
Supplementary Material

D. EXPERIMENTAL INSTRUCTIONS

The following eight pages reproduce the experimental instructions given to subjects.
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OVERVIEW 

Welcome to our experiment. Thank you for participating! Before we begin, please turn off and put away 

your cell phones, and put away any other items you might have brought with you. If you have any 

questions during the instruction period, please raise your hand. 

This experiment consists of 4 different “blocks.” In each block, you’ll be asked to make a bunch of 

decisions. (The decisions are numbered, but will appear in random order. For example, you may make 

decision #7, and then decision #2, and so on.) Your choices in one block will not affect your choices in 

the other blocks; the four blocks are completely independent. We’ll go over instructions at the start of 

each block. Your screens will also give instructions, and you’re free to refer back to the printed 

instructions at any time.  

At the end of the experiment, one of the decisions will be randomly selected for payment. In each 

decision we will describe how that decision gets paid if it is selected. 

In addition to being paid for one decision, you will also receive a $5 participation payment for 

completing the experiment.  

 

  



BINGO CAGE BETS 

 

We have a Bingo cage filled with 20 balls, numbered 1-20. 

In each question in this block, you will be offered two “bets” on which ball is drawn from the cage. We’ll 

actually draw a ball from the Bingo cage 20 times, and you’ll choose 20 bets, one for each draw. (After 

each draw we’ll put the ball back into the cage before the next draw.) In each decision you must choose 

between Bet A or Bet B, both of which will be shown on your computer screen. Here is an example of 

two bets you might be given: 

 

Payment: 

If one of these questions is chosen for payment, we’ll draw a ball from the Bingo cage 20 times. We’ll 

then roll a 20-sided die to determine which of the 20 draws to pay out. We’ll then look at which bet you 

chose for that draw, and pay you based on that draw. 

For example, suppose the 20-sided die roll comes up “3”. That means we’re paying you for the bet you 

chose on the 3rd draw of the ball. Suppose you chose Bet B, shown above. Bet B pays $25 if the ball is 1-

16. 

If the 20 draws from the Bingo cage are 

5, 3, 11, 5, 20, 8, 4, 9, 1, 15, 9, 9, 11, 2, 18, 12, 5, 8, 12, 10 

then the 3rd draw is 11. You chose Bet B, and Bet B pays $25 for ball 11, so you’d actually be paid $25.  

If the 20-sided die had come up “5” then we’d pay for the 5th draw, which is 20. In that case Bet B would 

only pay $5. 

If you had chosen Bet A then you’d receive $15 regardless of what ball is drawn. 

The actual bets offered may be different than this example, and you’ll make several choices like this. 

Read the description of the 2 bets carefully each time before making your 20 choices. 

 

 

 



GAMES AGAINST PAST PLAYERS 

 

In these questions, you will play a “matrix game” against 20 people who participated in this experiment 

on some prior date. 

On the screen we will now demonstrate how “matrix games” work. 

In this block, you will be the ROW player and the past participants were COLUMN players.  

 

ROW player choices: 

You will actually play each game 20 times. For each of your 20 choices we will randomly draw one of the 

20 past participants, and your choice will be paired against that past participant’s choice. But you won’t 

know which past participants you’re paired with in each choice until the end of the experiment. 

Before you make your 20 decisions, we might give you some information about what all 20 past 

participants chose. For example, we could tell you that of the 20 past participants, 12 chose Left and 8 

chose Right. This information will appear on your computer screen. 

Payment: 

If one of these games is chosen for payment, we’ll use draws from a Bingo cage to see which past 

participant is associated to each of your 20 choices (putting the ball back after each draw), and then 

we’ll roll a 20-sided die to see which of those choices is paid out. We’ll compare your Row choice to that 

person’s Column choice and pay you your payoff in the game for that Row and Column. (The Column 

player will not be paid; they were paid when they played this game previously.) 

  



GAMES AGAINST CURRENT PLAYERS 

 

In these questions, you will play a “matrix game” against one of the 20 other people in the room today. 

On the screen we will now demonstrate how “matrix games” work. 

