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Chapter 1

Some key ideas in decision theory

1.1 Basics
The modern approach to uncertainty, as formalized by Kolmogorov [27, 28], has as its funda-
mentals:

S, a set of states of the world.
E , a collection of events.
P , a probability on E .

The states are assumed to be exhaustive and mutually exclusive. What you choose as the
set of states is a modeling decision. For today’s purposes, we shall mostly assume that S is
finite. The reason for this is to avoid any mathematical complications that arise from dealing
with with integrals instead of sums. All the result here have generalizations to infinite sets of
states, but they may require additional purely technical assumptions that obscure the economic
results.

A probability P on E is a function that satisfies the following properties:

Normalization: For each E ∈ E ,

0 ⩽ P (E) ⩽ 1, P (S) = 1, and P (∅) = 0.

Additivity: If E ∩ F = ∅, then

P (E ∪ F ) = P (E) + P (F ).

1.2 Random variables
A random variable (or rv) X is a real-valued function on S.1 Notation such as

{X ⩽ t} meaning {s ∈ S : X(s) ⩽ t}

is often used to describe events involving X. The indicator function of a set E is defined by

1E(s) =

{
1 if s ∈ E

0 if s /∈ E.

1There is one additional technical condition, namely that for every interval I ⊂ R, the set {s ∈ S : X(s) ∈ I}
must be an event, that is it it must belong to E. This requirement is known as measurability of X. It will not
be an issue you have to worry about today.
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The indicator function of an event is a random variable.
The cumulative distribution function (or cdf) for X is denoted FX , and defined by

FX(t) = P {X ⩽ t} .

If F is differentiable, then F ′
X is the density of X.

1.2.1 Expectation
The expectation of X is denoted E X. In general it is defined to be

E X =
∫

S

X(s) dP (s).

Let me explain this notation for the special case where X is simple, that is S is partitioned
into events E1, E2,…,En, and X is constant on each Ek, say X(s) = xk for s ∈ Ek. Letting
pk = P (Ek), we have

E X =
n∑

k=1

pkxk.

For the case where X a density f , we have

E X =
∫

xf(x) dx.

1 Proposition Expectation is a positive linear operator. That is,

E(aX + bY ) = a E X + b E Y

X ⩾ 0 =⇒ E X ⩾ 0

X ⩾ Y =⇒ E X ⩾ E Y

P {X = c} = 1 =⇒ E X = c

E(E X) = E X

E(X − E X) = 0

E 1A = P (A)

E(cX) = c E X

E(X + c) = E X + c

E(aX + c) = a E X + c

v. 2016.12.07::15.45
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2 Jensen’s inequality Let u be a concave function defined on an interval that includes
the range of X. Assume E |X| and E |u(x)| are finite. Then

u
(
E X) ⩾ E u(X).

Proof : Unless X is degenerate (in which case the conclusion holds trivially) E X belongs to the
interior of the domain of u, so u has a supergradient there. That is there exists p ∈ R such that

u
(
E X

)
+ p(x − E X) ⩾ u(x)

for all x. Thus u
(
E X

)
+ p(X − E X) ⩾ u(X), so taking the expectation on both sides gives

u
(
E X

)
= E

{
u
(
E X

)
+ p(X − E X)

}
⩾ E u(X).

The variance of a random variable is defined to be

var X = E
(
(X − E X)2) = E

(
X2 − 2X E X + (E X)2) = (E X)2 − E(X2).

The covariance of X and Y is E(X − E X)(Y − E Y ).

3 Proposition Let X be a non-negative random variable with finite expectation and cdf FX .
Then

E X =
∫ ∞

0

(
1 − FX(t)

)
dt.

Sketch of proof : Assume first that X is bounded above by b and that F is differentiable, so that
F ′ is the density, and that F (0) = 0. Then using integration by parts,

E X =
∫ b

0
xF ′(x) dx

= xF (x)
∣∣∣b
0

−
∫ b

0
F (x) dx

= b −
∫ b

0
F (x) dx

=
∫ b

0

(
1 − FX(x)

)
dx.

The general conclusion uses a more sophisticated theorem on integration by parts based on
Fubini’s Theorem.

1.3 Odds and prices
The payoffs for betting are usually described in terms of odds. If you wager an amount b on
the event E and the odds against E are given by λ(E), you receive λb if E occurs and lose b if

v. 2016.12.07::15.45
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E fails to occur. We allow λ to take on any value in [0, ∞]. The interpretation of λ(E) = ∞
is that for any positive bet b, if E occurs, then the bettor may name any real number as his
payoff. In a frictionless betting market, the odds against Ec are given by

λ(Ec) = 1
λ(E)

,

where we use the conventions
1
∞

= 0,
1
0

= ∞.

More conveniently, instead of using λ, define

q(E) = 1
1 + λ(E)

,

q(Ec) = 1
1 + λ(Ec)

= 1
1 + 1

λ(E)
= λ(E)

1 + λ(E)
.

Note that
q(E) + q(Ec) = 1,

and that
λ(E) = q(Ec)

q(E)
.

Moreover, if you bet q(E) = 1
1+λ(E) on E, then your payoff Π in state s is

Π(s) = q(E) [λ(E)1E(s) − 1Ec(s)]

= q(E)
[

q(Ec)
q(E)

1E(s) − 1Ec(s)
]

= q(Ec)1E(s) − q(E)1Ec(s)

=
(
1 − q(E)

)
1E(s) − q(E)

(
1 − 1E(s)

)
= 1E(s) − q(E).

That is, q(E) is the price of a $1 bet on E. We shall call q the price function for bets.

1.4 Subjective probability and betting
4 Subjective probability theorem Either
(1) The price function q for bets is a probability and λ(E) = q(Ec)

q(E) for each E.
Or else
(2) The odds are incoherent, that is, there is a combination of bets that guarantees the bettor
will win a positive amount regardless of which state s occurs.

A set of incoherent odds is also known as a Dutch book.

v. 2016.12.07::15.45
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Proof : (2) is equivalent to

S


E︷ ︸︸ ︷
...

1E(s) − q(E)
...




...
x(E)

...

 ≫ 0

(where x(E)q(E) is the amount bet on E).
The alternative is that there is some probability vector p ∈ RS , such that for each event E,∑

s∈S

p(s)1E(s) − q(E) = 0,

or
q(E) =

∑
s∈E

p(s) = p(E),

which is (1).

1.5 Statisticians’ view of the world
Θ is a set of urns, each urn θ describes a probability pθ on S. A particular urn θ0 is used to
choose signal s ∈ S according to probability pθ0 . We observe signal s ∈ S. What information
does this convey about θ0? (Statisticians don’t call elements of Θ urns, they call them states of
the world. In other words, statisticians believe that God does nothing but play dice.)

1.5.1 Conditional probability
The conditional probability of event E given event F is

p(E|F ) = p(E ∩ F )
p(F )

.

