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1 The supergradient of a concave function
There is a useful way to characterize the concavity of differentiable functions.

Theorem 1 (Concave functions lie below tangent lines) Suppose f is concave on a
convex neighborhood C ⊂ Rn of x, and differentiable at x. Then for every y in C,

f(x) + f ′(x) · (y − x) ⩾ f(y). (1)

Proof : Let y ∈ C. Rewrite the definition of concavity as

f
(
x + λ(y − x)

)
⩾ f(x) + λ

(
f(y) − f(x)

)
.

Rearranging and dividing by λ > 0,

f
(
x + λ(y − x)

)
− f(x)

λ
⩾ f(y) − f(x).

Letting λ ↓ 0, the left hand side converges to f ′(x) · (y − x).

The converse is true as the following clever argument shows.

Theorem 2 Let f be differentiable on a convex open set U ⊂ Rn. Suppose that for every x
and y in C, we have f(x) + f ′(x) · (y − x) ⩾ f(y). Then f is concave.

Proof : For each x ∈ C, define the function hx by hx(y) = f(x) + f ′(x) · (y − x). Each hx is
concave, f ⩽ hx for each x, and f(x) = hx(x). Thus

f = inf
x∈C

hx.

Now the infimum of a family of concave functions is concave (why?), so f is concave.

Theorem 29 below provides a powerful generalization of this result.
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Definition 3 Let C ⊂ Rm be a convex set, and let f : C → R be concave. A vector p is a
supergradient of f at the point x if for every y it satisfies the supergradient inequality,

f(x) + p · (y − x) ⩾ f(y).

Similarly, if f is convex, then p is a subgradient of f at x if

f(x) + p · (y − x) ⩽ f(y)

for every y.
For concave f , the set of all supergradients of f at x is called the superdifferential of f

at x, and is denoted ∂f(x). For convex f this denotes the set of subgradients and is called the
subdifferential.1

Theorem 1 clearly implies that the following.

Lemma 4 The gradient of a concave function at a point of differentiability is also a supergra-
dient.

In fact, if ∂f(x) is a singleton, then f is differentiable at x and ∂f(x) = {f ′(x)}, see
Theorem 14 below or Rockafellar [6, Theorem 25.1, p. 242].

The superdifferential ∂f(x) of a concave function is obviously a closed convex set (since it is
the set of solutions to a system of weak linear inequalities, one for each y). If the superdifferential
is nonempty at x, we say that f is superdifferentiable at x. (Similar terminology applies to the
subgradient of a convex function.)

Example 5 (A non-superdifferentiable point) Define f : [0, 1] → [0, 1] by f(x) = x
1
2 .

Then f is clearly concave, but ∂f(0) = ∅, since the supergradient inequality implies p · x ⩾
f(x) − f(0) = x

1
2 , so p ⩾ ( 1

x)
1
2 for all 0 < x ⩽ 1. Clearly no real number p fills the bill. □

The problem with this example is that the graph of the function becomes arbitrarily steep
as we approach the boundary. This cannot happen for interior points. The proof is closely
related to that of Theorem ??.

Theorem 6 (Superdifferentiability) A concave function on a nonempty convex set in Rn

is superdifferentiable at each interior point.2

Proof : Let f be a concave function on the convex set C, and let x belong to the interior of C.
Let S denote the strict subgraph of f , that is,

S = {(y, α) ∈ C × R : α < f(y)}.

1Rockafellar [6, p. 308] suggests this terminology as being more appropriate than the terminology he actu-
ally uses, so I shall use it. He uses the term subgradient to mean both subgradient and supergradient, and
subdifferential to mean both subdifferential and superdifferential.

2Actually it is superdifferentiable at each point in the relative interior of its domain. For more detailed results,
see Rockafellar [6, §23], especially Theorem 23.4.
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Since f is concave, the set S is convex. Now note that the point
(
x, f(x)

)
does not belong to

S, so by the Separating Hyperplane Theorem, there is a nonzero (p, λ) ∈ Rn × R separating
the point and S. That is,

p · x + λf(x) ⩾ p · y + λα (2)
for all y ∈ C and all α < f(y). By considering very negative values of α, we conclude that
λ ⩾ 0. Suppose momentarily that λ = 0. Since x belongs to the interior of C, for any z in Rn

there is some ε > 0 such that x ± εz belong to C. Then equation (2) implies p · z = 0. Since
z is arbitrary, p = 0, so (p, λ) = 0, a contradiction. Therefore λ > 0. Dividing by λ, letting
α ↑ f(y), and rearranging yields

f(x) +
(
− p

λ

)
· (y − x) ⩾ f(y),

so that − p
λ satisfies the supergradient inequality.