In this block, you will play each game as the Column player and as the Row player. You’ll actually 

proceed through 5 “Stages” of decision-making, numbered Stage 0 through Stage 4. We’ll explain each 

now: 

 

“Stage 0:” COLUMN player choice: 

In Stage 0 you will play the game 1 time as the COLUMN player. Here is an example game: 

 

 

“Stage 1:” ROW player choices: 

In Stage 1 you now play the same game, but as the ROW player. And you’ll play it 20 times. For each 

choice we’ll randomly draw the ID of another person in your room, and they will serve as the Column 

player if that choice is chosen for payment. For example, if your 3rd choice is against Column Player #17, 

then your 3rd Row choice will be compared to Player #17’s Column choice from Stage 0. 

 

 

 

 



Here is an example screenshot of your 20 choices: 

  

Payment: 

If Stage 1 is chosen for payment, we’ll randomly select one person in the room to be our Row player. 

And then we’ll use draws from a Bingo cage to select the identity of the Column player for each of their 

20 choices (putting the ball back after each draw). Finally, we’ll use a 20-sided die to see which choice is 

paid out. That Row player and Column player will get paid based on how they played (the Row player is 

paid for their Row choice against that particular Column player, and the Column player is paid based on 

their Column choice from Stage 0.) 

Everyone else in the room will receive a fixed payment of $15.  

 

“Stage 2:” Probabilities: 

In Stage 2 we want to know how likely you think it is that Column players play “Left” in this game. One 

way we could do this is to ask you the following list of 100 questions: 

 

In each question, you’d pick either Option A or Option B. Presumably you’d want Option A in the first 

few questions, but at some point would switch to taking Option B. So rather than telling us your choice 

to all 100 questions, we can just ask you to tell us at what percent chance you’d switch. And that “switch 

point” is exactly where you’re indifferent between Option A and Option B, because that switch point 

would be exactly at the probability that you think the Column players are choosing Left. 

Q#  Option A  Option B 

1 Would you rather have $20 if COLUMN chose Left or 1% chance of $20 

2 Would you rather have $20 if COLUMN chose Left or 2% chance of $20 

3 Would you rather have $20 if COLUMN chose Left or 3% chance of $20 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

99 Would you rather have $20 if COLUMN chose Left or 99% chance of $20 

100 Would you rather have $20 if COLUMN chose Left or 100% chance of $20 



For example, suppose your switch point is 73%. That means you’re indifferent between getting $20 if 

COLUMN plays Left, and getting $20 with 73% chance. But if you’re indifferent between those choices, 

then you must think COLUMN is playing Left 73% of the time. In other words, your switch point is exactly 

your probability that they play Left. 

How would you be paid if Stage 2 is chosen for payment? You enter your probability that the Column 

player plays left (for example, 73%). Then we draw one of the 100 questions above and see what you’d 

choose on that question. If it’s #1-72 then you chose Option A. So we’d pay you $20 if a randomly-

selected Column player actually chose Left in Stage 0. If the question drawn is #73-100 then you chose 

Option B. So we’d pay you $20 with the probability given in that row. (For example, if we pick question 

#83, then you’d get $20 with an 83% chance.) 

We’ll use two 10-sided dice to pick which row is actually chosen. If you choose Option B then we’ll use 

another roll of the two 10-sided dice to determine whether you win the $20 or not. (For example, if the 

chosen row is #83, then you’re getting an 83% chance of $20. That means we’ll pay you $20 if the 

second roll comes up 1-83.) 

Obviously you have an incentive to announce your “true” probability that you think the Column player is 

playing Left. If you misreport your true probability then you’ll end up choosing an option you like less on 

some of the rows above. 

Here is an example screenshot of this decision: 

 

 

“Stage 3:” Row player with a Hint 

In Stage 3 we’ll show you a “hint” of how an actual Column player played today. Here’s how the hint 

works: 

First, the computer will randomly select 1 of the other 20 players. The computer knows whether this 

player chose Left or Right as COLUMN player, so the computer can give you a hint about which they 

chose. The hint will either say “Left” or “Right”, but it’s not very accurate; the hint will be correct 55% of 

the time and wrong 45% of the time.  

This means that if you see the hint that COLUMN chose Left, then it’s slightly more likely that the 

COLUMN player really did choose Left. And if the hint says “Right” then it’s slightly more likely that the 

COLUMN player really did choose Right.  



After you see this hint, you will play the game 20 more times as the ROW player, each time matched 

with a randomly-drawn person in the room, just as you did back in Stage 1. The only difference is that 

you’ve now seen a hint. 