Thus
p(E|F )p(F ) = p(E ∩ F ) = p(F |E)p(E),

Or
p(E|F ) = p(E)

p(F )
· p(F |E),

which is known as Bayes’ Law.

1.5.2 Bayesian updating
Select urn θ0 according to probability P on Θ, and select s according to pθ0 . Then the probability
that θ0 ∈ T , given s is

P (T |s) =
∑

θ∈T pθ(s)P (θ)∑
θ∈Θ pθ(s)P (θ)

.

P is known as a prior, and P (·|s) is the corresponding posterior.
Should Bayes’ Law govern our betting behavior? Let’s see.

v. 2016.12.07::15.45
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1.5.3 Statistical inference: the game
Freedman and Purves [17] describe statistical inference in terms of the following game.

The Master of Ceremonies chooses an urn, and announces the signal s.
A Bookie posts odds λ against subsets T ∈ T of Θ.
Bets are placed.
The MC reveals the urn, and bets are settled.
(In the real world, the MC never tells.)

1.5.4 Strategies
Bookie chooses q ≧ 0 ∈ RT ×S . For each s ∈ S,

q(T, s) + q(T c, s) = 1.

Bettor then chooses x ∈ RT ×S , and bets

x(T, s)q(T, s)

on T when s occurs.
Under these strategies, the expected payoff to the bettor when θ is the selected urn is just

∑
s∈S

(∑
T ∈T

(
1T (θ) − q(T, s)

)
x(T, s)

)
pθ(s).

5 Bayesian updating theorem Either
(1) The Bookie chooses some prior P and posts odds according to the posterior P (·|s)
Or else
(2) There is a betting strategy that gives the bettor a positive expected payoff regardless of

which urn θ is selected.

Proof : (2) is equivalent to

Θ


T × S︷ ︸︸ ︷ (1T (θ) − q(T, s)

)
pθ(s)




...
x(T, s)

...

 ≫ 0,

The alternative is the existence of a probability vector P ∈ RΘ such that for each (T, s),∑
θ∈Θ

(
1T (θ) − q(T, s)

)
pθ(s)P (θ) = 0.

In other words, ∑
θ∈T

pθ(s)P (θ) =
∑
θ∈Θ

q(T, s)pθ(s)P (θ),

or
q(T, s) =

∑
θ∈T pθ(s)P (θ)∑
θ∈Θ pθ(s)P (θ)

= P (T |s),

which is (1).

v. 2016.12.07::15.45
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1.6 The Ellsberg Paradox
Daniel Ellsberg [9] (of Pentagon Papers [10] fame) proposed the following example to test the
intuitiveness of the subjective probability model.

There are two urns.

• Urn A contains 30 red balls, 30 black balls, and 30 yellow balls.

• Urn B contains 30 red balls, 60 balls that are either black or yellow.

Ellsberg asked a number of people to respond to the following two kinds of deals.

Deal 1: You will receive $100 if a red or black ball is drawn from the urn. Which urn do you
want to draw from?

Deal 2: You will receive $100 if a red or yellow ball is drawn from the urn. Which urn do you
want to draw from?

Many subjects indicate a preference for urn A in each deal. Reportedly these included L. J.
Savage.2 But such preferences are inconsistent with reasonable subjective probability and cer-
tainly with Savage’s independence axiom: Let pA(red) denote the probability of drawing a red
ball from urn A, etc. A reasonable requirement is that

pA(red) = pB(red).

Choosing urn A in deal 1 implies

pA(red) + pA(black) > pB(red) + pB(black)

and in deal 2 implies

pA(red) + pA(yellow) > pB(red) + pB(yellow)

Assuming pA(red) = pB(red), this implies

p(red) + pA(black) + pA(yellow) > p(red) + pB(black) + pB(yellow),

when both sides are equal to 1.
Of course, if we are completely subjective, we could believe pA(red) = 1 and pB(red) = 0, but

I doubt that’s what Savage had in mind. Later on, I’ll describe more satisfactory alternatives
that allow for these sorts of preferences.

1.7 Expected utility model
The standard model of choice over random variables or lotteries is the expected utility (EU)
model, which posits that a decision maker (dm) ranks random variables according to the expected
value of their Bernoulli utility function u. That is, X is preferred to Y if E u(X) ⩾ E u(Y ).

6 Theorem Two Bernoulli utilities u and v represent the same preference ranking over the set
of random variables if and only if there are real numbers a > 0 and b satisfying u(x) = av(x)+b.
That is, Bernoulli utilities are unique up to positive affine transformation.

2Ellsberg presents a number of examples and it is not clear if it is this particular example or some other one
that tripped up Savage (and Jacob Marshak and Norman Dalkey, but not Paul Samuelson nor Gerard Debreu,
see pp. 655–656).

v. 2016.12.07::15.45
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1.8 Alternative models
Multiple probability (MP) models typically rank random variables according to a function
of the form

V (X) = min
P ∈P

∫
S

u
(
X(s)

)
dP (s),

where P is a set of probabilities. If P includes all the degenerate probabilities (δs({s}) = 1),
then this reduces to the maximin criterion, which ranks according to mins X(s).

Another model is the Choquet expected utility (CEU) model, which uses a function of
the form

V (X) =
∫

ν {X > t} dt,

where ν is a Choquet capacity (a function on events satisfying E ⊂ F =⇒ ν(E) ⩽ ν(F ), but
is not necessarily additive). By Proposition 3, if ν is a probability, this agrees with the usual
expected utility. It is designed to explain the Ellsberg paradox and capture ambiguity aversion.

1.9 Allais Paradox
This example is due more-or-less to Allais [1]. Consider the lotteries

A1 = [$5m, .1; $0, .9] B1 = [$1m, .11; $0, .89]

and
A2 = [$5m, .1; $1m, .89; $0, .01] B2 = [$1m, 1]

(The notation means that A1 pays $5m with probability .1, and nothing with probability .9,
etc.) Many real people report B2 ≻ A2 and A1 ≻ B1, which violates EUH:

B2 ≻ A2 =⇒ u(1m) > .1u(5m) + .89u(1m) + .01u(0)
=⇒ .11u(1m) > .1u(5m) + .01u(0) (subtract .89u(1m) from each side)
=⇒ .11u(1m) + .89u(0) > .1u(5m) + .9u(0) (add .89u(0) to each side)
=⇒ B1 ≻ A1.

1.10 Lotteries, stochastic dominance and expected utility
In this section we consider lotteries over monetary prizes. Let

S = {x1 < · · · < xS}

be a finite set of monetary prizes, listed in ascending order. (Note that I use the same symbol,
S, to denote both the set of prizes and the number of prizes. It should not confuse you too
much.) A lottery is a probability distribution over the prizes. Lotteries thus correspond to
probability vectors in RS .

