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ABSTRACT. Proper scoring rules incentivize truthful probability reports from risk-neutral
agents. For agents with much more general preferences (including ambiguity aversion)
we use duality techniques to characterize the optimal report in any proper scoring rule.
We apply this characterization to several well-known families of preferences. For the case
of CARA and CRRA preferences we (1) can back out true beliefs from optimal reports,
(2) show that the quadratic scoring rule minimizes deviations from truthfulness, and (3)
provide a two-step procedure in which the agent reports her risk aversion parameter and
her belief truthfully. We provide several other identification results as well.
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I. INTRODUCTION

A scoring rule is an incentive device for obtaining probabilistic assessments from indi-
viduals in the face of subjective uncertainty. It can be represented as a menu of state-
contingent payoffs, indexed by the set of possible beliefs of the individual, from which
the individual is asked to choose. If the scoring rule is proper, then a risk-neutral in-
dividual maximizes her expected utility by choosing, from the menu she is offered, the
state-contingent payoff that is associated with her subjective belief.1

Although there is a long tradition of using proper scoring rules in experiments,2 sub-
jects are generally not neutral to risk. They may be risk averse, or may not even be
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1This interpretation is in line with the revealed preference tradition, whereby an individual may not
necessarily perceive that she holds a probabilistic assessment, but nevertheless her behavior is consistent
with such a belief. To this end, we need not ask the individual to “report” a belief, but rather to choose
from a set. It is usually easier to use the language of “reporting” beliefs, however.
2See, for example, Nyarko and Schotter (2002). A common alternative to rewarding subjects with proper
scoring rules is to use lotteries, also called “probability currencies” (Savage, 1971), as in Roth and Malouf
(1979). In theory, lotteries can elicit truthful beliefs from risk-averse expected utility maximizers. In
practice however, using lotteries can be worse than using classical proper scoring rules (see, for example,
Selten et al., 1999), and experiment designers continue to use both methods.
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expected utility maximizers, and their decision-making behavior need not be consistent
with probabilistic sophistication (see Machina and Schmeidler, 1992).3 An important
question is how such individuals optimize when facing a given scoring rule, and to what
extent their reports may differ from their true belief when they are probabilistically so-
phisticated. We provide a complete characterization of optimal behavior for individuals
with very general preferences, captured by “standard” economic utility functions over
state-contingent payoffs. These preferences include individuals who maximize expected
utility (with or without risk neutrality), but also ambiguity averse individuals who do
not adhere to any concept of “likelihood” or probability. Our goal is to study choice be-
havior broadly.

The key ingredient of our result is a duality notion that we use to connect a direct
utility function to an indirect utility function.4 Specifically, suppose there are n possible
states of the world, and that the individual has preferences over state-contingent payoffs
captured by a utility function U , where U(x) records the individual’s utility for state-
contingent payoff x = (x1, . . . , xn) ∈ Rn. Then, for any such utility function U—usually
understood as a “direct” utility—we define an “indirect utility” over price-wealth pairs
as

G(p,w)= sup{U(x) : p · x ≤ w},

where w is a scalar, p = (p1, . . . , pn) ∈ Rn+, and p · x denotes the dot product
∑n

i=1 pixi. In
words, the value G(p,w) is the maximal utility achievable by an individual with utility
function U when market prices for the primitive securities are given by vector p, and
the wealth available for expenditure is w (see, for example, Mas-Colell, Whinston, and
Green, 1995). Our main result shows that for any decision maker who has a quasicon-
cave, weakly increasing, and continuous utility function over state-contingent payoffs,
the unique optimal announcement p∗ in scoring rule f coincides with the unique p∗

which minimizes G(p,V (p)), where V (p) = p · f (p) is the value function associated with
f , i.e., the function that gives the expected payoff or score, under p, to the individual
who announces p.

Our work is most related to Grünwald and Dawid (2004), which describes two clas-
sical approaches to the problem of robust statistics. Given a convex and compact set of
probability measures, an individual is asked to choose a probability measure from this

3Although such individuals do not “hold probabilities” as part of their preferences over uncertainty, they
can still make probability assessments and their report can still be useful. One can also use the report to
make inferences about their preferences.
4 These duality notions go back to Konüs (1939) and Ville and Newman (1952), which are translations of
earlier foreign language works. Roy (1947) popularized the concept. There are several related dualities.
The ones studied in Lau (1969), Shepherd (1970), Weymark (1980) and Cornes (1992) require all payoffs
to be nonnegative. In this work, we focus on the duality exploited in Cerreia-Vioglio et al. (2011b), which
allows for negative payoffs.
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set. Assuming that state-contingent payoffs are evaluated according to the minimal ex-
pected value according to all probabilities in the set, Grünwald and Dawid show that
the individual facing a proper scoring rule can be viewed as if she is minimizing a con-
vex function on the set of probabilities, with each proper scoring rule being associated
with its own convex function. For example, the authors observe the duality between
the logarithmic scoring rule (Good, 1952) and the entropy function.5 While the result
of Grünwald and Dawid captures the behavior of an individual who is neutral to risk
but ambiguity averse with maxmin preferences, the duality characterization of this pa-
per extends to arbitrary “well-behaved” utilities in an environment with finitely many
states, including risk neutral ambiguity averse individuals as a special case.6

Besides extending Grünwald and Dawid (2004) to a broad class of preferences, the
dual characterization captures transparently the trade-offs that individuals face when
rewarded with a proper scoring rule. This interpretation of the individual’s optimization
problem facilitates comparative statics—for example, to understand how behavior is
expected to change as the individual becomes more averse to uncertainty—and makes
it possible to derive results about the individual’s behavior and its implications more
simply and more naturally than with a direct approach. It is also worth noting that
many preference specifications in economics are defined only via their indirect utility
functions—chief among these preference classes is the Gorman polar form (Gorman,
1961), commonly used in applied modeling. The dual formulation offers the possibility to
work directly with these functions. We stress that our main result itself does not provide
new tools or methods for practitioners. Rather, we provide a framework that makes
certain analyses of scoring rules more tractable, which in turn can lead to innovations.

The paper is organized as follows. We present our main result in Section II. We illus-
trate the result in Section III with several examples for commonly used preferences. In
Section IV we put the result to work in simple applications. We review the literature
and conclude in section V.

II. MAIN RESULT

Let Ω = {1, . . . ,n} be a finite set of states and ∆(Ω) the set of probability measures on
Ω. A scoring rule is a mapping f : ∆(Ω) → RΩ that associates a state-contingent payoff
(or score) to every possible announcement of a probability distribution over states. It is

5See also Chambers (2008), which independently proves the result in a simpler environment.
6To see why Grünwald and Dawid (2004) is a special case of our setup, observe that when U(x)=minp∈P p·
x, then G(p,w) = w when p ∈P and +∞ otherwise. In other words, the uniquely optimal announcement
for such a utility function is equivalently given by minp∈P V (p). While Grünwald and Dawid (2004) and
Chambers (2008) both rely on versions of the minimax theorem, the proof of this paper is simpler and
leverages the separating hyperplane theorem.
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proper if for all p, p′ ∈ ∆(Ω), p · f (p) ≥ p · f (p′) and strictly proper if for all p, p′ ∈ ∆(Ω)
for which p 6= p′, we have p · f (p) > p · f (p′). In words, (strictly) proper scoring rules
(strictly) induce probabilistically sophisticated individuals who care about maximizing
their expected payoff to announce their honest assessment of the state probabilities. For
a strictly proper scoring rule f , we define the associated value function V :∆(Ω) → R by
V (p)= p · f (p)= supp′∈∆(Ω) p · f (p′).7 That is, V (p) is the average score of individuals who
announce p when states are distributed according to p.

We assume that preferences over state-contingent payoffs are represented by a util-
ity function U : RΩ → R that is weakly increasing, quasiconcave, and continuous.8 We
call such a utility standard, as these assumptions are the basis for classical demand
and general equilibrium theory.9 We stress that this utility is defined over the mul-
tidimensional domain of state-contingent payoffs, which, of course, is richer than the
perhaps more commonly used notion of utility for money used to represent preferences
based on expected utility theory. To distinguish between the two, we use upper case U
for utility over state-contingent payoffs which we refer to as utility function, and lower
case u for utility over monetary amounts which we refer to as utility for money. In
the case of an individual who has beliefs or tastes, these will be reflected in behavior,
which is captured by U . In particular, any belief of a probabilistically sophisticated
individual is included as part of the utility function, which itself defines the individ-
ual’s preferences in full. The indirect utility G : ∆(Ω)×R→ R∪ {+∞} is then defined by
G(p,w) = sup{U(x) : p · x ≤ w}. Quite generally (under monotonicity, upper semicontinu-
ity, and convexity), we have U(x) = infp∈∆(Ω) G(p, p · x).10 Indirect utility captures the
concept of duality that we use for our results.

For example, this model can incorporate decision makers with utility functions of the
form

U(x)= u−1

(
n∑

i=1
piu(xi)

)
,

where u is an increasing and concave utility for money, and p is a probability distribu-
tion, with pi the subjective probability of occurrence of state i. This utility is a classi-
cal certainty-equivalent representation of a risk-averse expected utility maximizer. The
representation of this preference in terms of its indirect utility is given in Cerreia-Vioglio
et al. (2011b). One benefit of indirect utilities is that the class of utility functions that

7For a general, nonproper scoring rule, one can define the value function via V (p)= supp′∈∆(Ω) p · f (p′).
8Weakly increasing means that if xω > yω for all ω ∈Ω, then U(x)>U(y).
9In applications, U is known to the individual but not to the experimenter. Rather, the experimenter
observes the reported p and makes an inference about U .
10This duality is related to, but distinct from, the duality presented in Lau (1969), Shepherd (1970),
Weymark (1980), and Cornes (1992). That notion of duality is for functions on the nonnegative orthant.
See Cerreia-Vioglio et al. (2011b) for details.
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can be accommodated is much broader than the risk-averse expected utility class, and
includes ambiguity averse individuals who are not probabilistically sophisticated. It is
important to note that individuals can still participate meaningfully in a scoring rule
even if they do not make use of probabilities in their own decision calculus, since the
reported probabilities still leads to meaningful inferences about their own preferences
and subjective beliefs.