 

“Stage 4:” Probabilities with a Hint 

In Stage 4 we’ll once again ask you your probability that a random Column player chose Left. The 

payments will work just like in Stage 2. Again, your incentive is to report your belief truthfully. This is 

exactly as in Stage 2; the only difference is that now you’ve seen a hint.  

 

You will play 2 matrix games in this block. In each game you will go through all 5 stages (0 through 4). 

Notice that the games’ payoffs may be different, but the procedures for each stage are exactly the 

same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



INVESTMENT QUESTIONS 

In the investment questions, you will be given $10.00, and you can choose to invest any amount of that 

money in a risky project. The money you don’t invest you keep for yourself. 

The project can either be a success or a failure. 

If it’s successful then the amount you invested in it will be multiplied by some number and paid to you. If 

it’s a failure then that money will be lost.  

In either case you get to keep the money that you chose not to invest. 

Your screen will include detailed instructions about these questions, so read the information carefully. 

Here is an example screenshot: 

 

 

You will face two different investment choices, each with a different chance of success and multiplier. 

Please read the screen carefully before making your choice each time. 

 



E. NOTIONS OF DOMINANCE, MIXING, AND INCENTIVE COMPATIBILITY

For the interested reader, we provide supplementary information about various no-

tions of dominance in our experiment, and the related notions of monotonicity that

require preferences respect dominance. We explore which notions of monotonicity are

violated by mixing behavior. We also discuss under which monotonicity assumptions

our experiment is incentive compatible, implications for models of random prefer-

ences, and provide a modification of monotonicity—called myopic preference—that

can capture mixing in the SEQ treatment.

E.1. Setup and Experimental Design

Choice objects are acts f : B → X , where B = {1, . . . ,n} is the set of possible draws from

a Bingo cage containing n numbered balls and X = {$2,$1,$0} is the set of possible

monetary prizes.56 Each ball in B is drawn with objective probability 1/n, but we

generally model choice objects as acts. We can describe f as an n-vector—such as

f = (2,0, . . . ,1,1)—to indicate the prize awarded in each state. For any two prizes

x, y ∈ X and any k ∈ {0,1, . . . ,n} let xk y be the act that pays x in the first k states and y
otherwise. For example, 2100 is the bet that pays $2 in states 1–10 and $0 otherwise.

The constant act that pays x in every state is denoted simply as x.

The subject is given m different decision problems, each of which is a choice between

two acts. Denote the ith problem by D i = { f i, g i}. The subject makes each of these

choices n times. The subject’s choice on the jth replicate of the ith problem is given by

ai j ∈ D i. Let a = (ai j)i, j ∈×m
i=1Dn

i be the entire matrix of choices and ai = (ai1, . . . ,ain) ∈
Dn

i be the vector of choices made across the n replicates of the ith problem.

In our baseline condition one ball is drawn (with replacement) for each of the n
replicates. Let b = (b1, . . . ,bn) ∈ Bn be the vector of all n draws. Act ai j is paid based

on draw b j ∈ B. The final payment is therefore ai j(b j) ∈ X .

We employ the RPS mechanism, meaning one of the mn choices is chosen randomly

for payment. The decision problem chosen (the “row” of the matrix a) is determined by

a randomization device with realizations r ∈ R = {1, . . . ,m}, and the replicate (“column”)

is determined by a separate randomization device with realizations c ∈ C = {1, . . . ,n}.

Thus, the combined state (r, c) determines which problem and which replicate is

paid. The announcement of a = (ai j)i, j generates an act which pays act ai j in state

56In the actual experiment X = {$25,$15,$5}; we use {$2,$1,$0} only for notational convenience.
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(r, c)= (i, j). And the act ai j pays ai j(b j) in each state b j ∈ B. The entire state space

for the experiment is therefore given by R×C×Bn, and the whole matrix of choices a
is an act in X R×C×Bn

.

We set n = 20 throughout our experiment. Probability matching (PM) questions

are given by f = 2k0 and g = 0k2, where k ∈ {11,12, . . . ,16}. Risky-Safe (RS) questions

offer f = 2k0 and g = 1, where again k ∈ {11,12, . . . ,16}. We do not model games here,

though the games of strategic certainty (SC) are identical to the PM choices except in

framing.