2 Concavity and continuity
Concave functions are continuous at interior points. The only discontinuities can be jumps
downward at the boundary of the domain.

Theorem 7 (Local continuity of convex functions) If a convex function is defined and
bounded above on a neighborhood of some point in a tvs, then it is continuous at that point.

Proof : Let C be a convex set in a tvs, and let f : C → R be convex. We begin by noting the
following consequences of convexity. Fix x ∈ C and suppose z satisfies x+z ∈ C and x−z ∈ C.
Let δ ∈ [0, 1]. Then x + δz = (1 − δ)x + δ(x + z), so f(x + δz) ⩽ (1 − δ)f(x) + δf(x + z).
Rearranging terms yields

f(x + δz) − f(x) ⩽ δ [f(x + z) − f(x)] , (3)

and replacing z by −z gives

f(x − δz) − f(x) ⩽ δ [f(x − z) − f(x)] . (4)

Also, since x = 1
2(x + δz) + 1

2(x − δz), we have f(x) ⩽ 1
2f(x + δz) + 1

2f(x − δz). Multiplying
by two and rearranging terms we obtain

f(x) − f(x + δz) ⩽ f(x − δz) − f(x). (5)

Combining (4) and (5) yields

f(x) − f(x + δz) ⩽ f(x − δz) − f(x) ⩽ δ [f(x − z) − f(x)] .

This combined with (3) implies∣∣f(x + δz) − f(x)
∣∣ ⩽ δ max

{
f(x + z) − f(x), f(x − z) − f(x)

}
. (6)

Now let ε > 0 be given. Since f is bounded above on an open neighborhood of x, there is a
circled neighborhood V of zero, and a constant M ⩾ 0 such that x + V ⊂ C and if y ∈ x + V ,
then f(y) < f(x) + M . Choosing 0 < δ ⩽ 1 so that δM < ε, equation (6) implies that if
y ∈ x + δV , then |f(y) − f(x)| < ε. Thus f is continuous at x.

v. 2018.01.25::15.45
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Theorem 8 (Global continuity of convex functions) Let f be a convex function on an
open convex set C in Rn. The following are equivalent.

1. f is continuous on C.

2. f is upper semicontinuous on C.

3. f is bounded above on a neighborhood of some point in C.

4. f is continuous at some point in C.

Proof : (1) =⇒ (2) Obvious.
(2) =⇒ (3) Let x ∈ C. If f is upper semicontinuous and convex, then {y ∈ C : f(y) <

f(x) + 1} is a convex open neighborhood of x on which f is bounded.
(3) =⇒ (4) This is Theorem 7.
(4) =⇒ (1) Suppose f is continuous at x, and let y be any other point in C. Since scalar

multiplication is continuous, {β ∈ R : x + β(y − x) ∈ C} includes an open neighborhood of 1.
This implies that there is some point z in C such that y = λx + (1 − λ)z with 0 < λ < 1.

xyz
x + V

y + λV

Figure 1. (4) =⇒ (1).

Also, since f is continuous at x, there is a circled neighborhood V of zero such that x+V ⊂ C
and f is bounded above on x + V , say by M . We claim that f is bounded above on y + λV .
To see this, let v ∈ V . Then y + λv = λ(x + v) + (1 − λ)z ∈ C. The convexity of f thus implies

f(y + λv) ⩽ λf(x + v) + (1 − λ)f(z) ⩽ λM + (1 − λ)f(z).

That is, f is bounded above by λM + (1 − λ)f(z) on y + λV . By Theorem 7, f is continuous
at y.

Theorem 9 In a finite dimensional vector space, every convex function is continuous on the
interior of its domain.

Proof : Let f : C → R be a convex function defined on a convex subset C of the Euclidean
space Rn, and let x be an interior point of C. Then there exist a, b ∈ C with a < b such that
the box [a, b] = {y ∈ Rn : a ≤ y ≤ b} is a neighborhood of x and satisfies [a, b] ⊂ C. Since [a, b]
is the convex hull of a finite set of points of C, the convexity of f implies that f is bounded
above on [a, b]. So by Theorem 8, f is continuous at x.

v. 2018.01.25::15.45
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3 Concavity and differentiability
We now examine the differentiability of concave functions. We start with the following sim-
ple, but fundamental, result for concave functions of one variable, cf. Fenchel [2, 2.16, p. 69],
Phelps [5, Theorem 1.16, pp. 9–11], or Royden [7, Proposition 5.17, p. 113].

