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1 Stochastic choice and stochastic rationality
In the standard theory of rational choice we start with a set X of alternatives, a family
B of nonempty budgets (subsets of X), and a choice function c : B 7→ c(B) ⊂ B. In one
model of stochastic choice a single element of B is chosen at random.1 So instead of a
subset of B the “choice” gives us a probability measure on B.

Let p(x|B) denote the probability that x belongs to the choice from B.

Of course we require that p(x|B) = 0 for all x /∈ B and ∑
x∈B p(x|B) = 1. When B is

itemized, we may simply omit the braces. For example, we may write p(x|x, y) instead
of the cumbersome p

(
x|{x, y}

)
.

To keep things simple, we shall assume that X is
finite.

A special kind of stochastic choice is derived from a stochastic preference. Let P

denote the set of linear preference relations on X. (A preference relation � is linear
if it is total, transitive, irreflexive, and asymmetric.) The set P is also finite, having

∗These notes expand upon Exercise 1.D.5 in Mas-Colell–Whinston–Green [8, p. 16], and are a sim-
plified (I hope) exposition of some results in McFadden and Richter [10].

1There are other models of stochastic choice. We could, for instance, assume that a subset of B is
chosen at random. Indeed McFadden and Richter [10] consider an entirely general framework. The case
considered here is both natural and simple.
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# X! elements. We may when convenient refer to a preference relation by listing its
“skeleton.” For instance, if X = {x, y, z}, we may write z � x � y to refer to the unique
linear preference � satisfying z � x � y.

A stochastic preference is a probability measure on P. 2 A stochastic preference
gives rise to a stochastic choice as follows. Given a linear preference � on X and budget
B, let

�(B) = the (unique) �-greatest element of B.

1 Definition For the purposes of this note, a stochastic choice (X,B, p) is stochasti-
cally rational if there is a stochastic preference π on P such that for all B ∈ B,

p(x|B) = π
(
{� ∈ P : x = �(B)}

)
.

In this case we say that π rationalizes p.

The next example shows that not every stochastic choice can be rationalized by a
stochastic preference. It appears as Exercise 1.D.5 in Mas-Colell–Whinston–Green [8,
p. 16].

2 Example Let X = {x, y, z}, and let B be the set of all two-element subsets of X.
Then the stochastic choice

p(x|x, y) = 1
2 , p(y|x, y) = 1

2
p(y|y, z) = 1

2 , p(z|y, z) = 1
2

p(z|x, z) = 1
2 , p(x|x, z) = 1

2

(1.1)

is stochastically rational, and is rationalized by π where π(�) = 1/6 for each � ∈ P.
But the stochastic choice

p(x|x, y) = 3
4 , p(y|x, y) = 1

4
p(y|y, z) = 3

4 , p(z|y, z) = 1
4

p(z|x, z) = 3
4 , p(x|x, z) = 1

4

(1.2)

is not stochastically rational. Perhaps the simplest way to see this is to note that if z � x,
then there are three choices for where y fits in the preference order: y � z � x, z � y � x,
or z � x � y. In any event, y � x or z � y (or both). In other words,

{� ∈ P : z � x} ⊂ {� ∈ P : z � y}
⋃

{� ∈ P : y � x}.

2A more general, and more complicated, model would allow indifference.
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But if p is rationalized by some probability π on P, then (1.2) implies that left-hand
side of the inclusion has probability 3/4, while the union on the right-hand side has
probability at most 1/4 + 1/4, a contradiction.

Both (1.1) and (1.2) are special cases of the following stochastic choice.

p(x|x, y) = α, p(y|x, y) = 1 − α

p(y|y, z) = α, p(z|y, z) = 1 − α

p(z|x, z) = α, p(x|x, z) = 1 − α

(1.3)

So when is this stochastically rational? The answer is, whenever

1/3 ⩽ α ⩽ 2/3.