We now state our main result.

Theorem 1. Suppose that f is a continuous strictly proper scoring rule. For a standard
utility with indirect utility function G, there exists a unique solution to the problem
maxp∈∆(Ω)U( f (p)), given by argminp∈∆(Ω) G(p,V (p)), where V is the value function as-
sociated with f .

Theorem 1 claims that for any standard utility and any strictly proper scoring rule,
there is a unique optimal announcement p∗ ∈∆(Ω), and further, this unique announce-
ment can be obtained by duality: it solves the problem of minimizing G(p,V (p)) over
p ∈∆(Ω). The latter problem is often easier to describe. Theorem 1 can be extended to
include scoring rules which take infinite-valued payoffs (such as the classical logarith-
mic scoring rule). In this case, existence of an optimal announcement is not guaranteed,
but when there is such an announcement, the duality will hold.

The proof of Theorem 1 is in Appendix A. Figure I illustrates the intuition of the proof
in a simple case. In this figure, Ω = {1,2}, so n = 2. By strict properness, the range
of the scoring rule f forms the upper boundary of a strictly convex set. Intuitively,
this fact owes to the continuity of f and the observation that each p ∈ ∆(Ω) induces a
hyperplane with a unique tangency to the range (in RΩ) of the scoring rule. The problem
of maximizing U over this set results in an optimal vector of payments f (p∗), which is
achieved by announcing the distribution p∗.11 The payments of f (p∗) give an expected
value (under p∗) of V (p∗) = p∗ · f (p∗). Now consider the indirect utility maximization
program: for any p we calculate the expectation of the scoring rule under p—which
equals V (p)—and ask what point x ∈R2 maximizes U subject to the constraint that p·x ≤
V (p). This constraint is shown for p∗ and p′ as dashed lines. For p∗ the maximizing
point is again f (p∗), which gives indirect utility G(p∗,V (p∗)) = U( f (p∗)). But for p′

the constraint includes points strictly better than f (p∗) for the decision maker, so the
maximum indirect utility (which obtains at x′) is G(p′,V (p′))>U( f (p∗))=G(p∗,V (p∗)).
By the strictly convex shape of f (∆(Ω)) this is true for any p′ 6= p∗. Thus, the original
utility-maximizing point f (p∗) is the unique minimizer of the indirect utility function
G(p,V (p)).
11We reiterate that the decision maker need not have “true” beliefs p∗—or any probabilistic beliefs at all.
Here, p∗ is interpreted only as the decision maker’s optimal announcement given f .
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x1

x2

U(f(p∗)) = G(p∗, V (p∗))

p∗

p′
{x : p∗ · x = V (p∗)}

{x : p′ · x = V (p′)}

f(p∗)

x′

U(x′) = G(p′, V (p′))

f(p′)
f(∆(Ω))

FIGURE I. An illustration of Theorem 1.

According to Theorem 1, the announced probability p∗ separates the convex hull of
the image of payoffs of the scoring rule, and the upper contour set of the preference. By
exploiting Roy’s identity (Roy, 1947) and the fact that a scoring rule is a subdifferential
of its homothetic extension, we get the following corollary.

Corollary 1. Suppose U is standard and f is a continuous and strictly proper scoring
rule. If p∗ ∈ argmaxp∈∆(Ω)U( f (p)), then f (p∗) ∈ argmaxx∈Rn:p∗·x≤V (p∗)U(x).

Corollary 1 states that a standard decision maker will choose to announce the p∗ at
which her Walrasian demand (when given wealth V (p∗)) includes f (p∗). This result
illustrates the connection between the optimal choice of a decision maker from a scoring
rule, and the equilibrium price in a Robinson Crusoe economy where the output of the
scoring rule plays the role of a technology.
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Interpretation

Let us consider a utility function U which is a certainty equivalent representation,
namely, one which has the property that for all x ∈ R, U(x, x, . . . , x) = x.12 This utility
function measures utility in monetary units. In this case, G(p,w) has a simple inter-
pretation: it measures the monetary value to the individual with wealth w and who
faces state prices represented by vector p. Clearly, G(p,w) ≥ w. In addition, there ex-
ists p∗ ∈ ∆(Ω) such that G(p∗,w) = w (see Cerreia-Vioglio et al., 2011b). A high value
of G(p,w) relative to w reflects a willingness to stake a “bet against” the odds p with
wealth w.

For instance, a risk-neutral individual with subjective probability distribution π will
be willing to bet against any odds p 6=π, meaning that with state prices p, she is willing
to short at least one state (namely, the states ω for which pω > πω), and to long at least
one state. Further, because of risk-neutrality, she will be willing to invest arbitrarily
large amounts of money in such a bet. Hence, for such an individual, G(p,w) = +∞
while, of course, G(π,w) = 0. A risk-averse individual with subjective probability π is
unwilling to bet against the odds of π, and hence we continue to have G(π,w) = w, but,
if sufficiently risk averse, she may also not be willing to bet much against odds p 6= π

due to risk aversion. She would prefer instead to keep her wealth (relatively) state-
independent. In this case, G(p,w) remains close to w for p 6= π. Finally, at the extreme
end of the spectrum, an individual who wants to maximize her payoff in the worst state
will have the completely flat indirect utility G(p,w) = w: this individual is unwilling
to deviate from certainty. Roughly, the more the individual cares about the worst-case
scenario, the flatter her corresponding indirect utility function, with respect to p.

The following lemma is elementary and proved in Appendix A for completeness. We
denote by ∆++(Ω) the set of full-support probabilities, i.e., the interior of the simplex.

Lemma 1. Let f be continuous and proper. If p∗ ∈ ∆(Ω) has the property that for all
ω,ω′ ∈Ω, f (p∗)(ω) = f (p∗)(ω′), then p∗ ∈ argminp∈∆(Ω) V (p). Conversely, if p∗ ∈ ∆++(Ω)
and p∗ ∈ argminp∈∆(Ω) V (p), then p∗ has the property that for all ω,ω′ ∈Ω, f (p∗)(ω) =
f (p∗)(ω′).

In words, the value function of a continuous proper scoring rule is minimized exactly
at a point which, when interior, yields the same payoff in every state, i.e., the riskless
state-contingent payoff. Therefore, when the indirect utility G is applied to the value
function V as in Theorem 1, the individual who is risk-neutral with subjective probabil-
ity π is best off reporting π independently of V , and so independently of which strictly
proper scoring rule is being applied. As the individual becomes increasingly risk averse,

12Existence of such a utility function is easy to establish for any preference in our domain.
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the indirect utility becomes flatter which means that the individual increasingly cares
about V , and so the individual’s reported probability distribution reflects a trade-off be-
tween the minimization of the indirect utility for a fixed wealth, obtained at π as in the
risk-neutral case, and the minimization of V , which minimizes risk or the dispersion
of payoffs. In the extreme situation of an individual who maximizes her payoff in the
worst-case scenario, the individual entirely disregards π and simply chooses the report
that minimizes V and so yields the same payoff in every state.

III. EXAMPLES

In this section, we provide examples of characterizations.

Example 1 (Translation-invariant utility functions). Consider the variational pref-
erences model of Maccheroni et al. (2006); applied to our setting, these preferences are
those which can be written as utility functions U that are translation invariant in the
sense that for all x ∈ RΩ and all λ ∈ R, U(x+λ(1, . . . ,1)) =U(x)+λ. In this case, we can
write G(p,w)= w+c(p), for some proper convex (possibly infinite-valued) lower semicon-
tinuous function c (Cerreia-Vioglio et al., 2011b). Applying Theorem 1, the individual
with such a utility function announces the probability distribution p∗ that solves

min
p∈∆(Ω)

{V (p)+ c(p)} .

The function c has the interpretation of a certainty equivalent: c(p)− c(q) measures the
sure amount a decision maker holding only a riskless asset would pay to move from
state prices q to state prices p. To understand this claim, consider a decision maker
maximizing U(x) subject to p · x ≤ w, with U as above. Note that, by the translation-
invariant property, U(x) can be interpreted as the certainty equivalent of the state-
contingent payoff x, up to an additive constant. Also observe that c(p)=maxx:p·x≤0U(x).
Hence, measured in terms of monetary units, c(p) is the value of facing state prices p
when endowment is 0. To move from state prices q to state prices p, the individual
would offer to pay c(p)− c(q) (by the translation invariant property, this willingness
to pay is independent of wealth). The translation-invariant utility functions include
common classes of preferences, some are described in the examples that follow.

Example 2 (Ambiguity aversion). The case of risk-neutral, multiple-prior maxmin
utility is nested in the model of translation-invariant utility, with c = 0 on the set of
priors P , and c = +∞ otherwise (Cerreia-Vioglio et al., 2011b). Hence, the ambiguity-
averse individual announces the probability in the set of priors which uniquely min-
imizes the value function V ; this is one of the main results of Grünwald and Dawid
(2004). Thus, if the value function V is strictly increasing along some direction in ∆(Ω),
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then the individual reports the prior in her set that is highest in that direction. By
varying the direction of increase, it is possible to uncover the entire set of priors.