Lemma 10 Let f be a concave function defined on some interval I of R, and let I1 = [x1, y1]
and I2 = [x2, y2] be nondegenerate subintervals of I. That is, x1 < y1 and x2 < y2. Assume
that I1 lies to the left of I2. That is, x1 ⩽ x2 and y1 ⩽ y2. Then the slope of the chord over I1
is greater than the slope of the chord over I2. In particular,

f(y1) − f(x1)
y1 − x1

⩾ f(y2) − f(x1)
y2 − x1

⩾ f(y2) − f(x2)
y2 − x2

,

Proof : Since x1 < y1 ⩽ y2 we can write y1 as a convex combination of x1 and y2, namely

y1 = y2 − y1
y2 − x1

x1 + y1 − x1
y2 − x1

y2.

By concavity
f(y1) ⩾ y2 − y1

y2 − x1
f(x1) + y1 − x1

y2 − x1
f(y2).

Subtracting f(x1) from both sides gives

f(y1) − f(x1) ⩾ x1 − y1
y2 − x1

f(x1) + y1 − x1
y2 − x1

f(y2).

Dividing by y1 − x1 gives

f(y1) − f(x1)
y1 − x1

⩾ −1
y2 − x1

f(x1) + 1
y2 − x1

f(y2) = f(y2) − f(x1)
y2 − x1

.

Similarly
x2 = y2 − x2

y2 − x1
x1 + x2 − x1

y2 − x1
y2,

so
f(x2) ⩾ y2 − x2

y2 − x1
f(x1) + x2 − x1

y2 − x1
f(y2),

−f(x2) ⩽ x2 − y2
y2 − x1

f(x1) + x1 − x2
y2 − x1

f(y2),

f(y2) − f(x2) ⩽ x2 − y2
y2 − x1

f(x1) + y2 − x2
y2 − x1

f(y2),

f(y2) − f(x2)
y2 − x2

⩽ −1
y2 − x1

f(x1) + 1
y2 − x1

f(y2) = f(y2) − f(x1)
y2 − x1

.

Combining these inequalities completes the proof.

This lemma has a number of consequences.

v. 2018.01.25::15.45
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Corollary 11 Let f be a concave function defined on some interval I of R. Then at every
interior point x, f has a left-hand derivative f ′(x−) and right-hand derivative f ′(x+). Moreover,
f ′(x−) ⩾ f ′(x+), and both f ′(x−) and f ′(x+) are nonincreasing functions. Consequently, there
are at most countably many points where f ′(x−) > f ′(x+), that is, where f is nondifferentiable.

Need to discuss
projecting cones here.Following Fenchel [2] and Rockafellar [6], define the one-sided directional derivative

f ′(x; v) = lim
λ↓0

f(x + λv) − f(x)
λ

,

allowing the values ∞ and −∞. (Phelps [5] uses the notation d+(x)(v).)

Lemma 12 Let f be concave. Then {v : f ′(x; v) is finite} is a cone, and f ′(x; ·) is positively
homogeneous and concave on that cone.

Proof : From
f(x + αλv) − f(x)

λ
= α

f(x + αλv) − f(x)
αλ

,

we see that {v : f ′(x; v) is finite} is a cone and that f ′(x; αv) = αf ′(x; v) for all α ⩾ 0. That
is, f ′(x; v) is positively homogeneous of degree one in v. Furthermore, if f is concave, then

f
(
x + αλu + (1 − α)λv

)
−f(x) ⩾ α

(
f(x + λu) − f(x)

)
+ (1 − α)

(
f(x + λv) − f(x)

)
,

so dividing by λ and taking limits shows that f ′(x; ·) is concave.

There is an intimate relation between one-sided directional derivatives and the superdiffer-
ential, cf. Rockafellar [6, Theorem 32.2, p. 216].

Lemma 13 Let f be a concave function on the convex set C. Then

p ∈ ∂f(x) ⇐⇒ ∀v
(
x + v ∈ C =⇒ p · v ⩾ f ′(x; v)

)
.

Proof : (=⇒) If x + v ∈ C, then x + λv ∈ C for 0 ⩽ λ ⩽ 1. So if p ∈ ∂f(x), then by the
supergradient inequality

f(x) + p · (λv) ⩾ f(x + λv))
p · (λv) ⩾ f(x + λv) − f(x)

p · v ⩾ f(x + λv) − f(x)
λ

p · v ⩾ f ′(x; v).