First we show that this condition is necessary. The same argument used above, namely

{� ∈ P : z � x} ⊂ {� ∈ P : z � y}
⋃

{� ∈ P : y � x}

shows that a necessary condition is that α ⩽ 2(1 − α), or α ⩽ 2/3. But

{� ∈ P : y � x} ⊂ {� ∈ P : y � z}
⋃

{� ∈ P : z � x}

implies that 1 − α ⩽ 2α, or 1/3 ⩽ α. To show sufficiency, it is enough to exhibit a π that
rationalizes p. So assume 1/3 ⩽ α ⩽ 2/3, and set

π(x � y � z) = π(y � z � x) = π(z � x � y) = α − 1/3
π(x � z � y) = π(y � x � z) = π(z � y � x) = 2/3 − α.

Simple arithmetic shows that this π rationalizes p. □

2 The Axiom of Revealed Stochastic Preference
The natural follow-up question is what properties must a random choice p satisfy in order
to guarantee that it is rationalized by some random preference π?

We shall prove that stochastically rational choice functions are characterized by the
following axiom, which McFadden and Richter [10] dub the Axiom of Revealed Stochastic
Preference, but I shall refer to as the McFadden–Richter Axiom, or MRA for short.

v. 2020.10.10::17.40
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3 McFadden–Richter Axiom A stochastic choice (X,B, p) satisfies the MRA if
for every finite sequence (x1, B1), . . . , (xn, Bn) (where repetitions are allowed) with each
Bj ∈ B, and each xj ∈ Bj,

n∑
j=1

p(xj|Bj) ⩽ max
�∈P

n∑
j=1

1(�, xj, Bj) (2.1)

where

1(�, x, B) =

1 if x ∈ �(B)
0 otherwise.

The right-hand side of (2.1) cries out for some comment. What it does is find a single
preference relation that would choose an element of xj from Bj for the most j. The
remarkable thing is that an upper bound on the sum of the probabilities is given by the
number of choices a single preference relation would make.

Here’s a simple proof of the necessity of (2.1).

Proof of the necessity of MRA: Assume the stochastic choice p is stochastically rational
and that the probability π on P stochastically rationalizes p. Now fix a finite sequence
(x1, B1), . . . , (xn, Bn) with each Bj ∈ B, and each xj ∈ Bj. Then

p(xi|Bi) =
∑
�∈P

π(�) 1(�, xi, Bi)

so ∑
i

p(xi|Bi) =
∑

i

∑
�∈P

π(�) 1(�, xi, Bi)

=
∑
�∈P

π(�)
∑

i

1(�, xi, Bi)

⩽
∑
�∈P

π(�)︸ ︷︷ ︸
=1

(
max
�∈P

∑
i

1(�, xi, Bi)
)

= max
�∈P

∑
i

1(�, xi, Bi),

which is just (2.1). Thus stochastic rationality implies MRA.

The MRA looks very different from our standard revealed preference axioms, but it is
not so alien as it first seems. Let’s apply it to the singleton-valued non-stochastic choice

v. 2020.10.10::17.40
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case. Let h : B → X be a singleton-valued choice function. Let us abuse notation slightly
and write x = h(B) rather than {x} = h(B). Then

p(x|B) =

1 if x = h(B)
0 otherwise

is the corresponding {0, 1}-valued stochastic choice function. Let S be the strong direct
revealed preference relation, defined, as you may recall, by x S y if for some budget
B ∈ B, we have y ∈ B, y 6= x, and x = h(B). Now assume

x1 S x2 S x3 · · · S xn,

all the xj distinct,3 and let Bj be such that xj = h(Bj) and xj+1 ∈ Bj, j = 1, . . . , n − 1.
We now ask, can we have xn S x1? If so, let xn = h(Bn) where x1 ∈ Bn. Then

n∑
j=1

p(xj|Bj) = n.

