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The Classical View

e Thomas Malthus (1798) argued that long run per capita growth in output
was impossible, because the population could and would increase faster than

output.

e Karl Marx (1867) argued that capitalism provided the means to increase out-

put through capital accumulation.

e Marx also espoused a labor theory of value, which implied subsistence wages
for the working class. The value of their output exceeded their wages, and
this surplus value was appropriated by the capitalists, who converted it into

more capital.



e (Capitalists would continue to accumulate capital until its marginal product

was zero, thus rendering themselves unnecessary, and utopia would ensue.



Aggregate Production Function

Y = F(K, L)

e Y — aggregate output (flow)

e K — aggregate capital stock (stock)

e [ — labor force (flow)



The Surrogate Production Function



Constant Returns to Scale

FOK,\L) = \F(K, L)

Euler’s Theorem If F'is differentiable, then CRS is equivalent to

Fr(K, LK + F;.(K,L)L = F(K, L).



Define

Then

Per Capita Analysis

_ P(K,L) B
y =" = PK/L L/L) = (k)

=1




Savings and Population Dynamics

K(t) = sY (t)

and

L(t)

= L(t) = Loe™
70 n or (t) o€

where s and n are exogenous constants.



We may write K in terms of k as

K(t) = k(t)L(t)
which implies

K = kL + nkL.
But we may also write K in terms of Y as

K(t) = sY (t) = sL(t) f(k(t))
Combining these two expressions for K gives
(k4 nk)L = sLf(k)

or

k+ nk = sf(k)



So

and

k(1) = sf((k(t)> — nk(t)

(1)

y(t) = f'((k(t)) k().




Example: Leontief Production (Harrod—Domar)

F(K,L) = min{K, L}

k k<1
f(k) =
1 k>1

Then (1) becomes:

So assuming kg < 1 we have k = (s — n)k. This dfifferential equation has the
solution:

k(t) = koe(s_n)t as long as k(t) < 1. (2)



Harrod-Domar Case 1: 8 > n.

In this case k grows over time. Define time 7 to be the first time that k(¢) = 1:

—Ink
koels™™M7T =1 = T = 9,
s—n

and for t > 7, we have k = s — nk with k(7)) = 1.
The solution to this differential equation is
k(t) = (1 _ f) U ) BT
n n

This implies that

10



and

k() — k=2 > 1,
mn

y(t) =1, t>r.

In other words, growth stops.
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Output in the Harrod—Domar world with s > n.

s =.18,n= .03, k™ =
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Harrod-Domar Case 2: s < n

ko = k(0) < 1.

k = sk — nk

— k(t) = kgels—™)?

y(t) = k(t) = 0
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Declining output in the Harrod-Domar world with s < n.
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Cobb-Douglas Production Function
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Constancy of the Share of Labor

Shares of National Income
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Example: Cobb-Douglas Production (Solow)

f(k) =k~

k = sk — nk

1

k(1) = [(kg—a - i) e—n(l—a)t 4 S|I-a

n n
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So

Again growth stops.
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This differential equation is more difficult, and we shall come back to it in a mo-

ment. But the convergence result is intuitive.
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Global stability of k*.

k = sk® — nk

s=.16,n= .02, o = .25 k* =16
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Long-run per capita variables for a Cobb-Douglas case.
s =.15n= .03, a = .25, k* = 8.55
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Cobb-Douglas Steady states

o= ()
=
¢ = a0

k*, y* decrease with n and increase with s.

c® decreases with n, but is maximized when s = «.
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Which savings rate s leads to the highest steady state per capita consumption?

First order condition for a maximum of ¢* with respect to s:

() a2 A <o

ds 1—an \n
(i)ﬁ _ (1—3) o 1(§>ﬁ—1
n 1 —an \n
1
1= (1-9); a
1l —as
S . Q
1—s  1—a«
s = q.

This says that in order to maximize the long-run consumption per worker, all the
return on capital should be saved and reinvested. This is more or less the way

Marx saw capitalists.
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Steady state consumption as a function of the saving rate s.

n = .03, a = .25, maximum c=1.52
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Behavior of k(t) = sk® — nk.
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The effect of savings rates on income levels y(t).
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The effect of savings rates on consumption levels ¢(t).
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051

0.4

The effect of savings rates on income growth rates y(t) /y(t).

n=.02, a= .25 kyg=.1




The effect of initial capital on income levels y(t).
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The effect of initial capital on income growth rates y(t) /y(t).