Example 3 (Subjective expected value maximizers). If the set of priors in the pre-
vious example contains only the single prior π, i.e., the individual wants to maximize
expected payments under belief π, then c is infinite-valued everywhere except at π.
Hence, such an individual always strictly prefers to announce her true belief π, which
indeed defines what it means for a scoring rule to be strictly proper.

Example 4 (Subjective expected CARA utility maximizers). Consider the subjec-
tive expected utility maximizer with CARA utility for money u(x) = −exp(−αx), where
α > 0, and subjective probability distribution π. We can consider the certainty equiva-
lent utility representation of this preference, written

U(x)=− 1
α

log
n∑

i=1
πi e−αxi .

This utility function is translation invariant, and the indirect utility has a very special
form: the function c(p) is given by a scaling of the relative entropy or Kullback Leibler
(KL) divergence. Formally, if probability distribution q is absolutely continuous with
respect to probability distribution p, i.e., pω > 0 whenever qω > 0, define KL(q ∥ p) as

KL(q ∥ p)= ∑
ω∈Ω:q(ω)>0

qω log
qω
pω

,

and otherwise let KL(q ∥ p) =+∞. Then, the indirect utility is G(w, p) = w+α−1 KL(p ∥
π). Hence, by Theorem 1, the expected utility maximizer with CARA utility chooses to
announce the probability distribution p∗ that solves

min
p∈∆(Ω)

{αV (p)+KL(p ∥π)} .

Observe that KL(p ∥π)= 0 only when p =π, so that when α→ 0, this individual behaves
as a risk-neutral expected utility maximizer with subjective probability distribution π.
The observation that the relative entropy function leads to CARA-style preferences in
this context is made in Strzalecki (2011).

Example 5 (Subjective expected CRRA utility maximizers). Let us now consider
the subjective expected utility maximizer with CRRA utility for money u(x)= x1−η/(1−η),
where η ≥ 0,η 6= 1 is the coefficient of relative risk aversion, and subjective probability
distribution π. (The case η= 1 corresponds to the CRRA utility u(x)= log x and is treated
separately below.) The certainty equivalent utility representation of this preference is
written

U(x)=
(

n∑
i=1

πix
1−η
i

)1/(1−η)

.



10 CHAMBERS, HEALY & LAMBERT

The indirect utility G(p,w) is obtained by maximizing U(x) subject to the constraint∑n
i=1 pixi ≤ w. To do so, we internalize the constraint and maximize the Lagrange func-

tion

U(x)−λ
(

n∑
i=1

pixi −w

)
,

where λ is the Lagrange multiplier. The first-order conditions yield, for every state ω,
the equality

πω

(
U(x)

xω

)η
=λpω.

Hence, the constraint is binding. Solving for xω, we get

xω =U(x)
(
πω

λpω

)1/η
,

and using
∑n

i=1 pixi = w, we get

U(x)
λ1/η = w

(
n∑

i=1
π

1/η
i p1−1/η

i

)−1

,

which yields a unique candidate maximizer given by

xω = w

(
n∑

i=1
π

1/η
i p1−1/η

i

)−1 (
πω

pω

)1/η
.

These necessary conditions are also sufficient, and if we plug in the expression for the
maximizer into U(x) we get, after simplification, the indirect utility

G(p,w)= w

(
n∑

i=1
π

1/η
i p1−1/η

i

) η
1−η

.

By Theorem 1, taking the logarithm of G(p,V (p)), the expected utility maximizer with
CRRA utility chooses to announce the probability distribution p∗ that solves

min
p∈∆(Ω)

{
logV (p)+ η

1−η log
n∑

i=1
π

1/η
i p1−1/η

i

}
.

As for the special case η= 1, which corresponds to CRRA utility u(x)= log x, we get by
similar computations the indirect utility

G(p,w)= w
n∏

i=1
(πi pi)πi ,

the individual’s optimal announcement is then the probability distribution p∗ that solves
the minimization problem

min
p∈∆(Ω)

{
logV (p)+

n∑
i=1

πi log(πi pi)

}
.
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Example 6 (Ambiguity aversion with CARA utility). One can also combine CARA
utility with ambiguity-averse, multiple-prior models. Let us consider a risk-averse,
ambiguity-averse individual, who has utility for money u(x)=−exp(−αx), a set of priors
P ⊆∆(Ω), and seeks to maximize the worst-case expected utility over this set of priors.
Following Examples 2 and 4, it is straightforward to establish that such an individual
can be represented with an indirect utility function of the same form as in Example 1
with c(p)= infq∈P α−1 KL(p ∥ q), and so the individual announces the probability distri-
bution p∗ that solves

min
p∈∆(Ω)

{
αV (p)+ inf

q∈P
KL(p ∥ q)

}
.

Example 7 (Gorman polar form). Gorman (1961) provides necessary and sufficient
conditions for utility functions to have Engel curves which are straight lines.13 We focus
on the case in which the Engel curves are parallel across different prices, since our
consumption space is unbounded both above and below. Gorman originally proposed the
family in order to meaningfully talk about “representative consumers,” though they also
have a natural interpretation of utility functions for which wealth effects are absent
with respect to some “numeraire” bundle. That is, we want there to be a numeraire
bundle β ∈RΩ for which for all t ∈R and all x ∈RΩ, U(x+βt)=U(x)+ t. Gorman calls his
utility functions polar form, since they are defined in terms of indirect utility. Therefore
these form a natural class where the duality result is useful.

Formally, let us take β ∈ RΩ, where β ≥ 0 and β 6= 0. Let β+ = {x ∈ RΩ+ : β · x = 1}. Let
c :β+ →R∪ {+∞} be a proper, lower semicontinuous and convex function. Then define

G(p,w)=


w
β · p

+ c
(

p
β · p

)
if β · p 6= 0

+∞ otherwise
.

This equation specifies an indirect utility in Gorman polar form.

Example 8 (Complete ignorance). Consider an individual who simply wants to max-
imize the worst-case payoff, i.e., an individual with utility U(x) = minω∈Ω xω. Such an
individual is often described as behaving under “complete ignorance” (see, for example,
Arrow and Hurwicz, 1972). As discussed in the preceding section, it is straightforward
to show that such an individual has indirect utility G(p,w) = w, and so the individual
announces the probability distribution that solves

min
p∈∆(Ω)

V (p).

13An Engel curve is the set of Walrasian demands for a fixed price as wealth varies.
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IV. APPLICATIONS

In this section we illustrate the use of Theorem 1 by several examples of applications.
First, we investigate the behavior of individuals who are expected utility maximizers,
with CARA and then CRRA utility for money, when these individuals are rewarded ac-
cording to a proper scoring rule. For such individuals, we provide tight bounds on the
misreports for general scoring rules. For the special case of the logarithmic scoring rule
(for CARA) and the spherical scoring rule (for CRRA), we also derive the optimal report
explicitly as a function of the true belief. Second, we ask what scoring rules should be
used to minimize the degree of misreporting of expected CARA/CRRA utility maximiz-
ers, subject to a normalizing condition on the scoring rules. Third, still for individuals
with these preferences, we show that randomizing over two well-chosen quadratic scor-
ing rules enables an experimenter to elicit both the Arrow-Pratt measure of absolute or
relative risk aversion, and the true, unbiased subjective probability of the individuals.
Fourth, for individuals whose preferences belong to the more general class of variational
preferences introduced in Example 1, we show that providing a random state-contingent
payoff in addition to the (nonrandom) reward of a proper scoring rule enables the ex-
perimenter to fully identify the individual’s preferences (which include, of course, any
subjective belief). Hence, we can fairly easily extract a substantial amount of informa-
tion beyond probabilistic assessments, including risk and ambiguity attitudes, making
it possible to elicit unbiased beliefs but also more complex forms of beliefs. For instance,
this sort of elicitation method can be useful when individuals are averse to ambiguity, in
which case the belief is captured by a set of possible probability assessments. Relatedly,
we show that it is possible to identify the scoring rule that is applied if the individuals
are completely ignorant and maximize the worst-case payoff, as in Example 8. Finally,
we provide a simple example of comparative statics, showing how reported probabili-
ties vary with respect to uncertainty aversion for the class of variational preferences.
Several examples make use of the following lemma, proved in Appendix B.

Lemma 2. If the individual’s utility function U is strictly increasing, i.e., x ≥ y and x 6= y
implies U(x) >U(y), then the optimal announcement for any continuous strictly proper
scoring rule has full support.

On the behavior of expected CARA utility maximizers

In this subsection, the individual is a subjective expected utility maximizer with CARA
utility for money. Her subjective probability distribution (belief) π has full support, and
her coefficient of absolute risk aversion is α. Following Example 4 and Lemma 2, when
this individual is rewarded according to a continuous strictly proper scoring rule f , she
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announces the unique full-support probability distribution p∗ that solves

(1) min
p∈∆(Ω)

{
αV (p)+

n∑
i=1

pi log
pi

πi

}
,

where V continues to denote the scoring rule’s value function, defined on the simplex
∆(Ω).

The optimization problem of Equation (1) captures the trade-off that the individual
faces when deciding on her report. The term

∑n
i=1 pi log pi

πi
, which is the Kullback-Leibler

divergence from the subjective probability distribution to the reported probability dis-
tribution, is minimized exactly when p =π. The term V (p) is minimized exactly when p
is the report that yields the riskless payoffs (see Lemma 1 above). The coefficient of risk
aversion α indicates how much weight is put on these two conflicting minimization prob-
lems. The larger the risk aversion, the more the individual prefers the riskless payoffs,
and the greater the degree of misreporting and the less informative the announcement.