Now consider any linear order �. Transitivity and irreflexivity rule out x1 � · · · � xn � x1,
so

n∑
j=1

1(�, xj, Bj) ⩽ n − 1.

Thus xn S x1 implies that (2.1) is violated, so MRA implies that

x1 S x2 S x3 · · · S xn =⇒ ¬ xn S x1,

which is just the Strong Axiom of Revealed Preference.

4 Example Let’s apply the MRA to Example 2.
Consider the sequence(

{x}, {x, y}
)
,
(
{y}, {y, z}

)
,
(
{z}, {x, z}

)
.

For this sequence the left-hand side of (2.1) is

α + α + α = 3α

3The only thing the assumption of distinctness rules out is xn = x1, since if xi = xj for i < j, we
may simply omit xi, . . . , xj−1. We deal with the possibility xn = x1 in the next sentence.

v. 2020.10.10::17.40
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Now consider the linear preference � given by x � y � z. The corresponding sum for the
right-hand side of (2.1) is

1
(
�, {x}, {x, y}

)
+ 1

(
�, {y}, {y, z}

)
+ 1

(
�, {z}, {x, z}

)
= 1 + 1 + 0 = 2.

By symmetry, this is the maximum value for the right-hand sum. Thus in order for (2.1)
to hold it is necessary that

3α ⩽ 2, or α ⩽ 2/3.

Similarly, for the sequence(
{y}, {x, y}

)
,
(
{z}, {y, z}

)
,
(
{x}, {x, z}

)
,

we see that (2.1) implies
3(1 − α) ⩽ 2, or 1/3 ⩽ α.

Now we would like to show that if 1/3 ⩽ α ⩽ 2/3, then (2.1) holds. I’ll postpone
further discussion until after the proof. □

3 Characterization of stochastic rationality
5 Theorem (McFadden–Richter [10]) A stochastic choice p is rationalized by a
random preference π on P if and only it satisfies MRA.

Proof : (Stochastic rationality =⇒ MRA): We have already proved this.
(MRA =⇒ stochastic rationality): We shall prove this part by contraposition. Let

us recast the MRA in such a way as to make any repetitions explicit: Let I be the set of
all distinct pairs (x, B) with B ∈ B and x ∈ B, and let {(xi, Bi) : i = 1, . . . , N} be an
enumeration I. The MRA says that every tuple (ki)N

i=1 of nonnegative integers (ki may
be zero),

N∑
i=1

kip(xi|Bi) ⩽ max
�∈P

N∑
i=1

ki1(�, xi, Bi). (2.1′)

Construct a matrix with rows indexed by I, and columns indexed by P, where the(
(x, B), �

)
entry is 1(�, x, B). Now append a row of ones. Then p is rationalized by

a random preference if and only if the following system of equations has a nonnegative

v. 2020.10.10::17.40
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solution π ∈ RP:



�
...

(x,B) · · · 1(�, x, B) · · ·
...

· · · 1 · · ·




...
π(�)

...

 =


...

p(x|B)
...
1

 (3.1)

So to prove the contrapositive, we assume that stochastic rationality fails—that
is, (3.1) has no solution. By Farkas’ Lemma (see, e.g., Gale [4, Theorem 2.6, p. 44]), the
alternative is that there exists a vector y =

(
· · · , y(x, B), · · · ; y0

)
∈ RI × R such that

[
· · · , y(x, B), · · · ; y0

]


...
· · · 1(�, x, B) · · ·

...
· · · 1 · · ·

 ≦ 0,
[
· · · , y(x, B), · · · ; y0

]


...
p(x|B)

...
1

 > 0

or writing it out, for each � ∈ P,∑
(x,B)∈I

y(x, B)1(�, x, B) + y0 ⩽ 0, (3.2)

and ∑
(x,B)∈I

y(x, B)p(x|B) + y0 > 0. (3.3)

Together (3.2) and (3.3) imply that for every � ∈ P,∑
(x,B)∈I

y(x, B)1(�, x, B) <
∑

(x,B)∈I

y(x, B)p(x|B) (3.4)

Let
I+ = {(x, B) ∈ I : y(x, B) ⩾ 0} and I− = {(x, B) ∈ I : y(x, B) < 0}.