The IND and SIM treatments are as described above. In the CORR treatment only

one ball b1 ∈ B is drawn, and each ai j pays ai j(b1). The entire state space is therefore

R×C×B, and so º∗ is defined over X R×C×B. In the SEQ treatment there are n ball

draws, as in IND, but now the column chosen for payment (ci) is drawn in advance,

the subject chooses each ai j sequentially, starting at j = 1 and proceeding until j = ci.

The ONE treatment simply sets n = 1.

To model choices, we start by assuming the subject has a preference º∗ over the

entire choice matrix a ∈ X R×C×Bn
. This is useful later for describing the assumptions

under which our payment mechanism is incentive compatible. But for now our focus

is on how the subject chooses across the n replications of a single decision problem. In

other words, for each decision problem i, we are interested in studying preferences

over ai ∈ X C×Bn
. To capture this we define º over various ai by

ai º a′
i ⇔


ai

ai
...

ai

º∗


a′

i

a′
i

...

a′
i

 . (2)

We can then derive a preference º0 over single choice objects in X B by

ai j º0 a′
i j ⇔ (ai j,ai j, . . . ,ai j)º (a′

i j,a
′
i j, . . . ,a

′
i j). (3)
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E.2. Dominance, Monotonicity, and Mixing

Consider a subject who faces only one decision problem D i, and does so n times. Thus,

their only choices are ai = (ai1, . . . ,ain). We can view this as equivalent to having m
rows but choosing the same vector ai in every row, because then the draw of the row

would be irrelevant.

Given these derived preferences, we can formulate several useful notions of domi-

nance. The first is simply stochastic dominance, while the others are various notions

of statewise dominance.

Definition 2. Let ρ be an objective probability measure on (the discrete topology of)

B.

1. f stochastically dominates g if, for every x ∈ X , ρ({b : f (b)≤ x})≤ ρ({b : g(b)≤ x}).

2. f B-dominates g if, for all b, f (b)≥ g(b).

3. ai C-dominates a′
i if, for all j, ai j º0 a′

i j.

4. ai C-stochastically dominates a′
i if, for all j, ai j stochastically dominates a′

i j.

5. ai C×Bn-dominates a′
i if, for all j and b j, ai j(b j)≥ a′

i j(b j).

6. a R-dominates a′ if, for all i, ai º a′
i.

In general, an object is said to be dominant (under the appropriate notion of

dominance) if it dominates all other alternatives. For example, ai is C-dominant if it

C-dominates every a′
i.

57

For each notion of dominance we can also define an equivalent notion of monotonicity

(with respect to dominance) of the subject’s preference.58

Definition 3. 1. º0 satisfies stochastic monotonicity if f º0 g whenever f stochas-

tically dominates g.

2. º0 satisfies B-monotonicity if f º0 g whenever f B-dominates g.

3. º satisfies C-monotonicity if ai º a′
i whenever ai C-dominates a′

i.

57In Appendix C C-dominance was called replicate dominance, and C-stochastic dominance was
simply called stochastic dominance.

58In earlier drafts R-monotonicity was called “row monotonicity” and C-monotonicity was called
“replicate monotonicity.”
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4. º satisfies C-stochastic monotonicity if ai º a′
i whenever ai C-stochastically

dominates a′
i.

5. º satisfies C×Bn-monotonicity if ai º a′
i whenever ai C×Bn-dominates a′

i.

6. º∗ satisfies R-monotonicity if a º∗ a′ whenever a R-dominates a′.

Each of these can equivalently be defined in terms of deviations in a single state.

For example, an equivalent definition of R-monotonicity is that, for all i, ai, a′
i, and

a′′, 

a′′
1
...

a′′
i−1

ai

a′′
i+1
...

a′′
m


º∗



a′′
1
...

a′′
i−1

a′
i

a′′
i+1
...

a′′
m


⇔ ai º a′

i.

And an equivalent defition of C-monotonicity is that, for all i, j, ai j, a′
i j, and a′′

i ,

(a′′
i1, . . . ,a′′

i j−1,ai j,a′′
i j+1, . . . ,a′′

in)º (a′′
i1, . . . ,a′′

i j−1,a′
i j,a

′′
i j+1, . . . ,a′′

in) ⇔ ai j º0 a′
i j.