7 Definition We say that lottery q stochastically dominates lottery p if

S∑
s=k

qs ⩾
S∑

s=k

ps, for each k = 2, . . . , S, (1.1)

and p ̸= q (so that there is strict inequality for at least one k). That is, q always assigns higher
probability than p to larger prizes.

v. 2016.12.07::15.45
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Note that in the definition we require (1.1) only for k = 2, . . . , S. Since p and q are both
lotteries the case k = 1 is an automatic equality, since both sum to one.

Intuitively, one should prefer a stochastically dominating lottery.
A utility u : S → R on S can be thought of as vector u in RS , where the sth component is

the utility xs. Since the prizes are listed in ascending order, it is natural to demand in addition
that u1 < · · · < uS . That is, we consider only strictly increasing utility functions for money.

Thus the expected utility of lottery p ∈ RS with utility u ∈ RS is simply

Epu =
S∑

s=1
usps = u · p.

8 Proposition Let p and q be distinct lotteries. The following are equivalent:

1. Lottery q stochastically dominates lottery p.

2. For every nondecreasing u (i.e., u1 ⩽ · · · ⩽ uS) we have

u · q ⩾ u · p.

3. For every strictly increasing u (i.e., u1 < · · · < uS) we have

u · q ⩾ u · p.

Proof : (1) =⇒ (2): Assume q stochastically dominates p. Abel’s famous formula for “summa-
tion by parts” van be written as follows:

u · p = u1p1 + u2p2 + · · · + uSpS =

pS(uS − uS−1)

+ (pS + pS−1)(uS−1 − uS−2)

+ (pS + pS−1 + pS−2)(uS−2 − uS−3)

...

+ (pS + pS−1 + · · · + p2)(u2 − u1)

+ (pS + pS−1 + · · · + p1)︸ ︷︷ ︸
=1

u1

=u1 +
S∑

k=2

(
(uk − uk−1)

S∑
s=k

ps

)
.

Likewise the expected utility of u under q is

u · q = u1 +
S∑

k=2

(
(uk − uk−1)

S∑
s=k

qs

)
.

v. 2016.12.07::15.45
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Since u is nondecreasing, each uk − uk−1 ⩾ 0, and since q dominates p, we have each
∑S

s=k qs ⩾∑S
s=k ps, so

u · q ⩾ u · p.

(2) =⇒ (1): Assume that for every nondecreasing u (i.e., u1 ⩽ · · · ⩽ uS) we have

u · q ⩾ u · p.

Given k ∈ {2, . . . , S}, consider u given by us = 0 for s < k and us = 1 for s ⩾ k. Then
S∑

s=k

qs = u · q ⩾ u · p =
S∑

s=k

ps.

(2) =⇒ (3): This is obvious, as every strictly increasing u is also nondecreasing.
(3) =⇒ (2): This follows from the fact that every nondecreasing u is the limit of a sequence

of sequence of strictly increasing us.

This theorem says that q dominates p if and only if very expected utility decision makes with
an in increasing utility agrees that p is not better than q.

1.11 Choice and stochastic dominance
The next result asks, when is your choice of p rather than q rationalized by a strictly increasing
utility u?

9 Expected utility theorem Suppose p and q are distinct probability vectors. Either
(i) There are u1 < · · · < uS such that

S∑
i=1

uipi >
S∑

i=1
uiqi

Or else
(ii) q stochastically dominates p.

That is, as long as your choice is not dominated, you act as if you maximize the expected
utility of some strictly increasing utility.

Proof : (i) is equivalent to

p1 − q1 p2 − q2 p3 − q3 . . . . . . . . . pS−1 − qS−1 pS − qS

−1 +1 0 0 0 . . . 0 0

0 −1 +1 0
. . . 0

0 0 −1 +1 0 0
... 0

. . . . . . . . . ...

... . . . . . . . . . 0
...

0 0 −1 +1 0

0 0 . . . . . . 0 0 −1 +1





u1

u2

...

...

uS−1

uS



≫ 0.

v. 2016.12.07::15.45
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Note that the matrix is S × S. Gordan’s Alternative 13 asserts that the alternative to (i) is that
there exists y = (y0, y1, . . . , yS−1) > 0 satisfying

y0(p1 − q1) − y1 = 0
y0(p2 − q2) + y1 − y2 = 0

...
...

y0(pS−1 − qS−1) + yS−2 − yS−1 = 0
y0(pS − qS) + yS−1 = 0.

(1.2)

It is easy to see that y0 > 0, for if y0 = 0, then (1.2) implies everything unravels and the
entire vector y = 0, a contradiction.

So without loss of generality we may set y0 = 1. Then

p1 − q1 − y1 = 0
p2 − q2 + y1 − y2 = 0

...
...

pS−1 − qS−1 + yS−2 − yS−1 = 0
pS − qS + yS−1 = 0.

Since p ̸= q we cannot have y1 = · · · = yS−1 = 0, so for at least one i ⩾ 1 we have yi > 0.
In other words, starting from the end, and adding up the last k inequalities, we have

pn − qn = −yn−1 ⩽ 0
(pn−1 + pn) − (qn−1 + qn) = −yn−2 ⩽ 0

...
...

n∑
i=2

pi −
n∑

i=2
qi = −y1 ⩽ 0

and, since the yis are not all zero, this is just (ii).

1.12 Stochastic dominance and expected utility, deux
This generalizes the preceding result to larger collections of vectors p0, p1, . . . , pm. We say that
p0 is an extreme point of this collection if it cannot be written as a convex combination of the
others. That is, it is never true that p0 =

∑m
j=1 λjpj , where the λs are convex weights. In order

to stand a chance of p0 being the unique maximizer of any vector u, we must assume that it is
an extreme point, otherwise we would have the contradiction u · p0 > u ·

∑m
j=1 λjpj = u · p.

10 Theorem Let p0, p1, . . . , pm be probability vectors on S, and assume that p0 is an extreme
point. Then either

v. 2016.12.07::15.45
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i. there is a utility u satisfying u1 < · · · < uS such that p0 has the highest expected utility,
that is,

u · p0 > u · pi, i = 1, . . . , m;
or else

ii. there is a probability vector π ∈ Rm such that the mixture
m∑

i=1
πip

i stochastically dominates p0.

Proof : (cf. Fishburn [12], Ledyard [30], and Border [3, 4]) Condition (i) is equivalent to the
following matrix equation, with m + S − 1 rows and S columns.

p0
1 − p1

1 p0
2 − p1

2 p0
3 − p1

3 . . . . . . . . . p0
S−1 − p1

S−1 p0
S − p1

S

p0
1 − p2

1 p0
2 − p2

2 p0
3 − p2

3 . . . . . . . . . p0
S−1 − p2

S−1 p0
S − p2

S

...
...

...
...

...
...

...
...

...
...

p0
1 − pm

1 p0
2 − pm

2 p0
3 − pm

3 . . . . . . . . . p0
S−1 − pm

S−1 p0
S − pm

S

−1 +1 0 0 0 . . . 0 0

0 −1 +1 0
. . . 0

0 0 −1 +1 0 0
... 0

. . . . . . . . .
...

...
. . . . . . . . . 0

...