Then (3.4) becomes∑
(x,B)∈I+

y(x, B)1(�, x, B) −
∑

(x,B)∈I−

|y(x, B)|1(�, x, B)

<
∑

(x,B)∈I+

y(x, B)p(x|B) −
∑

(x,B)∈I−

|y(x, B)|p(x|B).
(3.5)

v. 2020.10.10::17.40
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Since this is a finite system of strict inequalities, if there is a solution y, then there
is a solution where the coordinates of y are rational numbers. By multiplying by a
common denominator, we can find a solution y with integer coordinates. Moreover every
coefficient y(x, B) > 0 for (x, B) ∈ I+ and of course |y(x, B)| > 0 for (x, B) ∈ I−. Define
the nonnegative integers

k(x, B) =

y(x, B) (x, B) ∈ I+

|y(x, B)| (x, B) ∈ I−.

Then we may rewrite (3.5) as∑
(x,B)∈I+

k(x, B)1(�, x, B) −
∑

(x,B)∈I−

k(x, B)1(�, x, B)

<
∑

(x,B)∈I+

k(x, B)p(x|B) −
∑

(x,B)∈I−

k(x, B)p(x|B). (3.6)

Now observe that 1(�, x, B) = 1 − 1(�, B \ x, B) and p(x|B) = 1 − p(B \ x|B) (where
p(B \ x|B) = ∑

y∈B\x p(y|B)), so (3.6) can be written as∑
(x,B)∈I+

k(x, B)1(�, x, B) +
∑

(x,B)∈I−

k(x, B)1(�, B \ x, B)

<
∑

(x,B)∈I+

k(x, B)p(x|B) +
∑

(x,B)∈I−

k(x, B)p(B \ x|B). (3.7)

Now consider the finite collection composed as follows. For each or (x, B) ∈ I+, take
k(x, B) instances of (x, B); and for (x, B) ∈ I− take k(x, B) instances of (y, B) for each
y ∈ B\x. Then since (3.7) holds for each � ∈ P, taking the maximum over the left=hand
side we have a violation of (2.1’). This proves that if p is not stochastically rational, then
MRA is violated.

That is, if p satisfies MRA, then it is stochastically rational.

The proof is a bit disappointing because it does not seem to use at all the intuition
from the example. It is possible that the symmetry in the example is atypical, and the
reasoning there does not generalize well. I need to think hard about this.

4 Effectivity
The MRA imposes infinitely many restrictions on a stochastic choice even when X is
finite, so you might ask whether it is feasible to verify it. In fact, there is a computa-
tional procedure for checking stochastic rationality directly in the finite case—the simplex

v. 2020.10.10::17.40
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method of linear programming. The system (3.1) of equations is of the form

Aπ = p (4.1)

where p ≧ 0. Consider the following linear program.

minimize 1 · z subject to Aπ + z = p, π ≧ 0, z ≧ 0. (4.2)

The system (4.1) has a nonnegative solution π = π̄ if and only if π = π̄, z = 0 is a
solution of (4.2). In fact, if (4.1) has no solution, then the solution of the dual program
will imply (3.2) and (3.3). The program (4.2) is ideally set up to solve with the simplex
algorithm since π = 0, z = p is an obvious initial feasible point.

5 Related literature
Thurstone [11, 12] and Luce [7] do not frame the problem quite the same way we have, but
their work paved the way for random utility models. McFadden [9] and Falmagne [3],
address the question of stochastic rationality much as we have defined it. Gul and
Pessendorfer [5, 6] take the alternatives themselves to be lotteries. There are many other
related papers. McFadden [9] has an extensive bibliography and literature survey.
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