Equation (1) makes it easy to relate the reported probability distribution to the (true)
subjective probability distribution. For q ∈Rn+, let us define the extended value function
W as W(q) = supp∈∆(Ω) f (p) · q. Observe that W(q) = V (q) for q ∈∆(Ω), that W continues
to be a (real-valued) convex function, and that, because f is continuous, W is differen-
tiable.14 Extending the value function to the entire nonnegative orthant Rn+ enables us
to compute partial derivatives and solve the above optimization problem via elementary
first-order conditions.

Specifically, the individual’s optimization problem reduces to choosing the vector p∗ ∈
Rn+ that solves

min
p∈Rn+

{
αW(p)+

n∑
i=1

pi log
pi

πi

}
,

subject to the constraint p1+·· ·+ pn = 1. Noting that the function to minimize is strictly
convex on the simplex of probability distributions, and that the optimal announcement
has full support, the first-order conditions are necessary and sufficient, and yield that
for every i 6= j,

α
∂W(p∗)
∂pi

+ log
p∗

i

πi
=α∂W(p∗)

∂p j
+ log

p∗
j

π j
,

with
∂W(q)
∂qi

= f (q)(i).

Hence, the first-order conditions give, for every i 6= j, the equality

α f (p∗)(i)+ log
p∗

i

πi
=α f (p∗)( j)+ log

p∗
j

π j
,

14This result is fairly standard in the literature, it follows from the combination of Corollary 23.5.1 with
Theorem 25.1 of Rockafellar (1970).
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so that there exists K > 0 such that for all ω,

πω = p∗
ωeα f (p∗)(ω)K

and using that π1 +·· ·+πn = 1, we have

K = 1
p∗

1 eα f (p∗)(1) +·· ·+ p∗
neα f (p∗)(n) .

In summary, we have the following result.

Proposition 1. Suppose the individual is a subjective expected utility maximizer with
constant coefficient of absolute risk aversion α. If she reports optimally the probability
distribution p∗, then for every state ω ∈ {1, . . . ,n}, the individual’s subjective probability
of state ω, is given by:

(2) πω = p∗
ωeα f (p∗)(ω)

p∗
1 eα f (p∗)(1) +·· ·+ p∗

neα f (p∗)(n) ,

where f is the continuous strictly proper scoring rule according to which the individual
is rewarded.

Given a continuous strictly proper scoring rule, Proposition 1 makes it simple to in-
fer the subjective probabilities over states for an individual with CARA utility if the
coefficient of risk aversion is known or can be estimated.

In general, no closed-form solution enables us to write the optimal announcement p∗

directly as a function of the belief π, this value must be computed numerically. One
exception is the logarithmic scoring rule:15 if f (p)(ω)= K +C log pω, for K ∈R and C > 0,
it is straightforward to invert Equation (2) to get

(3) p∗
ω = π1/(1+Cα)

ω

π1/(1+Cα)
1 +·· ·+π1/(1+Cα)

n
.

In particular, if α→ 0, i.e., if the individual becomes risk neutral, then p∗ converges
to the subjective belief π, while if, on the opposite, α→ +∞, i.e., if the individual be-
comes highly risk averse, then p∗ becomes fully uninformative, converging to the uni-
form probability distribution—the only announcement that guarantees riskless payoffs.
Similarly, for an individual with a given risk aversion, as C → 0, i.e., as the stakes van-
ish, the individual tends to report her true belief, and as C → +∞, i.e., as the stakes
become infinitely large, the reported probabilities become totally uninformative.

15As stated in Section II, although this scoring rule does not always take finite values, Theorem 1 con-
tinues to apply. Note that payoffs here are guaranteed to be finite because the reported probabilities are
positive for all states.
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Proposition 1 can also be used to provide bounds on misreports, noting that

p∗
ω

πω
=

n∑
i=1

p∗
i eα[ f (p∗)(i)− f (p∗)(ω)].

The following corollary is immediate.

Corollary 2. Given a continuous strictly proper scoring rule f , let the worst-case dif-
ference of scores across states be m =maxp,i, j | f (p)(i)− f (p)( j)|. Under the assumptions
of Proposition 1, for all states ω, the reported probability p∗

ω satisfies

πωe−αm ≤ p∗
ω ≤πωeαm.

Corollary 2 implies that one can uniformly bound misreports, and in particular, as
m → 0, the worst-case difference between announced probabilities and true beliefs van-
ishes.

As a concrete example, if a subject who participates in an experiment is assumed to
conform to the expected utility model and to have an approximately constant Arrow-
Pratt coefficient of absolute risk aversion for the range of payments considered in the
experiment (say, in US dollars), for instance 0.01—a conservative estimate, most studies
estimate the coefficient of absolute risk aversion to be of the order of 10−3 and below—
and if the experimenter employs a quadratic scoring rule that pays off between $0 and
$10, then the misreporting of probabilities can only be up to the order of 10% of the true
subjective probability.

On the behavior of expected CRRA utility maximizers

The individual is now a subjective expected utility maximizer with CRRA utility for
money. The coefficient of relative risk aversion is η ≥ 0, i.e., the utility for money is
u(x) = x1−η/(1−η) if η 6= 1, and u(x) = log x if η = 1.16 The individual has a full-support
subjective probability distribution π. The goal of this subsection is to relate the optimal
reports of probability assessments to the true beliefs, as we just did for the case of CARA
utilities. We derive the result for the case η 6= 1. Following similar steps, it is easily seen
that the results continue to hold for η= 1.

By Example 5 and Lemma 2, when rewarded by a continuous strictly proper scoring
rule f , the individual announces the probability distribution p∗ that solves

min
p∈∆(Ω)

{
logV (p)+ η

1−η log
n∑

i=1
π

1/η
i p1−1/η

i

}
,

16This formulation of the utility for money implicitly assumes no initial wealth. It is without loss of
generality: any initial wealth can be included as part of the scoring rule payments. An individual with
initial wealth w paid according to the scoring rule f behaves the same way as an individual with no initial
wealth paid according to the scoring rule w+ f .
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with V the value function associated to f . As in the previous subsection, this optimiza-
tion problem captures the tradeoff between minimizing the risk of the reward, obtained
for a report p that minimizes the first term logV (p), and minimizing the “distance” be-
tween the reported belief and the true belief, captured by the second term. Indeed, it is
straightforward to show that the second term is minimized precisely when p =π.

We continue to define the extended value function W on Rn+ as W(q)= supp∈∆(Ω) f (p)·q.
The optimization problem now reduces to choosing the vector p∗ ∈Rn+ that solves

min
p∈Rn

{
logW(p)+ η

1−η log
n∑

i=1
π

1/η
i p1−1/η

i

}
,

subject to the constraint p1 + ·· · pn = 1. As it turns out, the constraint is not binding
in this case. The first-order conditions are necessary and sufficient and give, for every
state ω, the equality

f (p∗)(ω)
W(p∗)

= π
1/η
ω (p∗

ω)−1/η∑n
i=1π

1/η
i (p∗

i )1−1/η
.

This equality gives us the ratios

πi

π j
= ( f (p∗)(i))ηp∗

i

( f (p∗)( j))ηp∗
j
,

for i 6= j, which, in turn, yield the expression of the individual’s subjective probabilities
as a function of the reported probabilities:

πω = ( f (p∗)(ω))ηp∗
ω

( f (p∗)(1))ηp∗
1 +·· ·+ ( f (p∗)(n))ηp∗

n
.

This result is formally stated as follows.

Proposition 2. Suppose the individual is a subjective expected utility maximizer with
constant coefficient of relative risk aversion η. If she reports optimally the probability
distribution p∗, then for every state ω ∈ {1, . . . ,n}, the individual’s subjective probability
of state ω is given by

(4) πω = ( f (p∗)(ω))ηp∗
ω

( f (p∗)(1))ηp∗
1 +·· ·+ ( f (p∗)(n))ηp∗

n
,

where f is the continuous strictly proper scoring rule according to which the individual
is rewarded.

It is easily verified that as η → 0, i.e., as the individual becomes increasingly risk
neutral, the reported probabilities becomes confounded with the true subjective proba-
bilities.

For the special case of the spherical scoring rule, it is possible to invert Equation (4)
and write the optimal announcement p∗ explicitly as a function of the belief π. Recall
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that the spherical scoring rule is written

f (p)(ω)= C · pω√
p2

1 +·· ·+ p2
n

,

for an arbitrary positive constant C that captures the magnitude of the rewards. In this
case, we get

(5) p∗
ω = π

1/(1+η)
ω

π
1/(1+η)
1 +·· ·+π1/(1+η)

n

.

Note the similarity with Equation (3) discussed in the previous subsection, in spite of
the fact that the spherical scoring rule used here is very different from the logarithmic
scoring rule used for individuals with CARA utilities. It is also worth observing that, as
opposed to the case of CARA utilities, the reported probabilities do not depend on the
amplitude of the payments. This is because the marginal utility at low wealth levels
grows unbounded.

To provide bounds on misreports for general scoring rules, we note that according to
Proposition 2, we have

p∗
ω

πω
=

n∑
i=1

p∗
i

(
f (p∗)(i)
f (p∗)(ω)

)η
.

We then get the following corollary.

Corollary 3. Given a continuous strictly proper scoring rule f , let the largest ratio of
scores across states be m = supp,i, j | f (p)(i)/ f (p)( j)|. If m <∞, then under the assump-
tions of Proposition 1, for all states ω, the reported probability p∗

ω satisfies

πω
1

mη
≤ p∗

ω ≤πωmη.

Note the subtle difference with Corollary 2: with CARA utilities, one increases ac-
curacy by decreasing the difference between large and small scores, while with CRRA
utilities, one increases accuracy by decreasing their ratios.