0 0 −1 +1 0

0 0 . . . . . . 0 0 −1 +1





u1

u2

...

...

uS−1

uS


≫ 0.

Gordan’s Alternative 13 assets that the alternative is that there is some semipositive m+S−1-
vector

(π, y) = (π1, . . . , πm, y1, . . . , yS−1) > 0
satisfying ∑m

i=1 πi(p0
1 − pi

1) − y1 = 0∑m
i=1 πi(p0

2 − pi
2) + y1 − y2 = 0

...
...

∑m
i=1 πi(p0

S−1 − pi
S−1) + yS−2 − yS−1 = 0∑m

i=1 πi(p0
S − pi

S) + yS−1 = 0.

v. 2016.12.07::15.45
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It is easy to see that
∑m

i=1 πi > 0, for if
∑m

i=1 πi = 0, then π = 0, and everything unravels, so
(π, y) = 0, a contradiction. Therefore we may renormalize, and assume without loss of generality
that

∑m
i=1 πi = 1.

Then just as in the proof of Theorem 9, we see that
∑m

i=1 πip
i is either equal to or stochas-

tically dominates
∑m

i=1 πip
0 = p0. But our extremity hypothesis rules out their equality. That

is, condition (ii) holds.

1.13 The Allais paradox and stochastic dominance
The Allais paradox above presented a decision maker with two choice problems: Choose a lottery
from the pair {A1, B1} and choose a lottery from the pair {A2, B2}. The “paradoxical” choice
is A1 from the first pair and B2 from the second pair.

Consider the following two-stage procedure: choose a pair, where each pair is is equally likely,
and then play the chosen lottery. Compare that to the two-stage lottery involving the lotteries
not chosen. This amounts to the choice problem of choosing a compound lottery from the pair
of compound lotteries

C1 =
[
A1,

1
2

; B2,
1
2

]
C2 =

[
B1,

1
2

; A2,
1
2

]
The compound lotteries reduce to

C1 = [$5m, .05; $1m, .50; $0, .45] C2 = [$5m, .05; $1m, .50; $0, .45] .

That is, the compound lotteries reduce to the identical single-stage lottery, yet the paradox-
ical choices indicate a strict preference for the first. The next theorem shows that this is not an
isolated case. It is based on Border [4] and Ledyard [30].

1.14 Stochastic dominance and expected utility, trois
Let S = {x1 < · · · < xS} be a finite set of money prizes. Let B1, . . . , Bm be lottery budgets,
that is, each is a finite set of lotteries on S. A choice function c assigns to each budget B
a single lottery c(B) from the budget. Since the choice function selects a single element from
budget we shall assume that it is the unique best element. So we shall say that the choice
function is EU-rational if there is a utility function u1 < u2 < · · · < uS on S such that for
each i = 1, . . . , m,

c(Bi) · u > p · u for all p ∈ Bi \ c(Bi).

The paradoxical choices in the Allais example were not EU-rational, and we showed the exis-
tence of a probability measure over the budgets and an alternative choice function such that
compound procedure of drawing a budget at random and then making the paradoxical choice is
stochastically dominated.

A mixed choice assigns to each budget Bi a mixture (convex combination)
∑mi

j=0 λijpij of
the elements of Bi.

11 Theorem i. The choice c is EU-rational, or else

ii. there is a probability vector π ∈ Rm, and a mixed choice d, where d(Bi) does not put any
weight on c(Bi) for each i, such that the mixture

m∑
i=1

πid(Bi) stochastically dominates or equals
m∑

i=1
πic(Bi).

v. 2016.12.07::15.45
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Proof : (cf. Ledyard [30] and Border [4]) Let’s enumerate each Bi as pi0, . . . , pimi where pi0 =
c(Bi). Create the matrix A with

∑m
i=1 mi + S − 1 rows and n columns defined as follows.

p10
1 − p11

1 p10
2 − p11

2 p10
3 − p11

3 . . . . . . . . . p10
S−1 − p11

S−1 p10
S − p11

S

p10
1 − p12

1 p10
2 − p12

2 p10
3 − p12

3 . . . . . . . . . p10
S−1 − p12

S−1 p10
S − p20

S

...
...

...
...

...

p10
1 − p1m1

1 p10
2 − p1m1

2 p10
3 − p1m1

3 . . . . . . . . . p10
S−1 − p1m1

S−1 p10
S − p1m1

S

...
...

...
...

...
...

...
...

...
...

pm0
1 − pm1

1 pm0
2 − pm1

2 pm0
3 − pm1

3 . . . . . . . . . pm0
S−1 − pm1

S−1 pm0
S − pm1

S

pm0
1 − pm2

1 pm0
2 − pm2

2 pm0
3 − pm2

3 . . . . . . . . . pm0
S−1 − pm2

S−1 pm0
S − p20

S

...
...

...
...

...

pm0
1 − pmmm

1 pm0
2 − pmmm

2 pm0
3 − pmmm

3 . . . . . . . . . pm0
S−1 − pmmm

S−1 pm0
S − pmmm

S

−1 +1 0 0 0 . . . 0 0

0 −1 +1 0
. . . 0

0 0 −1 +1 0 0
... 0

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...

0 0 −1 +1 0

0 0 . . . . . . 0 0 −1 +1


Condition (i) is equivalent to the existence of a vector u ∈ RS satisfying Au ≫ 0.

Gordan’s Alternative 13 assets that the alternative is that there is some semipositive
∑m

i=1 mi+
S − 1-vector

(δ, y) = (δ11, . . . , δ1m1 , . . . , δm1, . . . , δmmm , y1, . . . , yS−1) > 0

satisfying ∑m
i=1
∑mi

j=1 δij(p0j
1 − pij

1 ) − y1 = 0∑m
i=1
∑mi

j=1 δij(p0j
2 − pij

2 ) + y1 − y2 = 0

...
...

∑m
i=1
∑mi

j=1 δij(p0j
S−1 − pij

S−1) + yS−2 − yS−1 = 0∑m
i=1
∑mi

j=1 δij(p0j
S − pij

S ) + yS−1 = 0.

It is easy to see that
∑m

i=1
∑mi

j=1 δij > 0, otherwise everything unravels, so (δ, y) = 0, a
contradiction. Therefore we may renormalize and assume that

∑m
i=1
∑mi

j=1 δij = 1. Now for

v. 2016.12.07::15.45
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each i set

πi =
mi∑
j=1

δij i = 1, . . . , m

and

λij =


δij

πi
πi > 0

0 πi = 0,

so
∑m

i=1
∑mi

j=1 δij =
∑m

i=1 πi

∑mi

j=1 λij . Define the random choice d by

d(Bi) =
mi∑
j=1

λijpij , i = 1, . . . , m.

Then as in the proof of Theorem 10, we see that
∑m

i=1 πid(Bi) stochastically dominates or equals∑m
i=1 πip

i0 =
∑m

i=1 πic(Bi).