(⇐=) If p /∈ ∂f(x), then there is some v such that x+v ∈ C, but the supergradient inequality
is violated, that is,

f(x) + p · v < f(x + v). (7)

By concavity, for 0 < λ ⩽ 1,

f(x + λv) = f
(
(1 − λ)x + λ(x + v)

)
⩾ (1 − λ)f(x) + λf(x + v),

v. 2018.01.25::15.45
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and rearranging yields

f(x + λv) ⩾ f(x) + λ
[
f(x + v) − f(x)

]
f(x + λv) − f(x) ⩾ λ

[
f(x + v) − f(x)

]
f(x + λv) − f(x)

λ
⩾ f(x + v) − f(x)

so by (7)
f(x + λv) − f(x)

λ
⩾ f(x + v) − f(x) > p · v,

so taking limits gives f ′(x; v) > p · v. The conclusion now follows by contraposition.

The next result may be found in Rockafellar [6, Theorem 25.1, p. 242].

Theorem 14 Let f be a concave function defined on the convex set C ⊂ Rn. Then f is
differentiable at the interior point x ∈ C if and only if the superdifferential ∂f(x) is singleton,
in which case ∂f(x) = {f ′(x)}.

Proof : (=⇒) Suppose f is differentiable at the interior point x. The for any v, f ′(x; v) = f ′(x)·v,
and there is an ε > 0 such that x + εv ∈ C. Now the superdifferential f ′(x) is nonempty, since
by Lemma 4 f ′(x) ∈ ∂f(x), so by Lemma 13, if p ∈ ∂f(x), then

p · εv ⩾ f ′(x; εv) = f ′(x) · εv.

Since this holds for all v, we have p = f ′(x).
(⇐=) Suppose f ′(x) = {p}. Since x is interior there is an α > 0 such that if v ∈ αB, then

x + v ∈ C, where B is the unit ball in Rn. For such v, the supergradient inequality asserts that
f(x) + p · v ⩾ f(x + v). Define the concave function g on B by

g(v) = f(x + v) − f(x) − p · v ⩽ 0.

Note that g(0) = 0, so 0 is a supergradient of g at 0.
In fact, ∂g(0) = {0}. For if q ∈ ∂g(0), we have

g(0) + q · v ⩾ g(v)
0 + q · v ⩾ f(x + v) − f(x) − p · v

f(x) + (p + q) · v ⩾ f(x + v),

which implies p + q ∈ ∂f(x), so q = 0.
Thus by Lemma 13, for all v ∈ αB, Needs work.

0 · v ⩾ g′(0; v) = lim
λ↓0

g(λv)
λ

.

by ???? g is bounded on B, so for every η > 0, there is some δ > 0 such that v ∈ δB implies

0 ⩾ g(v)
∥v∥

⩾ −η.

v. 2018.01.25::15.45
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But this asserts that g is differentiable at 0 and g′(0) = 0.
**************************
Now note that if g is differentiable at 0 with g′(0) = 0, then f is differentiable at x with

f ′(x) = p. Elaborate.

The next results may be found in Fenchel [2, Theorems 33–34, pp. 86–87].

Theorem 15 Let f be a concave function on the open convex set C. For each direction v,
f ′(x; v) is a lower semicontinuous function of x, and {x : f ′(x; v)+f ′(x; −v) < 0} has Lebesgue
measure zero. Thus f ′(x; v)+f ′(x; −v) = 0 almost everywhere, so f has a directional derivative
in the direction v almost everywhere. Moreover, when the directional derivative exists, then it
is continuous in x.

Proof : Since f is concave, it is continuous (Theorem t:convex-continuity). Fix v and choose
λn ↓ 0. Then gn(x) := f(x+λnv)−f(x)

λn
is continuous and by Lemma 10, gn(x) ↑ f ′(x; v). Thus a

wll knwon result implies that f ′(x; v) is lower semicontinuous.
*****

The next fact may be found in Fenchel [2, Theorem 35, p. 87ff], or Katzner [3, Theorems B.5-
1 and B.5-2].

Fact 16 If f : C ⊂ Rn → R is twice differentiable, then the Hessian Hf is negative semidefinite
if and only if f is concave. If Hf is everywhere negative definite, then f is strictly concave.