Minimizing misreporting for expected CARA / CRRA utility maximizers

The subsections above tell us the extent to which risk-averse individuals can misreport
when rewarded according to a strictly proper scoring rule. In this subsection, we ask
what scoring rules minimize this misreporting behavior, subject to a normalization con-
dition. To simplify matters, we consider the special case of a state that captures the
occurrence or non-occurrence of a random event, that is, with a slight abuse of notation,
Ω= {0,1}, and ω ∈Ω denotes the outcome of the event, with ω= 1 if the event occurs and
ω= 0 otherwise. We assume that the individual conforms to the expected utility model
with CARA or CRRA utility for money. We start with and mostly focus on CARA utility;
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the results remain essentially the same for CRRA utility and so this case is only briefly
discussed at the end of the subsection.

So let us assume the individual believes that the event occurs with probability π ∈
(0,1), and assume her Arrow-Pratt coefficient of absolute risk aversion is α. Note that,
for the special case of eliciting event probabilities, we find it convenient to abuse nota-
tion and use the symbols π, p, q to denote event probabilities as opposed to probability
distributions in the simplex ∆(Ω).

Suppose the individual is rewarded according to a differentiable strictly proper scor-
ing rule f . For an individual who reports p, the value

D(π, p)≡max
{
π/(1−π)
p/(1− p)

,
p/(1− p)
π/(1−π)

}
,

which takes the maximum of the two odds ratios, provides a convenient measure of the
amount of misreporting. Clearly, D(π, p) = 1 is minimized for p = π (case of truthful
report), and D(π, p) > 1 if p 6= π (case of misreport). As p deviates further away from π,
D(π, p) grows arbitrarily large.

If we seek to minimize the degree of misreporting, then of course following Corol-
lary 2 we can choose a scoring rule that delivers near-constant payoffs across reports
and states. However, if this choice limits the degree of misreporting in risk-averse in-
dividuals, it also provides little incentive to report close to one’s true belief, even for
risk-neutral individuals.

To circumvent this issue, we impose a lower bound on the penalty that a risk-neutral
individual gets when she deviates from the truth, risk neutrality being a natural bench-
mark. With a slight abuse of notation, let f (p + ε, p) be the expected score obtained
if the event occurs with probability p while the individual reports probability p + ε.
Because, by definition of a strictly proper scoring rule, the individual maximizes the ex-
pected reward when ε= 0, the term f (p+ε, p) is of second order in ε. Formally, we can
write f (p)(ω) = V (p)+ (ω− p)V ′(p), where V is the value function of f (see, for exam-
ple, Gneiting and Raftery, 2007). Since f is differentiable, its value function V is twice
differentiable. Let p ∈ (0,1). Applying Taylor’s theorem to V and then V ′ at p yield

V (p+ε)=V (p)+εV ′(p)+ 1
2
ε2V ′′(p)+ o(ε2),

V ′(p+ε)=V ′(p)+εV ′′(p)+ o(ε),

so that
f (p+ε, p)= f (p, p)− 1

2
ε2V ′′(p)+ o(ε2),

and thus f (p+ε, p) is of second order in ε, since V ′′ > 0 by strict convexity of V .
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The coefficient of this second-order term determines the extent to which the scoring
rule deters deviations from the truth. We therefore consider the following condition:

(6) lim
ε→0

f (p, p)− f (p+ε, p)
ε2 ≥ L

where L > 0 is a fixed parameter. The greater L, the more the scoring rule deters devi-
ations for a risk-neutral individual. Let C (L) be the set of differentiable strictly proper
scoring rules f that satisfy Equation (6).

We can now state our goal formally. Fixing the coefficient of risk aversion α, for a
scoring rule f , let r f (π) denote the optimal announcement as a function of the true
belief π. For given values of L and α, we ask what scoring rules f ∈C (L) minimize the
amount of misreporting in the worst case.

Proposition 3. For any parameter L > 0 and any coefficient of absolute risk aversion
α> 0, a scoring rule f ∈C (L) minimizes the worst-case degree of misreporting, captured
by supπ∈(0,1) D(π, r f (π)), if and only if f (p)(ω)= K−L(ω−p)2, for K an arbitrary constant.

Hence, Proposition 3 states that the scoring rules that minimize the degree of mis-
reporting subject to the incentives normalization condition are the quadratic scoring
rules. Moreover, for such quadratic scoring rules, Equation 6 holds for all ε, not only
in the limit case, and the inequality is tight: ∀ε, f (p, p)− f (p+ε, p) = Lε2. The proof of
Proposition 3 is in Appendix B.

If instead of having CARA utility for money, the individual has CRRA utility for
money, then the problem has a very similar structure and, not surprisingly, a similar
solution: fixing the maximum reward RMAX, the scoring rule that minimizes the worst-
case degree of misreporting is the quadratic scoring rule RMAX − L(ω− p)2. Without
fixing the maximum reward, no scoring rule minimizes misreporting in the sense that,
by using the quadratic scoring rule K −L(ω− p)2 with K arbitrarily large, the reports
become arbitrarily close to the true beliefs by Corollary 3. We refer the reader to the
proof of Proposition 3 for further details.

Eliciting both subjective probabilities and coefficients of risk aversion

Suppose an experimenter wants to elicit the subjective probability of a random event
from a subject assumed to behave as an expected utility maximizer with CARA or CRRA
utility for money. We continue to use the notation and state interpretation of the previ-
ous subsection. If the experimenter knows the coefficient of risk aversion, then as long
as the scoring rule is continuous and strictly proper, he can infer the subjective proba-
bility from the reported probability following Propositions 1 and 2. If the experimenter
does not know the coefficient of risk aversion, he can attempt to elicit it via a separate
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experiment. However, the application of separate elicitation schemes on the same sub-
ject is problematic in models of choice under uncertainty, where hedging behavior plays
a major role and leads to distortions (see Azrieli et al., 2018 for details). To circumvent
the issue, the experimenter must elicit the information all at once, and so, in particular,
obtain a truthful report of the subject’s belief in spite of her unknown aversion to risk.

Propositions 1 and 2 can be applied to show that randomizing over two different qua-
dratic scoring rules enables the experimenter to elicit both the subjective probability and
the coefficient of absolute (if CARA) or relative (if CRRA) risk aversion simultaneously
in a very simple fashion. For example, let us consider the following protocol:

First stage: The subject reports her coefficient of (absolute or relative) risk aver-
sion and her assessed probability that the event occurs.

Second stage: The experimenter draws a fair coin. If heads, the experimenter se-
lects the quadratic scoring rule fH(p)(ω)≡ 1− 1

3 (p−ω)2. If tails, the experimenter
selects the quadratic scoring rule fT(p)(ω)≡ 1− 2

3 (p−ω)2.
Third stage: The experimenter computes what would be the optimal announce-

ment of the subject for the selected scoring rule—accounting for the subject’s
risk aversion—and pays the subject accordingly.

Proposition 4. In the protocol just described, the subject reports her coefficient of risk
aversion and subjective probability truthfully as a strict best response.

The proof of Proposition 4 is in Appendix B. Randomization is useful in this experi-
ment because it induces the subject, who, in the first stage, does not know which scoring
rule will eventually be applied, to communicate information so as to optimize simultane-
ously on both scoring rules. And, as it turns out, Propositions 1 and 2 imply that the only
way for the subject to optimize simultaneously on both scoring rules is to be truthful:
misreporting risk aversion or subjective probability or both generates a strictly subopti-
mal utility in at least one of the two scoring rules.

Two points deserve mention.
First, the randomization in this protocol is very different from the idea that consists in

paying in probability currency or lottery tickets, described for example in Savage (1971).
With probability currencies, there are only two possible fixed payoffs and the probability
of getting the higher payoff is a function of the report and event outcome. In effect,
working with two fixed payoffs “linearizes” the preferences of the subject, who then acts
as if she were neutral to risk. Thus, paying in probability currency does not allow to
infer the subject’s risk aversion. Instead, in this protocol, the payoffs are not fixed, they
continue to be determined by quadratic scoring rules, while the randomization remains
independent of the subject’s announcements and the event outcome.
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Second, this protocol is a direct mechanism. Of course, in practice, subjects may not be
familiar with measures of risk aversion and so may find themselves unable to provide a
meaningful announcement for α. To remedy this problem, one may consider an indirect
mechanism instead, in which the subject is asked to compare a range of lotteries, and
from which the coefficient of risk aversion can be uniquely determined in a revealed-
preference fashion. Propositions 1 and 2 imply that the subject is strictly penalized if
she misreports her true subjective belief, in spite of her aversion to risk.

Identification of utilities and scoring rules

In this subsection, we return to the general case Ω= {1, . . . ,n}, and apply the dual char-
acterization to solve two problems of identification.

In the first problem of identification, we ask how to identify the utility function U of
an individual when U is a translation-invariant utility (see Example 1 for a definition),
i.e., when the individual has variational preferences.

Proposition 5. Let f be a continuous strictly proper scoring rule. Suppose that two
individuals have translation-invariant utility functions. If, for all side state-contingent
payoffs y ∈ Rn, the respective optimal announcements of the two individuals rewarded
according to f + y are the same, then the two individuals have the same utility function
up to an additive constant.