I assert without proof that if
∑m

i=1 πid(Bi) =
∑m

i=1 πic(Bi), then an arbitrarily small per-
turbation of the pijs will lead to

∑m
i=1 πid(Bi) strictly dominating

∑m
i=1 πic(Bi).

1.15 Appendix: Theorems of the Alternative
The mathematical tools we shall use are presented here without proof. See Gale [18, Chapter 2]
or Border [2] for proofs. Here is the notation I use for vector orders.

x ≧ y ⇐⇒ xi ⩾ yi, i = 1, . . . , n
x > y ⇐⇒ xi ⩾ yi, i = 1, . . . , n and x ̸= y
x ≫ y ⇐⇒ xi > yi, i = 1, . . . , n

12 Theorem (Fredholm Alternative) Let A be an m × n matrix and let b ∈ Rm. Exactly
one of the following alternatives holds. Either there exists an x ∈ Rn satisfying

Ax = b (1.3)

or else there exists p ∈ Rm satisfying

pA = 0

p · b > 0.

(1.4)

13 Gordan’s Alternative Let A be an m×n matrix. Exactly one of the following alternatives
holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0. (1.5)

or else there exists p ∈ Rm satisfying

pA = 0

p > 0
(1.6)

v. 2016.12.07::15.45
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column space of A

A1

A2

b

p

Figure 1.1. Geometry of the Fredholm Alternative

column space of A
A1A2

p

Rm
++

Figure 1.2. Geometry of Gordan’s Alternative.
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column space of A

∆

A1

A2 p

Rn
++

Figure 1.3. Geometry of the Stiemke Alternative

14 Stiemke’s Alternative Let A be an m×n matrix. Exactly one of the following alternatives
holds. Either there exists x ∈ Rn satisfying

Ax > 0 (1.7)

or else there exists p ∈ Rm satisfying

pA = 0

p ≫ 0.

(1.8)
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Chapter 2

The EUH model

2.1 Risk aversion in the EU model
Risk aversion is the (weak) preference for E X for sure over X for all nondegenerate random
variables X. That is,

U(E X) ⩾ E u(X).

In particular, if an EU dm with utility u is risk averse, and X assumes the values x and y with
probabilities p and 1 − p respectively, then

u
(
px + (1 − p)y

)
⩾ pu(x) + (1 − p)u(y).

In other words, u is concave. Conversely if u is concave, then the dm is risk averse, which is a
mathematical result known as Jensen’s inequality.

In practice, it is easiest to identify concave functions by their derivatives. A differentiable
utility u is concave if and only u′(x) is a monotone decreasing function of x. A twice-differentiable
utility u is concave if and only u′′(x) ⩽ 0 for all x. Note that linear functions are concave. A dm
with a linear utility is risk neutral and ranks random variables according to their expectation.

2.2 Stochastic dominance
The rv X stochastically dominates Y if

E u(X) ⩾ E u(Y ) for every monotone nondecreasing function u.

15 Theorem X stochastically dominates Y if and only if

FX(t) ⩽ FY (t) for all t.

2.3 Riskiness
The rv X is riskier than Y if

E u(X) ⩽ E u(Y ) for every concave function u.

16 Theorem Assume the supports of FX and FY satisfy F (a) = FY (a) = 0 and F (b) =
FY (b) = 1.

18
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Then the following are equivalent.

∀s ∈ [a, b]
∫ s

a

FX(t) dt ⩾
∫ s

a

FY (t) dt &
∫ b

a

FX(t) dt =
∫ b

a

FY (t) dt (2.1)

E u(X) ⩽ E u(Y ) for every concave function u. (2.2)

X = Y + Z where E(Z|Y ) = 0. (2.3)

Proof that (2.2) implies (2.1): Let s ∈ [a, b]. Integrating by parts,∫ s

a

FX(t) dt = tFX(t)
∣∣∣∣s
a

−
∫ s

a

t dFX(t).

= sFX(s) −
∫ s

a

t dFX(t)

=
∫ s

a

(s − t) dFX(t)

=
∫ b

a

(s − t)+ dFX(t).

Similarly ∫ s

a

FY (t) dt =
∫ b

a

(s − t)+ dFY (t).

Since (s − t)+ is a convex function of t, (2.2) implies∫ s

a

FX(t) dt =
∫ b

a

(s − t)+ dFX(t) ⩾
∫ b

a

(s − t)+ dFY (t) =
∫ s

a

FY (t) dt.

When s = b, this becomes
∫ b

a
FX(t) dt =

∫ b

a
(b − t) dFX(t). Now b − t is both convex and

concave in t, so we must have
∫ b

a
FX(t) dt =

∫ b

a
FY (t) dt.

2.4 Comparative risk aversion
A risk averse dm will pay to eliminate risk. We will say that one dm is more risk averse than
another if his willingness to pay is always higher. Specifically, define risk premium πu(w, Z)
by the equation

u
(
w + E Z − πu(w, Z)

)
= E u(w + Z). (⋆)

It is the most that an EU decision maker with Bernoulli utility function u would be willing to
pay to completely insure against the risk Z to his initial wealth w.

When u is twice differentiable, the (Arrow–Pratt–de Finetti) coefficient of risk aver-
sion ru is defined by

ru(w) = −u′′(w)
u′(w)

.

Note that this coefficient is invariant under positive affine transformations of u, so it really is a
property of the preferences.

17 Theorem Let u and v be continuous strictly increasing functions that are twice differen-
tiable with strictly positive derivatives. Then the following statements are equivalent.

v. 2016.12.07::15.45
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1. For all w and all random variables Z that satisfy E Z = 0,

πu(w, Z) ⩾ πv(w, Z).

2. There exists a concave strictly increasing function g defined on the range of v satisfying

u = g ◦ v.

3. For all w,
−u′′(w)

u′(w)
⩾ −v′′(w)

v′(w)
.

2.4.1 Interpretation of the Arrow–Pratt-deFinetti coefficient
For each ε small enough let Zε be a random variable that takes on each of the values ε and
−ε with probability 1

2 . Then E Zε = 0 and Zε is admissible for u at w. To simplify notation,
define the real function p on A by p(ε) = πu(w, Zε). Note that p(0) = 0, p(ε) = p(−ε), and by
definition,

u
(
w − p(ε)

)
= 1

2 u(w + ε) + 1
2 u(w − ε). (2.4)

Note that (2.4) implies that the function p is twice differentiable on A.1 Since (2.4) holds
for all small ε, we may differentiate both sides to get

−u′(w − p(ε)
)
p′(ε) = 1

2 u′(w + ε) − 1
2 u′(w − ε).

In particular, p′(0) = 0. Differentiating a second time yields

u′′(w − p(ε)
)(

p′(ε)
)2 − p′′(ε)u′(w − p(ε)

)
= 1

2 u′′(w + ε) + 1
2 u′′(w − ε).

In particular, using p(0) = p′(0) = 0, we have

p′′(0) = −u′′(w)
u′(w)

= ru(w).