************

4 Support functions
The Separating Hyperplane Theorem is the basis for a number of results concerning closed
convex sets. Given any set A in Rn its closed convex hull, denoted co A, is the intersection
of all closed convex sets that include A. That is,

co A =
∩

{C : A ⊂ C and H is closed and convex}.

It is of course the smallest closed convex set that includes A. If A is empty, then it is closed
and convex, so co A is empty. If A is nonempty, then co A is nonempty since Rn itself is closed
and convex. Less obvious is the following.

Theorem 17 Let A be a subset of Rn. Then

co A =
∩

{H : A ⊂ H and H is a closed half space}.

In particular, a closed convex set is the intersection of all the closed half spaces that include it.

v. 2018.01.25::15.45
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Proof : Clearly co A is included in the intersection since every closed half space is also a closed
convex set. It is also clear that the result is true for A = ∅. So assume A, and hence co A, is
nonempty.

It suffices to show that if x /∈ co A, then there is a closed half space that includes co A but
does not contain x. By the Separating Hyperplane Theorem there is a nonzero p that strongly
separates the closed convex set co A from the compact set {x}. But this clearly implies that
there is a closed half space of the form [p ⩾ α] that includes co A, but doesn’t contain x.

The support function µA of a set A is a handy way to summarize all the closed half spaces
that included A. It is defined by3

µA(p) = inf{p · x : x ∈ A}.

We allow for the case that µA(p) = −∞. Note that µ∅ is the improper concave function +∞.
Also note that the infimum may not actually be attained even if it is finite. For instance,
consider the closed convex set A = {(x, y) ∈ R2

++ : xy ⩾ 1}, and let p = (0, 1). Then µA(p) = 0
even though p · (x, y) = y > 0 for all (x, y) ∈ A. If A is compact, then of course µA is always
finite, and there is some point in A where the infimum is actually a minimum.

Theorem 17 immediately implies yields the following description of co A in terms of µA.

Theorem 18 For any set A in Rn,

co A = {x ∈ Rn : ∀p ∈ Rn p · x ⩾ µA(p)}.

Moreover, µA = µco A.

Proof : Observe that

C := {x ∈ Rn : ∀p ∈ Rn p · x ⩾ µA(p)} =
∩{

[p ⩾ µA(p)] : p ∈ Rn}
is an intersection of closed half spaces. By definition, if x ∈ A, then p · x ⩾ µA(p), that is,
A ⊂ [p ⩾ µA(p)]. Thus by Theorem 17, co A ⊂ C.

For the reverse inclusion, suppose x /∈ co A. By the Separating Hyperplane Theorem there
is a nonzero p such co A ⊂ [p ⩾ α] and p · x < α. Since A ⊂ co A we have µA(p) = inf{p · x :
x ∈ A} > p · x, so x /∈ C.

To see that µA = µco A first note that µA ⩾ µco A since A ⊂ co A. The first part of the
theorem implies µco A ⩾ µA.

Lemma 19 The support function µA is concave and positively homogeneous of degree 1, that
is, µA(λp) = µA(λp) for all p and all λ ⩾ 0.

Proof : Each x defines a linear (and therefore concave) function ℓx via ℓx : p 7→ p · x. Thus
µA = infx∈A ℓx is concave. Homogeneity is obvious.

3Fenchel [2] and Roko and I [1, p. 219] define hA(p) = sup{p · x : x ∈ A}, which makes it convex rather than
concave, and hA(p) = −µA(−p). The definition in these notes follows Mas-Colell, Whinston, and Green [4], and
may be more useful to economists.

v. 2018.01.25::15.45
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If the infimum of p is actually achieved at a point in A, we can say more. By Theorem 18
we might as well assume that A is closed and convex.

Theorem 20 Let C be a closed convex set. Then x is a supergradient of the support function
µC at p if and only if x belongs to C and minimizes p over C. In other words,

∂µC(p) = {x ∈ C : p · x = µC(p)}.

Proof : Recall that x satisfies the supergradient inequality if and only if for every q

µC(p) + x · (q − p) ⩾ µC(q).