Proposition 5 states that, no matter the baseline scoring rule being used, by varying
the side state-contingent payoffs one can fully identify the individual’s preference. The
proof is in Appendix B. To understand the main idea, let us consider the special case of
two individuals k = 1,2, whose indirect utility functions are given by Gk(p,w)= w+ck(p),
with ck convex and real-valued. Fix a continuous strictly proper scoring rule f with
value function V , and assume that c1, c2,V are extended as convex functions on the
nonnegative orthant Rn+ and are differentiable on this domain. Under the conditions
of Proposition 5, and applying Theorem 1, for any y ∈ Rn+, both individuals choose to
announce the vector of probabilities p∗ that solves, for k = 1,2,

min
p∈Rn+

{ck(p)+V (p)+ y · p} ,

subject to the condition p1+·· ·+ pn = 1. If p∗
i > 0 for all i, the first-order conditions that

determine p∗ are that for every i 6= j, and for k = 1,2,

∂ck(p∗)
∂pi

+ ∂V (p∗)
∂pi

+ yi = ∂ck(p∗)
∂p j

+ ∂V (p∗)
∂p j

+ yj.
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Hence, we have [
∂ck(p∗)
∂pi

− ∂ck(p∗)
∂p j

]
= yj − yi +

[
∂V (p∗)
∂p j

− ∂V (p∗)
∂pi

]
.

Roughly, this equality implies that, as y varies, p∗ covers the entire simplex. Then, we
also have

∂c1(p∗)
∂pi

− ∂c1(p∗)
∂p j

= ∂c2(p∗)
∂pi

− ∂c2(p∗)
∂p j

,

which implies that, at every possible p∗, c1 and c2 share the same subgradients, which
in turn implies that c1 and c2 are equal up to an additive constant, and so that the
individuals have the same utility function, up to a constant.

The main application of Proposition 5 is in preference elicitation: an experimenter
can elicit precisely, as a strict best response, the utility function of subjects who have
translation-invariant utilities. This utility function includes all information about the
subject’s beliefs, whether simple as with expected utility preferences or more complex
as with ambiguity averse preferences, along with her risk and ambiguity attitudes. To
do so, the experimenter can utilize a mechanism of the sort described in the preceding
subsection. Letting s denote the quadratic scoring rule, for example, the experimenter
could operate as follows. First, he asks the subject to communicate her entire util-
ity function—either directly, or indirectly via questionnaires and a sequence of binary
choices over lotteries. No payments are made at this stage. Second, the experimenter
draws y at random, with a full-support probability measure over Rn.17 Third, he re-
wards the subject with the scoring rule f = s+ y, i.e., the baseline quadratic scoring rule
plus the random side payments, using as input the optimal announcement the subject
would have made had she confronted this scoring rule directly.

We now turn to the second problem of identification. In this problem, the preferences
are fixed: we consider an individual who behaves under “complete ignorance” as in Ex-
ample 8, whose utility function is

U(x)=min
ω∈Ω

xω.

We refer to these preferences as complete maxmin preferences (to distinguish with the
preferences of maxmin decision makers over nondegenerate set of priors, as in Exam-
ple 2).

17Of course, in practice, the support will be bounded. For example, one can randomize uniformly over a
range of possible payments. Having bounded support does not induce any sort of misreporting, but may
possibly make “reporting the truth” a non-unique best response. The larger the support, the closer we get
to the unique best response.
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Proposition 6. Let f and g be continuous strictly proper scoring rules. If, for all side
state-contingent payoffs y ∈ Rn, the optimal announcement of an individual with com-
plete maxmin preferences is the same under both f + y and g + y, then f and g are
identical up to an additive constant.

Therefore, it is possible to fully identify the scoring rule being applied, up to an ad-
ditive constant, by varying side payments while observing the probabilities announced
by the individual. The proof is in Appendix B. Note that, although we find it convenient
to have unrestricted side payments, we can also restrict them to take values in a much
smaller set, such as the set for which

∑n
i=1 yi = 0.

Though Proposition 6 is stated in terms of proper scoring rules, it also has an inter-
pretation in terms of Robinson Crusoe economies. Namely, suppose two given convex
and closed technologies with free disposability, and an individual with Leontief prefer-
ences. If the equilibrium prices under the two technologies are the same when varying
endowments, then the two technologies must coincide up to some constant.

Of course, there would be no hope of establishing such a result under the hypothesis
that the individual is risk neutral rather than maxmin, since the risk-neutral individ-
ual always announces her true belief, irrespective of which scoring rule is applied and
independently of any side payments. More generally, the probability distributions an-
nounced by individuals who confront a given scoring rule reflect information regarding
her preferences and subjective beliefs, and also information regarding the scoring rule.
At one end of the spectrum, an individual who forms a subjective assessment of the
state probabilities and is risk neutral makes reports that fully identify her beliefs, but
conveys no information on the scoring rule being applied. At the other end, an indi-
vidual who behaves under complete ignorance makes reports that reflect no particular
probabilistic beliefs, but allows to fully identify the scoring rule being applied (up to an
additive constant).

Proposition 6 is of theoretical nature, but it also means that, in principle, an experi-
menter could test if the subjects report meaningful probabilities, or if, on the opposite,
the subjects’ reporting behavior is dominated by risk or ambiguity aversion. For exam-
ple, suppose an experimenter works with a large number of subjects, and requests from
each subject, individually, a subjective probability distribution over relevant states. Be-
liefs may be similar across subjects, or may differ (one may think, for example, of an
experiment that tests conformity). The experimenter is unsure about whether the sub-
jects are probabilistically sophisticated and close to being risk neutral, in which case
reports are meaningful, or if the subjects are closer to behave under complete igno-
rance, in which case reports are meaningless. If the experimenter uses a single scor-
ing rule for all subjects, the experimenter cannot distinguish between the risk-neutral
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probabilistically-sophisticated subjects who form a common belief and the subjects who
behave under complete ignorance. Proposition 6 implies that, by applying different scor-
ing rules on different groups of subjects, the experimenter can tell if the subjects’ reports
reflect meaningful information on their beliefs.

Comparative statics with respect to uncertainty aversion

This last example illustrates the use of the dual characterization to obtain comparative
statics. We focus on the special case of binary states that describe the outcome of a
random event; as before, Ω = {0,1}, ω = 1 if the event occurs, and ω = 0 otherwise. We
continue to abuse notation and use p to represent event probabilities.

Following the definition of Yaari (1969), we say that an individual with utility func-
tion U1 is more uncertainty averse than an individual with utility function U2 if, for ev-
ery state-independent payoff (K ,K) ∈ R2, and every state-contingent payoff (x0, x1) ∈ R2,
U1(x0, x1) ≥ U1(K ,K) implies U2(x0, x1) ≥ U2(K ,K); that is, if the individual with U1

prefers a given risky payoff to a given safe payoff, then so does the individual with
U2.

Let us fix two utility functions Uk, k = 1,2, in the class of variational preferences, with
U1 more uncertainty averse than U2. The indirect utility for Uk is

Gk(p,w)= w+ ck(p)

for ck a proper convex lower semicontinuous function (see Example 1). Let us impose
the normalization minp∈[0,1] ck(p) = 0. This normalization is without loss of generality
since utility-based preferences are defined up to an additive constant. Then, the require-
ment that U1 is more uncertainty averse than U2 is equivalent to the requirement that
for every p ∈ [0,1], c2(p) ≥ c1(p). Intuitively, ck(p) captures the “degree of uncertainty
aversion at event probability p.” Assume, for simplicity, that ck, k = 1,2, is real-valued,
strictly convex, and twice continuously differentiable. Together with the normalization
above, this assumption implies existence of a unique probability π ∈ [0,1] such that
c1(π) = c2(π) = 0. Let f be a continuously differentiable scoring rule. This differentia-
bility implies that the value function V is twice continuously differentiable (which, as
discussed before, follows from the subgradient representation of scoring rules).

Consider an individual with variational preferences described by the indirect utility
G(p,w)= w+λc1(p)+(1−λ)c2(p), with λ ∈ (0,1). The parameter λ captures the extent to
which the individual is uncertainty averse: as λ increases, the individual becomes more
uncertainty averse. The probability π can be interpreted as the belief of the individual
regarding the event. In particular, for the case of a risk-neutral individual or an expected
utility maximizer, π is exactly the subjective probability.
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By Proposition II, when rewarded according to f , the individual chooses to announce
the probability p∗ that solves

min
p∈[0,1]

{V (p)+λc1(p)+ (1−λ)c2(p)} .

Suppose p∗ ∈ (0,1) and p∗ >π. Then, p∗ is determined by the first-order condition

V ′(p∗)+λc′1(p∗)+ (1−λ)c′2(p∗)= 0.

To understand how the optimal probability announcement p∗ varies as the individual
becomes increasingly uncertainty averse, we apply the implicit function theorem and
get

dp∗

dλ
= c′2(p∗)− c′1(p∗)

V ′′(p∗)+λc′′1(p∗)+ (1−λ)c′′2(p∗)
.

The denominator is positive by strict convexity of V +λc1 + (1−λ)c2, so we have that
dp∗/dλ has the sign of c′2(p∗)− c′1(p∗). Therefore, the fact that the individual becomes
more uncertainty averse is not enough to tell if the individual’s announcement moves
closer to or further away from the belief π. What matters is the relative rate of change of
uncertainty aversion of the two preferences U1 and U2 at the current optimal announce-
ment p∗, as measured by the ratio

c′2(p∗)
c′1(p∗)

.

If c′2(p∗)/c′1(p∗) > 1, then as the individual becomes more uncertainty averse, her an-
nouncement moves away from her belief π. If, instead, c′2(p∗)/c′1(p∗) < 1, then as the
individual becomes more uncertainty averse, her announcement moves closer to her be-
lief π.

V. CONCLUSION AND RELATED LITERATURE

The literature on scoring rules is vast. The first characterization of proper scoring rules,
based on the subgradients of convex functions, goes back to McCarthy (1956); see also
the generalizations of Savage (1971) and Fang et al. (2010). Gneiting and Raftery (2007)
provide a recent survey of the literature.