We can apply Taylor’s Theorem [23, p. 290] to write

p(ε) = p(0) + εp′(0) + ε2

2
(
p′′(0) + R(ε)

)
= ε2

2
(
p′′(0) + R(ε)

)
, (2.6)

where limε→0 R(ε) = 0.2
Now the variance of Zε is ε2. So p(ε)

ε2 is the fraction of the variance that someone with utility
u would be willing to pay to insure against Zε. The limit of this fraction as ε → 0 is then 1

2 ru(w).
In fact, this generalizes to more general admissible small random variables with variance ε > 0

1To see this, define the function f : A × (D − w) → R by

f(ε, η) = u
(

w − η
)

− 1
2 u(w + ε) − 1

2 u(w − ε) (2.5)

and note that f is twice differentiable, f(0, 0) = 0, and ∂f(0, 0)
∂η

= −u′(w) < 0. Therefore by the Implicit

Function Theorem (see, e.g., [33, Theorem 2, p. 235]) there is a unique twice differentiable function defined on a
neighborhood of zero giving η as a function of ε to satisfy equation (2.5).

2The form of Taylor’s Theorem given by Hardy [23] requires only twice differentiability at 0, not twice con-
tinuous differentiability on a neighborhood of 0.
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Chapter 3

More topics in uncertainty

3.1 Investment
There are two assets, a safe asset that returns (1 + r0) for each dollar invested and risky asset
that returns (1 + r) for each dollar invested, where r is a nondegenerate random variable.

If his wealth is ŵ, an expected utility maximizing investor will choose the amount x to invest
in the risky asset to maximize

E u
(
(ŵ − x)(1 + r0) + x(1 + r)

)
.

The difference r − r0 is the excess of r over the safe return, so for convenience, let us call it q,
i.e., q = r − r0, and set w = (1 + r0)ŵ. Thus x is chosen to maximize

E u(w + xq),

which is a prettier problem.
There are some questions that are frequently glossed over in the literature. One is whether

we want to restrict x to lie in the interval [0, w]. If so, we have to worry about boundary
conditions. We also have to worry whether w +xq lies in the domain of the utility function with
probability one. For instance, a utility function that is commonly studied is the logarithmic
utility u(w) = ln w (where u(0) = −∞ is allowed). If we make the limited liability assumption
that 1 + r ⩾ 0 a.s., and also restrict x to [0, w], then we have no problems in that regard. On
the other hand, we may actually want to allow borrowing (x > w) and/or short selling (x < 0).
In that case, we probably need to have the utility defined on the whole real line, which rules out
the logarithmic utility, among others.

In what follows, I shall assume that utilities are defined on an interval D of the real line,
are continuous strictly increasing functions on D that are twice continuously differentiable, with
strictly positive derivatives everywhere on the interior of D, and that a solution exists and is
interior to the domain.

The first order necessary condition for an interior maximum is

E u′(w + x∗q
)
q = 0. (⋆)

Observe that (⋆) has a solution only if q < 0 with positive probability, which makes perfect
economic sense. (Otherwise there would be an arbitrage opportunity: borrow at r0 and invest
at r, earning a riskless profit.)

The second order necessary condition is

E u′′(w + x∗q
)
q2 ⩽ 0.

21
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If u is concave, then u′′ ⩽ 0, so the second order condition is automatically satisfied. I may also
assume that the strong second order condition

E u′′(w + x∗q
)
q2 < 0

holds at a particular solution. This is usually necessary to make the solution a differentiable
function of the parameters.

3.1.1 A trivial lemma
18 Lemma Let f be a nondecreasing real function on an interval I, let x belong to I, and let
α > 0. Then for any v for which x + αv ∈ I, we have

f(x + αv)v ⩾ f(x)v.

This equality is reversed if α < 0 or if f is nonincreasing. The inequality is strict provided v ̸= 0
and f is not constant on the interval from x to x + αv.

Proof : We prove the claim for α > 0, the others are obvious from its proof. There are two
interesting cases: v > 0 and v < 0. When v > 0, then the monotonicity of f implies f(x+αv) ⩾
f(x), so f(x + αv)v ⩾ f(x)v. And when v < 0, then f(x + αv) ⩽ f(x), but multiplying by the
negative quantity v reverses the inequality, so again f(x + αv)v ⩾ f(x)v.

3.1.2 Decreasing risk aversion
A natural comparative statics question is: What happens to x∗ as a function of w?

19 Proposition Assume u is C2 and u′ > 0, and define the Arrow–Pratt coefficient of risk
aversion r(w) = −u′′(w)

u′(w)
. Fix w0, and assume that x∗

0 satisfies the strong second order condition.

Then there is a neighborhood of w0 on which x∗ is a C1 function of w.
Moreover, if r is decreasing at w0, then x∗ is increasing at w0 if x∗

0 is positive and decreasing
if x∗

0 is negative. If, on the other hand, r is increasing at w0, then x∗(w) is decreasing when x∗
0

is positive and increasing when x∗
0 is negative.

Proof : Now x∗
0 satisfies the first order condition

E u′(w0 + x∗
0q)q = 0.

By the strong second order condition, the Implicit Function Theorem implies that x∗ is a
C1 function of w on an appropriate neighborhood of w0. Thus differentiating the first order
condition with respect to w gives

E u′′(w0 + x∗
0q)q

(
1 + q

dx∗(w0)
dw

)
= 0

or
dx∗(w0)

dw
= −E u′′(w0 + x∗

0q)q
E u′′(w + x∗

0q)q2 .

The strong second order condition implies that the denominator is negative so the sign of
dx∗(w0)

dw
is the sign of E u′′(w0 + x∗

0q)q.
Now suppose r(w) is decreasing at w0. Consider first the case x∗

0 > 0. By Lemma 18,

r(w0 + x∗
0q)q ⩽ r(w0)q.
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Therefore, recalling the definition of r and multiplying by the negative quantity −u′(w0 + x∗
0q),

we have
u′′(w0 + x∗

0q)q ⩾ −r(w0)u′(w0 + x∗
0q)q.

Taking the expectation of both sides gives

E u′′(w0 + x∗
0q)q ⩾ −r(w0) E u′(w0 + x∗

0q)q = 0

where the equality follows from the first order condition (⋆). Thus

sign dx∗(w0)
dw

= sign Eu′′(w + x∗
0q)q ⩾ 0

when r is decreasing at w0. Similarly, dx∗(w0)
dw

⩽ 0 when r is increasing at w0.
These conclusions are reversed if x∗

0 < 0.

3.1.3 What if u is more risk averse than v?
20 Proposition Assume u is more risk averse than v. If v is risk averse or the two preferences
are “sufficiently close” (in a sense to be made precise in the proof), then

0 ⩽ x∗
u ⩽ x∗

v or x∗
v ⩽ x∗

u ⩽ 0.

That is, the more risk averse utility adopts the more conservative portfolio.

