATINGS

This is an experiment in the economics of decision-making. If you listen carefully and
make good decisions, you could earn a significant amount of money that will be paid to
you in cash at the end of the experiment.

In this experiment, there is a jar called the “Unknown Jar” that is filled with 9 balls
that are either red or blue. The jar is either the “red jar”, meaning it contains 5 red balls
and 4 blue balls, or the “blue jar”, which contains 5 blue balls and 4 red balls. Thus, the
“red jar” has slightly more red balls, and the “blue jar” has slightly more blue balls.

At the beginning of each round in the experiment, the computer will flip a coin to
determine which jar to use – either the red jar or the blue jar. But you won’t know
which one is chosen. In the computer interface, you’ll be shown a jar with 9 balls of
unknown color (Figure 1). To give you a clue about which jar it is, you can then click on
any one ball and its color will be revealed to you (Figure 2). The other 8 balls will not be
revealed.

Figure 1: 9 balls of unknown color. Figure 2: A blue ball was revealed.



Figure 3: The “Points Jar”. Figure 4: Choose “Jars” or “Pass”

You will then choose one ball from the “Points Jar”. As shown in figure 3, the Points
Jar contains 3 balls labeled “+30”, 1 ball labeled “0”, and 3 balls labeled “-30”. The value
of the “Points Ball” you drew is not yet revealed to you.

After drawing a ball from each jar, your job is to choose whether you want to get paid
based on which jar the Unknown Jar is, or whether you prefer to “pass”. You do this in
the computer by clicking the button labeled “Jars” or the button labeled “Pass” (Figure
4).

If you choose “Jars”, you receive 20 points if the unknown jar is the RED jar, and you
lose 20 points if it is the BLUE jar. In addition, you will earn (or lose) the number of
points shown on your Points Ball.

For example, suppose you choose “Jars”. If the unknown jar is red and the Points
Ball you drew is “+30”, you earn 20 + 30 = 50 points. If the unknown jar is blue and
your Points Ball is “0”, then you earn -20 + 0 = -20 points. If we count all possible
combinations, your total point earnings could be -50, -20, or 10 if the Unknown Jar is
blue, and -10, 20, or 50 if the Unknown Jar is red.

If you choose to “Pass”, then you earn zero points regardless of whether the Unknown
Jar is red or blue, and the ball you drew from the Points Jar will not affect the number
of points you earn. In summary, your choices are:

JARS: Receive 20 points if the unknown jar is RED. Lose 20 points if the unknown
jar is BLUE. In addition, you earn (or lose) the number of points shown on the ball you
drew from the Points Jar.

PASS: Receive 0 points.
You will be in a group of 9 subjects all making the same decision about the same jar.

The other members of your group also get to choose one ball from both the Unknown
Jar and the Points Jar and then choose Jars or Pass. The balls they draw may be the



same as yours or different, depending on which they clicked. Thus, each of you may have
different information about the Unknown Jar.

You will take turns making your decision. Each person in your group is assigned a
“decision maker number”, which tells the order in which you will make your decision.
Everyone chooses a ball from each jar at the same time. Then, decision maker #1 chooses
between Jars or Pass, followed by decision maker #2, and so on.

Figure 5: The choices of decision makers 1 through 5.

Each person gets to see the history of what the earlier decision makers in their group
chose. For example, decision maker #4 gets to see what decision makers #1, 2, and 3
chose. An example history that decision maker #6 might see is shown in Figure 5. This
shows that decision maker #1 chose “Jars”, decision maker #2 chose “Pass”, and so on.

Figure 6: The jar is revealed and your earnings are calculated.

Once everyone in your group has made their choices, you will see whether the Un-
known Jar is red or blue. If you chose “Jars”, you will also see the contents of the Points
Jar and the value of the ball you drew. Finally, you will see your earnings in points. For
example, in Figure 6, the unknown jar was the Red jar. The player chose “Jars”, so they
earned +20 points. Their Points ball was “+30”, so their total payoff is 20+30 = 50 points.



This completes one round of the experiment. You will play a total of 10 rounds. In
each round everyone will be randomly assigned a new group, and will get a new decision
maker number within that group. The computer will flip a coin again to decide whether
the Unknown Jar will be the red jar or the blue jar. It will also randomly shuffle the
contents of the Unknown Jar and the Points Jar.

At the end of the experiment, we will randomly pick one of the 10 rounds for ac-
tual payment. You will get paid $15 plus 10 cents for every point earned in that one
chosen round (or, minus 10 cents for every point lost if your earnings for that round
were negative). Since the maximum you can earn in any one round is 20+30=50 points,
your maximum possible payment for the experiment is $15 + (50 × $0.10) = $20.00 The
minimum you can earn in any round is -20-30 = -50 points, so your minimum possible
payment for the experiment is $15 + (-50 × $0.10) = $10.00. (Your show-up fee of $5 is
already included in these payments.)

Ground rules: Please do not communicate with any other participants, do not use
your cell phone, and do not use any other software on the computer. If you have any
questions, please raise your hand and the experimenter will assist you.

Are there any questions before we begin?

APPENDIX C. EXPERIMENTAL INSTRUCTIONS: NO RATINGS

This is an experiment in the economics of decision-making. If you listen carefully and
make good decisions, you could earn a significant amount of money that will be paid to
you in cash at the end of the experiment.