0.12

0.1
0.08
0.06
0.04
002 —

s=.1,n=.02, a=.25

27



Room to grow

One way to put growth into the model for now is to assume a growing technological
progress. Let h(t) be the level of labor-augmenting technology at time ¢t. Assume
that

Y(t) = F(K(t), h(t)L(t)),
and
h(t) = .
If we define H(t) to be the augmented labor
H(t) = h(t)L(1),

We can analyze the model as before, replacing L by H, and noting that H grows
at the rate (n 4+ h). Defining

iy = KO _ KO

H®G®)  h(t)
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Then we see that xk obeys the differential equation

k(L) = sf(n(t)) — (n 4+ h)r(1).



The Cobb—Douglas Case with Augmented Labor

From our previous analysis we know that if
Y = F(K,H) = KL~
then

n-+h (n+h)
Thus () = (s/(n+h))Y/ A=) and Y (£)/H(t) = (s/(n+h))e/(1-2),

But per capita income

k(t) = [(kCl)_a S )6—(n+h)(l—a)t + S 1—«a

_Y(@) _ Y(#)
YW=TH T H

orows at the asymptotic rate h. This does not depend on the saving rate r or

h(t),

capital’s share a, although these affect the level of y(¢), just not its growth rate.
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Summary

k=s—nk (t>1, k(r)=1)

k) = (1) et 42

k= sk® —nk (k(0) = ko)

1
S

0= (- 2) s

n

S|l-«
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Theorem 1 (First order linear differential equations) Assume P, Q) are continu-
ous on the open interval I. Let a € I, b € R.

Then there is one and only one function y = f(¢) that satisfies the initial value

problem

v + P(t)y = Q(t)
with f(a) = b. It is given by
F(1) = be 4O 4 AW ' 0(2)eA@) gy

where

A(t) = /t P(x) dzx.

a

For a proof see |1, Theorems 8.2 and 8.3, pp. 309-310].
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Solution to the linear differential equation k=s— nk (t > 1)
Apply Theorem 1 witha =7, b=1, P(t) = n, Q(t) = s. Then

A(t) = /tP(a:)da: = /Ttnda: =n(t—171),

T

t
t t
/ Q(fU)eA(w) dr = / Sen(x_T) dx = ie”(“f—ﬂ

T n n

T

k(t) — e—n(t—T) i e—n(t—T)f (en(t—T) . 1)

n

e—n(t—T) i % (1 . e—n(t—T))

<1 _ f) e—n(t—7) 4 2
n

n

_ 5 (en(t—r) _

1)
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Theorem 2 (Separable differential equations) Let y=Y(t) be any solution of the

separable differential equation

A(y)y' = Q(1), (3)

such that Y is continuous on an open interval I. Assume that both Q and AoY
are continuous on I. Let G be any primitive of A, that is, G’ = A. Then the

solution Y satisfies the implicit formula

Gy) = [QWdt+C g

for some constant C'. Conversely if y satisfies (4), then vy is a solution of (3).

For a proof see |1, Theorem 8.10, pp. 345-346].
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Solution to the nonlinear differential equation k = sk® — nk

Rewrite this as:

k

= 1.
sk® — nk
To apply Theorem 2, we need to find a function GG satistying
1
G'(k) = .
(k) sk® — nk

This is not easy. The answer just happens to be

alnk — In(nk — sk%)

Glk) = n(l —«)
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I used Mathematica to find the primitive, since I couldn’t find it in my table of integrals. To verify:

d 1

dk (1 — a)n

(alnk — In(nk — sk%))

1 o n n — ask®1
(1 —a)n \ k sk® — nk

1 a(sk® —nk) + k(n — ask®™1)

(1 —-—a)n k(sk® — nk)

1 —ank + kn

(1 — a)n k(sk® — nk)

1 (1 —a)nk

(1 — a)n k(sk® — nk)
1

sk —nk’
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Use Theorem 2 to observe that k(t) must satisfy
alnk —In(nk — sk%)
n(l —«)

=/1dt+0:t—|—0.
Rearrange to get

alnk —In(nk — sk%) = n(1l — a)t 4 C.
Exponentiate to get
k.Oé
nk — sk

— Cen(l—a)t

kY = C(nk — ska)en(l_o‘)t
(1 + Cse"I=N o = Opken(1 =)

1+ Csen(l—a)t
Cnen(l—a)t

— k,].—Oé
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So

where A =

1

Cn’

Ae—

Solve for k(t):

1—Oé)t _|_ i — kl—oz

n

k(1) = (

1

Ae—n(1—a)t 4 f)m

n
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To determine A, evaluate at t = O:

SO

That is,

1

o- (143)"

_ 1.1« S
A=rio_ 2,
mn

1

k(1) = [(ké—a _ f) o—n(1—a)t 4 S|T=a

n n

Q.E.D.
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