I first claim that if x does not belong to C, it is not a supergradient of µC at p. For if x /∈ C,
then since C is closed and convex, by Theorem 18 there is some q for which q · x < µC(q). Thus
for λ > 0 large enough, λq · x < µC(λq) +

(
p · x − µC(p)

)
. Rearranging terms violates the

supergradient inequality applied to λq.
Now suppose that x is a supergradient of µC at p. Then setting q = 0 in the supergradient

inequality, we conclude that µC(p) ⩾ p · x. But x must belong to C, so the definition of µC

implies µC(p) ⩽ p · x. Thus, ∂µC(p) ⊂ {x ∈ C : p · x = µC(p)}.
Suppose now that x belongs to C and p · x = µC(p), that is, x minimizes p over C. By the

definition of µC , for any q ∈ Rn, q ·x ⩾ µC(q). Now add µC(p)−p ·x = 0 to the left-hand side of
the inequality to obtain the supergradient inequality. Thus {x ∈ C : p · x = µC(p)} ⊂ ∂µC(p),
completing the proof.

Corollary 21 Let C be a closed convex set. Suppose x belongs to C and strictly minimizes p
over C. Then µC is differentiable at p and

µ′
C(p) = x.

Proof : This follows from Theorem 20 and Theorem 14.

Example 22 Let’s look at C = {(x1, x2) ∈ R2
++ : x1x2 ⩾ 1}. This is a closed convex set and

its support function is easily calculated. If p /∈ R2
+, then µC(p) = −∞. For p ≧ 0, it not hard

to see that µC(p) = 2√
p1p2, which has no supergradient when p1 = 0 or p2 = 0.

(To see this, consider first the case p ≧ 0. The Lagrangean for the minimization problem
is p1x1 + p2x2 + λ(1 − x1x2). By the Lagrange Multiplier Theorem, the first order conditions
are p1 − λx∗

1 = 0 and p2 − λx∗
2 = 0. Thus x∗

1x∗
2 = p1p2

λ2 , so λ = √
p1p2. Thus x∗

1 =
√

p1
p2

and

x∗
2 =

√
p2
p1

and µC(p) = p1x∗
1 + p2x∗

2 = 2√
p1p2.

Now suppose some pi < 0. For instance, suppose p2 < 0. Then p · (ε, 1
ε ) → −∞ as ε → 0,

so µC(p) = −∞.) □

5 Maxima of concave functions
Concave functions have two important properties. One is that any local maximum is a global
maximum. The other is that first order conditions are necessary and sufficient for a maximum.

v. 2018.01.25::15.45
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Theorem 23 (Concave local maxima are global) Let f : C → R be a concave function
(C convex). If x∗ is a local maximizer of f , then it is a global maximizer of f over C.

Proof : Let x belong to C. Then for small λ > 0, f(x∗) ⩾ f
(
λx + (1 − λ)x∗)

. (Why?) By the
definition of concavity,

f
(
λx + (1 − λ)x∗)

⩾ λf(x) + (1 − λ)f(x∗).

Thus f(x∗) ⩾ λf(x) + (1 − λ)f(x∗), which implies f(x∗) ⩾ f(x).

Corollary 24 If f is strictly concave, a local maximum is a strict global maximum.

Theorem 25 (First order conditions for concave functions) Suppose f is concave on
a convex set C ⊂ Rn. A point x∗ in C is a global maximum point of f if and only 0 belongs to
the superdifferential ∂f(x∗).

Proof : Note that x∗ is a global maximum point of f if and only if

f(x∗) + 0 · (y − x∗) ⩾ f(y)

for all y in C, but this is just the supergradient inequality for 0.

In particular, this result shows that f is superdifferentiable at any maximum point, even if
it is not an interior point. The next result is immediate.

Corollary 26 Suppose f is concave on a convex neighborhood C ⊂ Rn of x∗, and differentiable
at x∗. If f ′(x∗) = 0, then f has a global maximum over C at x∗.

Note that the conclusion of Theorem 23 does not hold for quasiconcave functions. For
instance,

f(x) =

0 x ⩽ 0

x x ⩾ 0,

has a local maximum at −1, but it is not a global maximum over R. However, if f is explicitly
quasiconcave, then we have the following.

Theorem 27 (Local maxima of explicitly quasiconcave functions) Let f : C → R be
an explicitly quasiconcave function (C convex). If x∗ is a local maximizer of f , then it is a
global maximizer of f over C.

Proof : Let x belong to C and suppose f(x) > f(x∗). Then by the definition of explicit quasi-
concavity, for any 1 > λ > 0, f

(
λx + (1 − λ)x∗)

> f(x∗). Since λx + (1 − λ)x∗ → x∗ as λ → 0
this contradicts the fact that f has a local maximum at x∗.
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6 Supergradients and cyclically monotone mappings
Recall that a real function g : X ⊂ R → R is increasing if x ⩾ y implies g(x) ⩾ g(y). Another
way to say this is

[
g(x) − g(y)

]
(x − y) ⩾ 0 for all x, y. Or equivalently, g is nondecreasing if

g(x)(y − x) + g(y)(x − y) ⩽ 0 for all x, y.