In this experiment, there is a jar called the “Unknown Jar” that is filled with 9 balls
that are either red or blue. The jar is either the “red jar”, meaning it contains 5 red balls
and 4 blue balls, or the “blue jar”, which contains 5 blue balls and 4 red balls. Thus, the
“red jar” has slightly more red balls, and the “blue jar” has slightly more blue balls.

At the beginning of each round in the experiment, the computer will flip a coin to
determine which jar to use – either the red jar or the blue jar. But you won’t know
which one is chosen. In the computer interface, you’ll be shown a jar with 9 balls of
unknown color (Figure 1). To give you a clue about which jar it is, you can then click on
any one ball and its color will be revealed to you (Figure 2). The other 8 balls will not be
revealed.



Figure 1: 9 balls of unknown color. Figure 2: A blue ball was revealed.

Figure 3: The “Points Jar”. Figure 4: Choose “Jars” or “Pass”

You will then choose one ball from the “Points Jar”. As shown in figure 3, the Points
Jar contains 3 balls labeled “+30”, 1 ball labeled “0”, and 3 balls labeled “-30”. The value
of the “Points Ball” you draw is not yet revealed to you.

After drawing a ball from each jar, your job is to choose whether you want to get paid
based on which jar the Unknown Jar is, or whether you prefer to “pass”. You do this in
the computer by clicking the button labeled “Jars” or the button labeled “Pass” (Figure
4).

If you choose “Jars”, you receive 20 points if the unknown jar is the RED jar, and you
lose 20 points if it is the BLUE jar. In addition, you will earn (or lose) the number of
points shown on your Points Ball.

For example, suppose you choose “Jars”. If the unknown jar is red and the Points
Ball you drew is “+30”, you earn 20 + 30 = 50 points. If the unknown jar is blue and
your Points Ball is “0”, then you earn -20 + 0 = -20 points. If we count all possible



combinations, your total point earnings could be -50, -20, or 10 if the Unknown Jar is
blue, and -10, 20, or 50 if the Unknown Jar is red.

If you choose to “Pass”, then you earn zero points regardless of whether the Unknown
Jar is red or blue, and the ball you drew from the Points Jar will not affect the number
of points you earn. In summary, your choices are:

JARS: Receive 20 points if the unknown jar is RED. Lose 20 points if the unknown
jar is BLUE. In addition, you earn (or lose) the number of points shown on the ball you
drew from the Points Jar (Figure 4).

PASS: Receive 0 points.
You will be in a group of 9 subjects all making the same decision about the same jar.

The other members of your group also get to choose one ball from both the Unknown
Jar and the Points Jar and then choose Jars or Pass. The balls they draw may be the
same as yours or different, depending on which they clicked. Thus, each of you may have
different information about the Unknown Jar.

You will take turns making your decision. Each person in your group is assigned a
“decision maker number”, which tells the order in which you will make your decision.
First, everyone chooses a ball from each jar. Then, decision maker #1 chooses between
Jars or Pass, followed by decision maker #2, and so on.

Figure 5: The choices & feedback of decision makers 1 through 5.

Each person gets to see the history of what the earlier decision makers in their group
chose. For example, decision maker #4 gets to see what decision makers #1, 2, and
3 chose. An example history that decision maker #6 might see is shown in Figure 5.
This shows that decision maker #1 chose “Jars”, decision maker #2 chose “Pass”, and
so on. In the 3rd column of the history table, you can also see whether the earlier
decision makers’ point earnings were positive or negative. We call this their “feedback”.
Remember, if they chose Jars and the unknown jar is red, then their final payoff could
be -10 (negative), 20 (positive), or 50 (positive). Since there’s a 3/7 chance of drawing a
“-30” Points Ball, there’s a 3/7 chance that the person has negative feedback even though
the jar was red. Similarly, if the unknown jar is blue, then their final payoff could be



-50 (negative), -20 (negative), or 10 (positive). Here, there’s a 3/7 chance the person has
positive feedback even though the jar was blue.

If a previous decision maker chose “Pass”, then you know their payoff is zero. In that
case, no feedback is provided.

Figure 6: The jar is revealed and your earnings are calculated.

Once everyone in your group has made their choices, you will see whether the Un-
known Jar is red or blue. If you chose “Jars”, you will also see the contents of the Points
Jar and the value of the ball you drew. Finally, you will see your earnings in points. For
example, in Figure 6, the unknown jar was the Red jar. The player chose “Jars”, so they
earned +20 points. Their Points ball was “+30”, so their total payoff is 20+30 = 50 points.

This completes one round of the experiment. You will play a total of 10 rounds. In
each round everyone will be randomly assigned a new group, and will get a new decision
maker number within that group. The computer will flip a coin again to decide whether
the Unknown Jar will be the red jar or the blue jar. It will also randomly shuffle the
contents of the Unknown Jar and the Points Jar.

At the end of the experiment, we will randomly pick one of the 10 rounds for ac-
tual payment. You will get paid $15 plus 10 cents for every point earned in that one
chosen round (or, minus 10 cents for every point lost if your earnings for that round
were negative). Since the maximum you can earn in any one round is 20+30=50 points,
your maximum possible payment for the experiment is $15 + (50 × $0.10) = $20.00 The
minimum you can earn in any round is -20-30 = -50 points, so your minimum possible
payment for the experiment is $15 + (-50 × $0.10) = $10.00. (Your show-up fee of $5 is
already included in these payments.)

Ground rules: Please do not communicate with any other participants, do not use
your cell phone, and do not use any other software on the computer. If you have any
questions, please raise your hand and the experimenter will assist you.

Are there any questions before we begin?