Proof : We prove only the case x∗
u ⩾ 0. The other follows mutatis mutandis. Write u = G ◦ v,

where G is strictly increasing and concave. Then (⋆) becomes

E G′(v(w + x∗
uq)
)
v′(w + x∗

uq)q = 0.

Since G is concave, G′ is nonincreasing, and thus so is G′ ◦ v. By Lemma 18,

G′(v(w + x∗
uq)
)
q ⩽ G′(v(w)

)
q.

Since v′ > 0, we have

G′(v(w + x∗
uq)
)
v′(w + x∗

uq)q ⩽ G′(v(w)
)
v′(w + x∗

uq)q,

and taking expectations yields

E G′(v(w + x∗
uq))v′(w + x∗

uq)q︸ ︷︷ ︸
=0 by (⋆)

⩽ G′(v(w)) E v′(w + x∗
uq)q.

That is,
E v′(w + x∗

uq)q ⩾ 0.

But the first order condition for x∗
v is

E v′(w + x∗
vq)q = 0.

Now set h(x) = E v′(w+xq)q. Then h(x∗
u) ⩾ 0 = h(x∗

v). But h′(x∗
v) = E v′′(w+x∗

vq)q2 ⩽ 0
by the second order condition for x∗

v. If u and v are close enough so that h′(x) ⩽ 0 on the interval
between x∗

v and x∗
u, then x∗

u ⩽ x∗
v. (If v is concave, then h′ ⩽ 0 and no closeness assumption is

needed.)
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KC Border Notes on selected topics in decision-making under uncertainty 24

3.2 Deductibles vs. Coinsurance
You are subject to two kinds of risk. With probability p1 > 0 you lose an amount x1, and with
probability p2 > 0 you lose x2. Assume x2 > x1 > 0 and 1 − p1 − p2 > 0.

An insurance company offers two kinds of policies. The deductible policy reimburses you
for all but d of your loss. The coinsurance policy reimburses you a fraction 1 − ρ of your loss.
Suppose 0 < d < x1 < x2 and that both policies have the same premium π > 0, and that both
policies have the same expected value.

Suppose you are a risk averse expected utility maximizer and face no other risks. Which
policy do you prefer?

Answer: Let w denote your initial wealth. There are three states of the world {0, 1, 2}. The
random variables representing your wealth under the two policies are:

deductible coinsurance difference
state Xd Xc Z

0 w − π w − π 0
1 w − π − d w − π − ρx1 d − ρx1
2 w − π − d w − π − ρx2 d − ρx2

That is,
Xc = Xd + Z.

Now observe that Z = 0 in the event Xd = w − π, and conditional on the event Xd = w − π − d
the expectation of Z is

(
(p1 + p2)d − ρ(p1x1 + p2x2)

)
/(p1 + p2). But both policies have the same

expected value, (p1 + p2)d = ρ(p1x1 + p2x2). Therefore

E(Z|Xd) = 0.

Then Xc is riskier than Xd, so a risk averse expected utility prefers Xd to Xc.

A less elegant but more elementary argument runs like this: Let U denote your utility and
w denote your wealth. The expected utilities of the policies are:

EUdeductible =(1 − p1 − p2)U(w − π) + (p1 + p2)U(w − π − d)
EUcoinsurance =(1 − p1 − p2)U(w − π)

+ p1U(w − π − ρx1) + p2U(w − π − ρx2)

Since the policies have the same expected value,

p1(x1 − d) + p2(x2 − d) = (1 − ρ)(p1x1 + p2x2).

Rearranging,
−d = −ρ

(
p1

p1 + p2
x1 + p2

p1 + p2
x2

)
,

so

w − π − d = w − π − ρ

(
p1

p1 + p2
x1 + p2

p1 + p2
x2

)
= p1

p1 + p2
(w − π − ρx1) + p2

p1 + p2
(w − π − ρx2).

Since U is concave,

U(w − π − d) = U

(
p1

p1 + p2
(w − π − ρx1) + p2

p1 + p2
(w − π − ρx2)

)
⩾ p1

p1 + p2
U(w − π − ρx1) + p2

p1 + p2
U(w − π − ρx2)
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Multiply both sides by p1 + p2 and add (1 − p1 − p2)U(w − π) to conclude that

EUdeductible ⩾ EUcoinsurance.

3.3 Alternative models
Multiple probability (MP) models typically rank random variables according to a function
of the form

V (X) = min
P ∈P

∫
S

u
(
X(s)

)
dP (s),

where P is a set of probabilities. If P includes all the degenerate probabilities (δs({s}) = 1),
then this reduces to the maximin criterion, which ranks according to mins X(s).

Another model is the Choquet expected utility (CEU) model, which uses a function of
the form

V (X) =
∫

νP [X > t] dt,

where ν is a Choquet capacity (a function on events satisfying E ⊂ F =⇒ ν(E) ⩽ ν(F ), but
is not necessarily additive). By Proposition 3, if ν is a probability, this agrees with the usual
expected utility. It is designed to explain the Ellsberg paradox and capture ambiguity aversion.

3.4 State preference diagrams
A two-valued random variable can be represented as a point (xa, xb) in R2 (the value in event
a is xa and in event b is xb). The forty-five degree line {(x, x) : x ∈ R} is called the certainty
line, the value of X is the same in either event.

An indifference curve is a set of random variables with the same expected utility. That
is, the set of pairs (x, y) such that

pau(x) + pbu(y) = constant,

where pa is the probability of event a, etc. For each x, let ŷ(x) satisfy

pau(x) + pbu
(
ŷ(x)

)
= constant.

Since the rhs is independent of x, its derivative wrt x must be zero. That is,

pau′(x) + pbu′(ŷ(x)
)
ŷ′(x) = 0,

so the slope ŷ′ of the indifference curve is

ŷ′(x) = − pau′(x)
pbu′

(
ŷ(x)

) .

Along the certainty line we have ŷ(x) = x, so the slope there is just −pa/pb.

3.4.1 Bets on a

A bet on a is a random variable with xa > 0 and xb < 0. A bet is fair if its expectation is
zero, which entails

paxa + pbxb = 0, or − pa

pb
= xb

xa
.
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xa

xb

slope = − pa

pb

(xa, xb) is favorable

certainty line

initial wealth w = (w, w)

(w + xa, w + xb)

Figure 3.1.

A bet is favorable if
paxa + pbxb > 0, or − pa

pb
<

xb

xa
.

Suppose a risk averse EU dm with wealth w (the point w = (w, w) on the certainty line) is
offered the favorable bet x. See Figure 3.1. If his indifference curve is as drawn, he will not want
to take the bet, since it would put him on a lower indifference curve. But since his indifference
curve has slope −pa/pb at w, the line segment joining w and w + x crosses higher indifference
curves so for small λ > 0, the point w + λx is preferred to w. So the dm would prefer to be able
to take the bet λx.