Winkler and Murphy (1970) are the first to depart from the risk neutrality assump-
tion, by studying how the curvature of utility for money affects behavior under the qua-
dratic scoring rule for expected utility maximizers. Continuing to assume the quadratic
scoring rule and considering binary events, Kadane and Winkler (1988) calculate an
explicit formula that expected utility maximizers would use when they have nontriv-
ial risk attitudes. They show that risk averse individuals tend to report more uniform
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probabilities. Armantier and Treich (2013) extend this result to a larger class of scor-
ing rules, and, in particular, study how the bias towards uniform probability assess-
ments vary with risk aversion. Offerman et al. (2009) derive a related result in a more
general decision-theoretic model. Grünwald and Dawid (2004) and Chambers (2008)
uncover optimal behavior in the context of risk-neutral individuals with multiple pri-
ors. Bickel (2007) establishes properties of individuals with CARA-style expected utility
preferences: for example, he shows that one can add a constant payoff to each action
in the profile of a scoring rule without changing behavior. He attributes this to what
he calls the “delta” property; something economists would call translation invariance or
quasilinearity, and is characterized by the variational model. This result is implied by
Theorem 1. Jose et al. (2008) discusses a duality related to that of Grünwald and Dawid
(2004), but with a different aim: they seek to understand how a risk-averse expected
utility maximizer will “bet” against a given set of priors.

We show that the quadratic scoring rule is optimal in the sense that it minimizes
deviations from truthtelling for both CARA and CRRA utilities for money. The quadratic
scoring rule has other desirable properties. For example, Selten (1998) shows that it is
the unique scoring rule that is proper, has symmetric losses (meaning V (p)− p · f (q) =
V (q)− q · f (p) for all p and q), is invariant to adding zero-probability events, and is
invariant to permutations of the labeling of events. Assuming a rational inattention
model, Tsakas (2018) proves that, for a certain family of inattention costs, the quadratic
scoring rule virtually eliminates incentives to collect new information about the event
in question.

A different stream of literature, pioneered by Maccheroni et al. (2006) and Cerreia-
Vioglio et al. (2011b), exploits the duality between indirect and direct utility in order
to study properties of uncertainty aversion. These works use the richer structure of
Anscombe and Aumann (1963) acts, which allows for the separate study of uncertainty
and risk. The duality investigated in Cerreia-Vioglio et al. (2011b) and discussed in de-
tail in Cerreia-Vioglio et al. (2011a) corresponds to the one being used in this paper.18

Although these works are concerned with uncertainty aversion, many of the results and
characterizations continue to apply to the setup of this paper. Further, because of risk
attitudes, it is often advocated that individuals be paid in probability currency, instead
of monetary terms. It relies on the idea that, over purely risky prospects, individuals
will likely conform to expected utility behavior (indeed this is the framework upon which
the analysis of Anscombe and Aumann (1963) is built). In such a framework, the model
of Cerreia-Vioglio et al. (2011b) is the appropriate one for studying elicitation questions.

18Specifically, they apply the duality to von Neumann-Morgenstern utilities under more general frame-
work.
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The natural counterparts of the following results hold as stated, we focus here on mon-
etary payoffs for simplicity. Similarly, one could restrict the domain of scoring rules
to take only nonnegative values, and describe “homogeneous” utility indexes U ; these
would correspond to indirect utility functions G for which G(p,w) = wG(p,1). Finally,
comparative statics on the indirect utility function in terms of the risk aversion relation
of Yaari (1969) exists in Cerreia-Vioglio et al. (2011b) in the form of comparative statics
on uncertainty aversion.

This paper adds to the literature by considering a general specification of utility to-
gether with general proper scoring rules. Previous works assume that preference is
expected utility, or consider the special case of risk neutrality with ambiguity aversion,
or focus on the quadratic scoring rule. In contrast, our preferences do not need to ref-
erence any concept of likelihood or state-contingent utility payoffs whatsoever, and our
results do not require particular restrictions on the scoring rule being used, except for its
continuity. The duality approach we pursue allows a sharp and simple characterization
of individual behavior, which allows for a range of applications. We leave the question
of infinite state spaces, and the study of elicitation mechanisms utilizing objective ran-
domization devices, to future research.

APPENDIX A. PROOFS OF SECTION II

Proof of Theorem 1

As a first step, consider the set K = co( f (∆(Ω))), the convex hull of the image of f .
Observe that K is itself compact, since RΩ is finite-dimensional (see Corollary 5.18 of
Aliprantis and Border, 1999) and f (∆(Ω)) is compact due to continuity of f . We will
show that there is a unique maximizer of U across the set K , and that this maximizer
coincides with argmaxp∈∆(Ω)U( f (p)).

Let x∗ ∈ argmaxx∈K U(x) (such a maximizer is guaranteed to exist due to continuity of
U and compactness of K). Let Y = {y : U(y)>U(x∗)}. This set is open (by continuity of U)
and convex (by quasiconcavity of U). By Theorem 5.50 of Aliprantis and Border (1999),
as K ∩Y =;, the sets K and Y can be separated by a hyperplane. This hyperplane can
be normalized to have direction in ∆(Ω), by the fact that U is increasing. Let us call this
direction p∗. Observe that the hyperplane of direction p∗ passes through x∗, as for any
ε > 0, x∗+ ε(1, . . . ,1) ∈ Y . Hence, we conclude that for all x ∈ K , p∗ · x ≤ p∗ · x∗; i.e., x∗

maximizes p∗ · x subject to x ∈ K . Clearly f (p∗) ∈ K satisfies this inequality. We claim
that it is the unique such element of K . So, by contradiction, let x̂ ∈ K , where x̂ 6= f (p∗).
Then there are p1, . . . , pn ∈ ∆(Ω), not all equal to p∗ and λi ≥ 0,

∑n
i=1λi = 1 for which

x̂ =∑n
i=1λi f (pi). But by strict properness, we then obtain p∗ · x̂ < p∗ · f (p∗), contradicting
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the fact that x̂ maximizes p∗ · x subject to x ∈ K . So x∗ = f (p∗). Further, f (p∗) is the
unique maximizer of U in K . Indeed, observe that by continuity and monotonicity, the
closure of Y is {y : U(y)≥U( f (p∗))}. Hence if x′ ∈ argmaxx∈K U(x), then p∗ ·x′ ≥ p∗ · f (p∗),
which we have shown to be impossible.

Since p∗ separates K and Y , and again by continuity and monotonicity U , we have
that U(y)≥U( f (p∗)) (i.e., y in the closure of Y ) implies p∗ · y≥ p∗ · f (p∗). We claim that
this fact, in turn, implies U( f (p∗)) = G(p∗, p∗ · f (p∗)). To see this, suppose by means
of contradiction that there is y for which p∗ · y ≤ p∗ · f (p∗) and U(y) > U( f (p∗)). By
continuity of U , we conclude that there is y∗ for which p∗ · y∗ < p∗ · f (p∗) and U(y∗) >
U( f (p∗)), contradicting the fact that U(y∗)≥U( f (p∗)) implies p∗ · y∗ ≥ p∗ ·U( f (p∗)). So,
U( f (p∗))=G(p∗, p∗ · f (p∗)).

Finally, let p̂ 6= p∗. Then p̂ · f (p∗) < p̂ · f (p̂), by strict properness. Therefore, there is
ε> 0 for which p̂·( f (p∗)+ε(1, . . . ,1))< p̂· f (p̂), and since U is monotonic, we then conclude
that G(p̂, p̂ · f (p̂))>U( f (p∗)).

Overall, we get that p∗ is the unique minimizer of the function p 7→G(p, p · f (p)).

Proof of Lemma 1

First, suppose that p∗ ∈∆(Ω) has the property that for allω,ω′ ∈Ω, f (p∗)(ω)= f (p∗)(ω′)=
V (p∗). Then, by definition, for any p 6= p∗, V (p∗)= p · f (p∗)≤ p · f (p)=V (p).

Conversely, suppose that p∗ ∈ ∆++(Ω) (meaning that p∗ has full support) and p∗ ∈
argminp∈∆(Ω) V (p). Observe that by properness, for any p, 0 ≤ V (p)−V (p∗) ≤ (p− p∗) ·
f (p), so (p− p∗) · f (p)≥ 0. Pick any two states, ω′,ω′′ ∈Ω, ω′ 6=ω′′. Because p∗ ∈∆++(Ω),
there exists ε > 0 small enough so that pε as defined by the following is an element of
∆(Ω): pε(ω′)= p∗(ω′)+ε, pε(ω′′)= p∗(ω′′)−ε, and finally pε(ω)= p∗(ω) for all ω ∉ {ω′,ω′′}.
Observe then that ε( f (pε)(ω′)− f (pε)(ω′′)) ≥ 0. Since ε > 0 was arbitrary, we conclude
by continuity of f that f (p∗)(ω′) ≥ f (p∗)(ω′′). The result of the lemma follows from the
observation that ω′,ω′′ were arbitrary.

APPENDIX B. PROOFS OF SECTION IV

Proof of Lemma 2

Let 1ω be the vector of Rn whose elements are all zero except for the element ω, that
takes value 1. The proof of Theorem 1 shows that if p∗ is the optimal announcement,
then U(y) ≥U( f (p∗)) implies p∗ · y ≥ p∗ · f (p∗). Suppose by means of contradiction that
there is ω for which p∗

ω = 0. Observe by strict monotonicity of U that U( f (p∗)+1ω) >
U( f (p∗)). So there exists ε> 0 for which U( f (p∗)+1ω− ε(1, . . . ,1)) >U( f (p∗)). But since
p∗
ω = 0, p∗ · ( f (p∗)+1ω−ε(1, . . . ,1))< p∗ · f (p∗), a contradiction.
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Proof of Proposition 3

A direct application of Proposition 1 yields that the optimal report p∗ and the subjective
probability π satisfy the equality

π

1−π = p∗

1− p∗ eα[ f (p∗)(1)− f (p∗)(0)].