59

We can also talk about a subject whose preferences satisfy certain monotonicity

concepts on some problems, but not others. For example, º may satisfy C-monotonicity

on D i, but not on D i′ .

In our experiment the main object of focus is º—how people choose across multiple

replicates of the same problem. Thus, we want º to be revealed truthfully. Azrieli et al.

(2018) show that this is true if (and, essentially, only if) º∗ satisfies R-monotonicity.

The argument is simple: Picking the º-most preferred ai on each i generates matrix

a, and any deviation a′ would lead to at least one row i on which ai Â a′
i. Thus, a

R-dominates a′. If º∗ satisfies R-dominance, then the subject would never prefer

such a deviation. Thus, we assume R-monotonicity throughout, but do not assume

any other form of monotonicity listed above. Justification for this comes from Brown
59One could instead define C-monotonicity identically to R-monotonicity, mutatis mutandis, by first

defining a relation over entire columns and then requiring that this preference be independent of
what is chosen in other columns. This would be strictly stronger than our definition of C-monotonicity
because ours only applies to the special case where all rows are identical (which corresponds to the
case of only having a single decision problem).
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and Healy (2018), who show that monotonicity assumptions may be violated when all

decisions are shown on the same screen, but not when they are shown on separate

screens and in random order. In our experiment the decision problems are shown

on separate screens and in random order, so we expect R-monotonicity to hold. The

replicates, however, are all shown on the same screen, and so we may expect violations

of other forms of monotonicity for º.

R-monotonicity is not innocuous, however. It forces a form of independence across

decision problems: if ai is chosen in row i, then it must be chosen regardless of what

was chosen in other rows.60

It is useful to highlight the relationships between the three dominance concepts

that apply to º.

Lemma 1. 1. º satisfies C-stochastic monotonicity ⇒º satisfies C×Bn-monotonicity.

2. Suppose º0 satisfies B-monotonicity. Then º satisfies C-monotonicity ⇒ º
satisfies C×Bn-monotonicity.

3. Suppose º0 satisfies stochastic monotonicity. Then º satisfies C-monotonicity

⇒ º satisfies C-stochastic monotonicity ⇒ º satisfies C×Bn-monotonicity.

We are interested in studying mixing behavior, where subjects vary their choices

from one replicate to the next.

Definition 4. A subject exhibits mixing on decision problem D i if there exist repli-

cates j and j′ such that ai j 6= ai j′ .

The various notions of monotonicity of º rule out mixing behavior in different types

of problems.

60To illustrate, consider a subject facing D1 = {290,1} and D2 = {2100,1}, each two times (so m = n = 2).
Suppose his preferences are given by(

1 1
2100 2100

)
Â∗

(
1 290
1 2100

)
Â∗

(
1 290

2100 2100

)
Â∗

(
1 1
1 2100

)
.

This may be because he most-prefers to receive the safe option in exactly two states, but doesn’t care
which, but does prefer having 2100 in place of 290. Unfortunately this violates R-monotonicity since(

1 290
1 2100

)
Â∗

(
1 290

2100 2100

)
⇒ (

1 2100
)º (

2100 2100
)⇒ (

1 1
1 2100

)
º∗

(
1 1

2100 2100

)
.
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Proposition 1. 1. If º satisfies C-monotonicity then the subject will never mix on

any decision problem D i = { f i, g i}, because they will always choose the option ( f i

or g i) that they prefer.

2. If º satisfies C-stochastic monotonicity then the subject will never mix on any

decision problem D i = { f i, g i} in which f i stochastically dominates g i, because

they will always choose f i.

3. If º satisfies C×Bn-monotonicity then the subject will never mix on any decision

problem D i = { f i, g i} in which f i B-dominates g i, because they will always choose

f i.

In our experiment we do not offer decision problems with objects that are ranked

by B-dominance; thus, we do not test C×Bn-monotonicity separately from the other

two notions of monotonicity.

As a shorthand, we say that a subject has convex preferences if º violates the

relevant monotonicity concept. Subjects with convex preferences will exhibit mixing

behavior (choosing different options on different replicates) for at least some decision

problems.