21 Proposition A risk averse EU dm with a smooth Bernoulli utility will prefer to take a small
part of any favorable bet.
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Chapter 4

Adverse selection in insurance
markets

This section is based on Michael Rothschild and Joseph Stiglitz [36], who argued that in the
presence of adverse selection, markets for insurance were not guaranteed to deliver efficient
outcomes, nor even to have equilibria.

4.1 Consumer types
We use a highly stylized model to starkly illustrate some of the key ideas. There are two types
of insurance customers who are identical except for one trait—the probability that they will
experience a loss. We assume that customers know their own type, but there is no way the
insurance company can verify the type of a customer. This asymmetric private information
is a source of problems in this market.

We consider only two states of the world, state 1 in which no loss occurs, so the wealth is w,
and state 2, in which a loss of size c is suffered. Customers of type H are high-risk customers
and have a probability pH of a loss. Customers of type L are low-risk customers and have a
probability pL of a loss. Naturally,

1 > pH > pL > 0.

Assume the customers are EU decision makers with Bernoulli utility u. In the absence of
insurance the expected utility of a type θ customer is

(1 − pθ)u(w) + pθu(w − c),

where θ ∈ Θ = {L, H}.
A state-preference diagram is shown in Figure 4.1. Points in the plane represent random

variables, that is, they represent the wealth in the two states of the world. The black dot is the
endowment point (w, w − c), so it lies below the certainty line. The red curve in the figure is an
the indifference curve of the High-risk type, and its slope at the certainty line is −(1 − pH)/pH .

4.2 Insurance policies
An insurance policy Q is characterized by two parameters, the premium π and the benefit b
that is payed in case of a loss. Since in our simple model all consumers are identical in terms of

27
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Figure 4.1. The black dot is the initial endowment absent insurance; the red indifference curve
is for the High-risk type; the green indifference curve is for the Low-risk type.
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Figure 4.2. The black dot is the initial endowment absent insurance; the red lines are lines of
equal expected value for pH ; the green lines are lines of equal expected value for pL. The blue
line is an iso-expected value line for pA
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their initial wealth and size of the loss, it is more convenient to represent a policy by its result,

X = (w − π, w − π + b − c).

The slope of the line segment connecting this point to the initial endowment is thus −(b − π)/π.
If p is the probability that a policyholder experiences a loss, the expected profit of a policy

Q = (π, b) to the insurance company is
π − pb.

The expected profit is nonnegative if and only if

1 − p

p
⩾ b − π

π
.

Thus a policy Q has a positive expected profit if and only if its result
lies below the line through the endowment having slope −(1−p)/p),
where p is the probability of a policyholder loss.

Figure 4.2 adds lines of equal expected value for the two types through the endowment.
These lines indicate indifference curves for a risk-neutral insurance company.

Let λ denote the fraction of the population that is High-risk. The average probability of
a loss is then

pA = λpH + (1 − λ)pL.

The iso-expected valued line for the average probability of loss is shown in Figure 4.3. Note
that in this example the full-insurance policy for the average customer (FIPAC), whose result
is represented by the blue dot, is preferred to the initial endowment by both types H and L.

4.3 Equilibrium concept
An equilibrium in this market consists of a partition T of the type set Θ, and a list of pairs

(QT , T ), T ∈ T,

where QT is the policy purchased by consumers with type θ ∈ T , such that

Self-selection Each consumer with type θ in T prefers QT to any other policy. (Note that
Q = (0, 0), i.e., no insurance, is allowed to be one of the policies.)

Zero profit Each policy QT has expected profit zero, when the probability of a loss is the
average probability of a loss for the set T .

Policy stability An insurer cannot make a positive expected profit by introducing a new policy.
That is, there does not exist a policy Q′ and set S of types such that S is the set of types
θ who prefer Q′ to QT , where θ ∈ T , and Q′ has positive expected profit when purchased
by members of S.

In our simple model, there are two types of equilibria. A separating equilibrium has
two policies QH and QL, where type H buys QH and type L buys QL. The policy QH has
zero expected profit if the probability of loss is pH and policy QL has zero expected profit if the
probability of loss is pL. The second kind of equilibrium is a pooling equilibrium with a single
policy Q that is purchased by all consumers and has zero expected profit when the probability
of loss is pA = λpH + (1 − λ)pL.
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Figure 4.3. The black dot is the initial endowment absent insurance; the red line is an iso-
expected value line for pH ; the green line is an iso-expected value line for pL; and the blue line
is an iso-expected value line for pA.
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4.4 Non-existence of pooling equilibrium
Call the pooling policy FIPAC (for full insurance policy for average customer). One might
be tempted to think that competition among risk-neutral insurers would lead to the pooling
policy as the market equilibrium. After all, risk-averse customers prefer full insurance, and the
insurance company breaks even in expected value. As Rothschild and Stiglitz pointed out, the
problem with this is that it is possible to offer a new policy that will make money by siphoning
off the Low-risk customers from the FIPAC. That is, there is a policy (many, in fact) that is
preferred to FIPAC by the Low-risk types, but is not preferred by the High-risk types, and has
positive expected value for the insurance company when purchased only by Low-risk types. The
orange region in Figure 4.4 shows the set of results of such policies. This siphoning-off of the

Figure 4.4. The orange region is preferred by type L to the result of FIPAC, the blue dot. It
is not preferred by type H, and lies below the green line so it is profitable to sell to type L.

Low-risk types leaves, only the High-risk types purchasing FIPAC, which now has a negative
expected value to the insurance company. This is known as adverse selection in the insurance
industry.
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4.5 Separating equilibrium
So what kind of policies can be supported? Figure 4.5 shows a separating market equilibrium
in which the insurance industry offers two policies. The red dot is the result of full insurance

Figure 4.5. Separating Equilibrium

to the High-risk types (FIH) and has expected value zero at pH . The green dot is the result
of partial insurance to the Low-risk types (PIL) and has expected value zero. In this example,
the PIL result is preferred to any result on the blue line, which would pool High and Low risks
into an average risk. The PIL is the best policy the market can deliver to the Low-risk types,
so the policy offerings are stable.

4.6 Non-existence of any equilibrium
Figure 4.6 shows a market in which the separating equilibrium described above does not exist.
The red dot is again the result of full insurance to the High-risk types (FIH) and has expected
value zero at pH . The green dot is the result of the most favorable partial insurance to the
Low-risk types (PIL) and has expected value zero. In this example, the PIL result is inferior
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Figure 4.6. Failure of separating equilibrium.
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to the blue point, which would pool High and Low risks into an average risk. This means that
the blue policy would be bought by everyone if it were offered, so the policy offerings are not
stable—a minor perturbation of the FIPAC will earn strictly positive profits and siphon off
both types.

4.7 Appendix: Parameters for the examples
The parameters for the examples were chosen to yield legible figures, not for “realism.”

Example Utility pH pL λ w c
Section 4.5 u(x) = ln x 1/2 3/10 2/5 10 7
Section 4.6 u(x) = ln x 2/3 1/3 1/8 10 7
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