More generally, a correspondence φ : X ⊂ Rm ↠ Rm is monotone increasing if

(px − py) · (x − y) ⩾ 0 for all x, y ∈ X, and all px ∈ φ(x), py ∈ φ(y).

We could also write this as px ·(y−x)+py ·(x−y) ⩽ 0. A mapping φ is monotone decreasing
if the reverse inequality always holds.

There is a natural generalization of these conditions. A finite sequence x0, x1, . . . , xn, xn+1
with xn+1 = x0 is sometimes called a cycle. A mapping g : U ⊂ Rm → Rm is called cyclically
monotone increasing if for every cycle x0, x1, . . . , xn, xn+1 = x0 in U , we have

g(x0) · (x1 − x0) + g(x1) · (x2 − x1) + · · · + g(xn) · (x0 − xn) ⩽ 0.

If the same sum is always ⩾ 0, we shall say that g is cyclically monotone decreasing.
More generally, a correspondence φ : U ⊂ Rm ↠ Rm is called cyclically monotone in-

creasing4 if for every cycle (x0, p0), (x1, p1), . . . , (xn+1, pn+1) = (x0, p0) in the graph of φ, that
is, with pi ∈ φ(xi) for all i, we have

p0 · (x1 − x0) + p1 · (x2 − x1) + · · · + pn · (x0 − xn) ⩽ 0.

We mention that if m = 1 (Rm = R) then a function g is cyclically monotone if and only
if it is monotone. For m ⩾ 2, there are monotone functions that are not cyclically monotone,
see Rockafellar [6, p. 240].

The next result is a simple corollary of Theorem 1.

Corollary 28 (Cyclic monotonicity of the derivative) Let f be concave and differen-
tiable on a convex open set U ⊂ Rm. Then the gradient mapping x 7→ f ′(x) is cyclically
monotone decreasing. That is, for any cycle x0, x1, . . . , xn, xn+1 in U with xn+1 = x0, we have

n∑
k=0

f ′(xk) · (xk+1 − xk) ⩾ 0.

Proof : By Theorem 1, f ′(xk) · (xk+1 − xk) ⩾ f(xk+1) − f(xk). Summing both sides gives
n∑

k=0
f ′(xk) · (xk+1 − xk) ⩾

n∑
k=0

[
f(xk+1) − f(xk)

]
= 0,

where the last equality follows from the fact that xn+1 = x0.
4 Most authors define monotone and cyclically monotone correspondences to be increasing, and do not make a

definition for decreasing monotonicity. This is because mathematicians find convex functions (such as norms) to
be natural, and as we shall see below there is an important relationship between convex functions and (cyclically)
monotone increasing mappings. Economists however find concave functions to be naturally occurring (as in
production functions) so it seems natural to introduce a term for (cyclically) monotone decreasing mappings.
Just keep in mind that for every statement about convex functions, there is a corresponding one for concave
functions derived by replacing f by −f .
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Note that the gradient of a convex function is cyclically monotone increasing.
The remarkable fact is that the supergradient correspondence is characterized by cyclic

monotonicity. The next result is due to Rockafellar, and may be found (in different terminology)
in his book [6, Theorem 24.8, p. 238].

Theorem 29 (Rockafellar) Let C ⊂ Rm be a nonempty convex set and let φ : C ↠ Rm be
a correspondence with nonempty values. Then φ is cyclically monotone decreasing if and only
if there is an upper semicontinuous concave function f : C → R satisfying

φ(x) ⊂ ∂f(x) for every x ∈ C.

Proof : If φ(x) ⊂ ∂f(x) for a concave f , then the definition of ∂f(x) and the same argument
used to prove Corollary 28 show that φ is cyclically monotone decreasing.

For the converse, assume φ is cyclically monotone decreasing. Fix any point x0 in C and
fix p0 ∈ φ(x0). Define the function f : C → R by

f(x) = inf{p0 · (x1 − x0) + · · · + pn · (x − xn) : pi ∈ φ(xi), xi ∈ C, i = 1, . . . , n}.