That is, the odds-ratio of the subjective belief to the optimal announcement is equal to
exp(α [ f (p∗)(1)− f (p∗)(0)]). In particular, fixing f and α, as π varies over the open range
(0,1), optimal reports span the range (0,1). Hence, the image of r f is (0,1).

Recall that we have f (p)(ω) = V (p)+ (ω− p)V ′(p), which owes to the fact that f cap-
tures the subgradients of the value function V (Gneiting and Raftery, 2007). Taylor’s
theorem then implies that

lim
ε→0

f (p, p)− f (p+ε, p)
ε2 = 1

2
V ′′(p).

Thus, formally, the problem is to find the smooth strictly proper scoring rules f such
that D(π, r(π)) is minimized subject to the condition that V ′′ ≥ 2L, where V is the value
function associated to f . Since f (1,1)− f (1,0) = V ′(1) and f (0,0)− f (0,1) = −V ′(0), the
problem reduces to minimizing

max
p∈[0,1]

| f (p)(1)− f (p)(0)| =max
{
V ′(1),−V ′(0)

}
,

subject to V ′′ ≥ 2L, where we used the monotonicity of p 7→ f (p)(ω). We immediately get
V ′(1) =−V ′(0) and V ′′ = 2L, which implies V ′(p) = 2L(p−1/2) and V (p) = K +L(p2 − p).
Hence, applying the formula f (p)(ω)=V (p)+(ω− p)V ′(p), we get f (p)(ω)= K−L(p−ω)2

where K is an arbitrary constant.
If the individual is an expected CRRA utility maximizer, then Corollary 3 implies

that one can get arbitrarily low distortions in reported assessments by choosing to add
to the state-contingent rewards a fixed payment large enough. Hence, let us impose the
additional condition that f (p)(ω)≤ RMAX for an arbitrary RMAX > 0, which captures the
fact that the payments of the scoring rule are bounded. Following analogous steps to
those above, the problem of finding the smooth scoring rule that minimizes the worst-
case degree of misreporting reduces to minimizing

max
{

V (0)
V (0)+V ′(0)

,
V (1)

V (1)−V ′(1)

}
,

and we get, as for case of CARA utility, that the constraint V ′′ ≥ 2L is binding, which
yields as solution the quadratic scoring rule f (p)(ω)= RMAX −L(p−ω)2.
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Proof of Proposition 4

Let us focus on the case of CARA utility for money. The case of CRRA utility for money
is proved in a similar fashion.

Of course, because the experimenter acts in the best interest of the subject, making
truthful announcements is always a best response. The core of the proof is the argument
that the truthful best response is strict.

Because of the randomization that occurs in stage 2, the subject is induced to make
reports that provide her with the optimal payments for both scoring rules simultane-
ously.

Suppose that (α,π) captures the true pair (coefficient of absolute risk aversion, sub-
jective probability), and that the announcement (α′,π′) is optimal. Let pH be the prob-
ability the experimenter plugs into scoring rule fH when the subject announces (α,π),
and pT the probability he plugs into scoring rule fT . The fact that payments remain
optimal for (α′,π′) with both fH and fT implies that the experimenter would continue to
plug in pH and pT , respectively, when the subject announces (α′,π′).

For scoring rule f = fH , fT , let ∆ f (p) denote the difference f (p)(1)− f (p)(0). Proposi-
tion 1 then implies the following equalities:

π

1−π = pH

1− pH
eα∆ fH (pH ),(7)

π′

1−π′ =
pH

1− pH
eα

′∆ fH (pH ),(8)

π

1−π = pT

1− pT
eα∆ fT (pT ),(9)

π′

1−π′ =
pT

1− pT
eα

′∆ fT (pT ).(10)

Dividing (10) by (9) and (8) by (7), we obtain

π′(1−π)
π(1−π′)

= e∆ fT (qT )(α′−α) = e∆ fH (qH )(α′−α),

which implies ∆ fT(pT)=∆ fH(pH). Let us now divide (9) by (7), we obtain
pT

1− pT
= pH

1− pH
,

and thus pT = pH . Putting those two facts together, we get α=α′ and π=π′.

Proof of Proposition 5

Consider two individuals indexed k = 1,2 with utility function Uk and indirect utility
function Gk. From Example 1, we can write Gk(p,w) = w+ ck(p) for a proper convex
and lower semicontinuous function ck on ∆(Ω). We extend ck on Rn+ as follows: let
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ck(q) = +∞ if q ∈ Rn+ and q ∉ ∆(Ω). Observe that ck, k = 1,2, continues to be a proper
lower semicontinuous convex function.

Let us fix a continuous strictly proper scoring rule f , with value function V . We also
extend V on the nonnegative orthant Rn+ by defining, for all q ∈Rn+,

W(q)= sup
p∈∆(Ω)

f (p) · q,

as we did in other parts of this paper. Recall that W is a differentiable real-valued
convex function, and that W(p)=V (p) for p ∈∆(Ω).

Now, let p∗ be in the (relative) interior of ∆(Ω) and such that c1(p∗) < +∞ (recall
that c1 may be infinite-valued, but there exists at least one such p∗). Because W is
differentiable, it has a unique subgradient z at p∗. Then, let z′ be any subgradient of c1

at p∗, and let y=−(z+ z′).
We begin with the observation that, if the first individual is rewarded according to

scoring rule f plus side state-contingent payoff y, then by Theorem 1, the individual
chooses to report p∗. Indeed, for all p ∈∆(Ω),

W(p∗)+ z · (p− p∗)≤W(p)

and
c1(p∗)+ z′ · (p− p∗)≤ c1(p)

so
c1(p∗)+W(p∗)+ y · p∗ ≤ c1(p)+W(p)+ y · p,

and thus p∗ minimizes G1(p,W(p)+ y · p) = G1(p,V (p)+ y · p) over ∆(Ω), where p 7→
V (p)+ y·p is the value function associated to the combination of scoring rule and outside
payoff.

Suppose that the second individual also finds it optimal to announce p∗ when re-
warded according to the same combination f + y. Then, c2(p∗) <∞, and further, Theo-
rem 1 implies that for all p ∈∆(Ω),

c2(p∗)+W(p∗)+ y · p∗ ≤ c2(p)+W(p)+ y · p,

and hence,
W(p∗)−W(p)≤ c2(p)− c2(p∗)+ y · (p− p∗),

inequality that continues to hold for all p ∈Rn+, as c2 is positively infinite outside of ∆(Ω).
Let the functions g,h be defined on Rn+ as g(p) = W(p∗)−W(p) and h(p) = c2(p)−

c2(p∗)+ y · (p − p∗). We have g(p∗) = h(p∗) = 0, g ≤ h, g is concave and h is proper
convex and lower semicontinuous. Applying the separating hyperplane theorem to the
(interior of) the hypograph of g and the epigraph of h (when nonempty), there exists a
hyperplane that lies weakly above g and weakly below h. In addition, because W has
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a unique subgradient z at p∗, g has a unique supergradient −z at p∗, and there is a
unique supporting hyperplane of the hypograph of g at p∗. Hence, −z is a subgradient
of h at p∗, which means that for every p ∈Rn+,

h(p∗)− z · (p− p∗)≤ h(p)

or equivalently, using that y=−(z+ z′),

c2(p∗)+ z′ · (p− p∗)≤ c2(p).

Therefore, z′ is a subgradient of c2 at p∗.
To sum up, if the two individuals make identical reports when rewarded under the

same combination of scoring rule and side payments, we have that for every p∗ such
that c1(p∗) <+∞, c2(p∗) <+∞ and any subgradient of c1 at p∗ is also a subgradient of
c2 at p∗—and conversely.

Using that proper convex functions are determined, up to an additive constant, by
their subgradient correspondence (see Theorem 24.9 of Rockafellar, 1970), we get that
c1 and c2 are identical up to an additive constant, which implies that U1 and U2 are
identical up to an additive constant.

Proof of Proposition 6

The indirect utility associated with complete maxmin preferences is G(p,w)= w. If V is
the value function associated to the scoring rule being applied, and y is the side state-
contingent payoff, then by Theorem 1, the optimal report p∗ solves

min
p∈∆(Ω)

G(p,V (p)+ y · p)= min
p∈∆(Ω)

{V (p)+ y · p} .

Hence,
V (p)≥V (p∗)+ y · (p∗− p)=V (p∗)− y · (p− p∗),

and −y is a subgradient of V at p∗. Conversely, if the inequality V (p)≥V (p∗)−y·(p−p∗)
is satisfied, then p∗ is the optimal announcement of the individual.

We can extend V to a function V∗ :Rn →R∪{+∞} with output in the extended real line
by defining V∗(p) = V (p) when p ∈ ∆(Ω) and V∗(p) = +∞ otherwise. Observe that the
subgradient inequalities continue to hold, that is, −y is a subgradient of V∗ at p∗ ∈∆(Ω)
if and only if p∗ is the optimal announcement of the individual.

This observation allows us to completely determine the subgradient correspondence
∂V∗ via the optimal announcements of the individual as the side state-contingent pay-
offs vary. Further, V∗ is determined up to a constant by its subgradient correspondence
(see Theorem 24.9 of Rockafellar, 1970).



SCORING RULES WITH GENERAL PREFERENCES 33

Finally, since V∗ is determined up to a constant, so is V . And since the scoring rule
being applied is continuous, it is uniquely determined by V . Adding a constant to V
adds the same (state-independent) constant to f .
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