E.3. Mixing and Random Preferences

An obvious explanation for mixing is that subjects simply have convex preferences,

meaning they fail to satisfy C-monotonicity (or C-stochastic monotonicity if the options

are ranked by stochastic dominance). An alternative explanation for mixing is that

subject’s preferences simply change from one choice to the next. We argue that

such behavior can persist even when C-monotonicity (appropriately re-interpreted) is

satisfied.

To formalize this claim, we adapt the framework of Azrieli et al. (2018, online

appendix). Specifically, we model preferences as being affected by some unknown state

θ ∈Θ. Information about θ is revealed before each decision is made; to capture this

simply, we let θ = ((θi j)n
j=1)m

i=1 and assume that at each decision i j the subject observes

θi j ∈ Θi j.61 The subject selects a plan s = ((si j)n
j=1)m

i=1, where each si j : Θi j → D i

indicates what the subject will pick for every possible θi j. A plan s therefore generates

61To capture dynamic information revelation we think of θi j as including all information from all
θi′ j′ for which i′ ≤ i and j′ ≤ j.
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º0 \ º Convex Linear
Random RC RL

Fixed FC FL

Table XVI: The general typology of subjects.

an act that not only depends on r, c, and b, but also on the realized θ. The preference

º∗ is now defined over the space of such acts. R-monotonicity and C-monotonicity are

defined exactly as above, except now ai j is an act that depends on θ as well as b (it

lists what would be chosen for every θ). A plan s∗ is truthful if, at every i j and θi j,

s∗i j(θi j) is the most-preferred option in D i j, conditional on observing θi j. Preferences

on ai j are assumed to respect dominance, in the sense that ai j(θi j)º0 a′
i j(θi j) for all

θi j implies ai j º0 a′
i j.

62

In this framework, C-monotonicity guarantees that the subject will report their

true favorite choices in each replicate, even as the information they observe about

their preferences changes from one replicate to the next (Azrieli et al., 2018). It does

not guarantee that choices will be identical across replicates, only that they will be

truthful. This gives our second explanation for mixing:

Observation 1. A subject with random preferences may mix in some decision prob-

lems even if they satisfy C-monotonicity.

Thus we have two general explanations for mixing: random preferences and a

failure of C-monotonicity (or C-stochastic monotonicity). For simplicity we say those

that satisfy monotonicity have linear preferences while those who fail it have conevex

preferences. We can thus type subjects into four categories, as shown in XVI.

E.4. Mixing in The Sequential Treatment

We propose instead that the sequential treatment triggers myopic preferences. The

idea is that the subject faces a “current choice” and “future choices.” In SEQ the

current choice at each j is simple: pick between f i and g i. This choice is guided by º0

over f i and g i. The subject ignores future choices. In SIM there is only one “current

choice,” which is a choice over the entire vector ai. This is guided by º.

62Here, ai j(θi j) ∈ D i j is the constant act that pays the same gamble for all r, c, and θ, and abusing
notation, º0 also represents preferences over these acts.
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Formally, let C( j) ⊆ C represent those states in C that are still possible at infor-

mation set j, but not at information set j + 1. In our SEQ treatment, C( j) = { j}
for all j. In the IND and SIM treatments the only information set is j = 1, so

C(1) = C. For each j, define º j as the subject’s preference over acts of the form

a j
i = (ai j) j∈C( j) ∈ X C( j)×B#C( j)

.63

Definition 5. Preference º is myopic if, for all information sets j, a j
i º j a j′

i then we

have ai º a′
i.

This definition does not necessarily pin down the entire ranking º, but it does pin

down a most-preferred element. Specifically, if there are J information sets and a j
i is

the most-preferred element at each j according to º j, then under myopic preferences

ai = (a1
i , . . . ,aJ

i ) must be the most-preferred element according to º.

In SEQ C( j)= { j} for each j, so a j
i = ai j and º j=º0. Having myopic preferences is

therefore equivalent to having preferences that respect C-dominance. In IND and

SIM, C(1)= C, so a1
i = ai and º1=º. In those treatments myopic preferences place no

restriction whatsoever on º; the definition becomes vacuous.

The SIM treatment occurs after the SEQ treatment. It is possible that subject

learn to adapt myopic preferences in the SEQ treatment and apply them in the SIM

treatment that follows.

Subjects with random preferences will continue to mix in the SEQ treatment, as º0

changes from one information set to the next.

63#C( j) denotes the number of states in C( j).
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