Now, having fixed (x0, p0), . . . , (xn, pn), the sum

g(x) = p0 · (x1 − x0) + · · · + pn · (x − xn)

is an affine function of x. (The construction of such functions g is illustrated in Figures 2 and 3.
Note the dependence on the order of the xi.) Thus f is the pointwise infimum of a collection
of affine functions, so it is concave. Furthermore, each of these functions is continuous, so
f is upper semicontinuous. (Exercise: The pointwise infimum f of a family {gi} of upper
semicontinuous functions is upper semicontinuous. Hint: [f ⩾ α] =

∩
i[gi ⩾ α].)

Cyclic monotonicity implies that the infimum defining f is finite, that is, f(x) > −∞ for
every x ∈ C. To see this, fix some p in φ(x). Then by cyclic monotonicity

p0 · (x1 − x0) + · · · + pn · (x − xn) + p · (x0 − x) ⩾ 0.

Setting m(x) = p · (x − x0) and rearranging gives

p0 · (x1 − x0) + · · · + pn · (x − xn) ⩾ m(x).

Therefore f(x) ⩾ m(x) > −∞ for any x.
We claim that f is the desired function. That is, any x, y in C and any p ∈ φ(x) satisfy the

supergradient inequality
f(x) + p · (y − x) ⩾ f(y).

To see this, let ε > 0 be given. Then by the definition of f , there is a finite sequence
(x0, p0), . . . , (xn, pn) in the graph of φ with f(x) + ε > p0 · (x1 − x0) + · · · + pn · (x − xn) ⩾ f(x).
Extend this sequence by appending (x, p). Then, again by the definition of f ,

p0 · (x1 − x0) + · · · + pn · (x − xn) + p · (y − x) ⩾ f(y).

Combining these gives

f(x) + ε + p · (y − x) > p0 · (x1 − x0) + · · · + pn · (x − xn) + p · (y − x) ⩾ f(y).

Since ε > 0 is arbitrary, we conclude that f(x) + p · (y − x) ⩾ f(y), so indeed φ(x) ⊂ ∂f(x).
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gx1,x2,x3
p1,p2,p3

f

x0 x1 x2 x3

} p2(x3 − x2) p1(x2 − x1)


p0(x1 − x0)

p0

p1
p2 p3

Figure 2. The function g x1,x2,x3
p1,p2,p3

(y) = p0 · (x1 − x0) + p1 · (x2 − x1) + p2 · (x3 − x2) + p3 · (y − x3),
where each pi is taken from ∂f(xi).

g x1,x2,x3
p1,p2,p3

f

x0 x1 x3 x2

p0

p1
p3 p2

Figure 3. Another version of g x1,x2,x3
p1,p2,p3

(y) = p0 ·(x1−x0)+p1 ·(x2−x1)+p2 ·(x3−x2)+p3 ·(y−x3),
where the xi have been reordered.

v. 2018.01.25::15.45



KC Border Supergradients 15

7 Cyclic monotonicity and second derivatives
From Corollary 28 we know that the gradient of a concave function f : C → R, where C is an
open convex set in Rn, satisfies

n∑
k=0

f ′(xk) · (xk+1 − xk) ⩾ 0.

Specializing this yields

f ′(x0) · (x1 − x0) + f ′(x1) · (x0 − x1) ⩾ 0,

which can be rearranged as (
f ′(x1) − f ′(x0)

)
· (x1 − x0) ⩽ 0.

Consider a point x in C and choose v so that x ± v to C. Then by the argument above with
x0 = x and x1 = x + v, (

f ′(x + λv) − f ′(x)
)

· (λv) ⩽ 0.

Dividing by the positive quantity λ2 implies

v ·
(
f ′(x + λv) − f ′(x)

)
λ

⩽ 0.

Define the function g : (−1, 1) → R by

g(λ) = v · f ′(x + λv).

In particular, if f is twice differentiable, then by the Chain Rule

D2f(x)(v, v) = g′(0) = lim
λ→0

v · g(λ) − g(0)
λ

⩽ 0.

Thus the Hessian matrix f ′′(x) is negative semidefinite, which gives another proof of half of
Fact 16.

Now let’s return to support functions.

Lemma 30 Suppose x(p) minimizes p · x over the nonempty set A. Suppose further that it is
the unique minimizer of p · x over co A. If ∂2µC(p)

∂p2
i

exists (or equivalently ∂x(p)
∂pi

exists), then

∂x(p)
∂pi

⩽ 0.

Proof : This follows from Corollary 21 and the discussion above.

This by the way, summarizes almost everything interesting we now about cost minimization.
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