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The Classical View

• Thomas Malthus (1798) argued that long run per capita growth in output
was impossible, because the population could and would increase faster than
output.

• Karl Marx (1867) argued that capitalism provided the means to increase out-
put through capital accumulation.

• Marx also espoused a labor theory of value, which implied subsistence wages
for the working class. The value of their output exceeded their wages, and
this surplus value was appropriated by the capitalists, who converted it into
more capital.
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• Capitalists would continue to accumulate capital until its marginal product
was zero, thus rendering themselves unnecessary, and utopia would ensue.



Aggregate Production Function

Y = F (K,L)

• Y — aggregate output (flow)

• K — aggregate capital stock (stock)

• L — labor force (flow)
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The Surrogate Production Function
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Constant Returns to Scale

F (λK, λL) = λF (K,L)

Euler’s Theorem If F is differentiable, then CRS is equivalent to

FK(K,L)K + FL(K,L)L = F (K,L).
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Per Capita Analysis

Define

y =
Y

L
k =

K

L

Then

y =
F (K,L)

L
= F (K/L,L/L︸ ︷︷ ︸

=1

) = f(k)
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Savings and Population Dynamics

K̇(t) = sY (t)

and

L̇(t)

L(t)
= n or L(t) = L0e

nt

where s and n are exogenous constants.
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We may write K in terms of k as

K(t) = k(t)L(t)

which implies

K̇ = k̇L+ nkL.

But we may also write K̇ in terms of Y as

K̇(t) = sY (t) = sL(t)f
(
k(t)

)
Combining these two expressions for K̇ gives

(k̇ + nk)L = sLf(k)

or

k̇ + nk = sf(k)
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So

k̇(t) = sf
(
(k(t)

)
− nk(t) (1)

and

ẏ(t) = f ′
(
(k(t)

)
k̇(t).
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Example: Leontief Production (Harrod–Domar)

F (K,L) = min{K,L}

f(k) =

k k ⩽ 1

1 k ⩾ 1

Then (1) becomes:

k̇ =

(s− n)k k ⩽ 1,

s− nk k ⩾ 1.

So assuming k0 < 1 we have k̇ = (s− n)k. This dfifferential equation has the
solution:

k(t) = k0e
(s−n)t as long as k(t) ⩽ 1. (2)
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Harrod–Domar Case 1: s > n.

In this case k grows over time. Define time τ to be the first time that k(t) = 1:

k0e
(s−n)τ = 1 ⇐⇒ τ =

− ln k0
s− n

,

and for t ⩾ τ , we have k̇ = s− nk with k(τ) = 1.

The solution to this differential equation is

k(t) =
(
1−

s

n

)
e−n(t−τ) +

s

n
, t ⩾ τ.

This implies that
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k(t) −→ k∗ =
s

n
> 1,

and

y(t) = 1, t ⩾ τ.

In other words, growth stops.
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Harrod–Domar Case 2: s < n

k0 = k(0) < 1:

k̇ = sk − nk ⇐⇒ k(t) = k0e
(s−n)t

y(t) = k(t) −→ 0
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Cobb–Douglas Production Function

14



Constancy of the Share of Labor

August 2004NationalEconomicTrends

Views expressed do not necessarily reflect official positions of the Federal Reserve System.

Labor’s Share

The relatively slow growth of employment has
been a prominent feature of the current economic
expansion. Now that employment is showing signs

of picking up, however, attention has shifted to the growth
of wages. Recent data from the Bureau of Labor Statistics
show that real (inflation adjusted) hourly earnings have
been declining for the past several months: From June
2003 through June of this year, earnings of production or
nonsupervisory workers on private nonfarm payrolls have
risen 1.7 percent in nominal terms; but, after adjusting for
inflation, earnings have declined 1.5 percent. And yet,
the economy has been exhibiting rapid growth, with real
gross domestic product expanding at a rate of more than
4 percent in the past year.

Do these recent observations portend a change in the
allocation of income in the U.S. economy? Some might
speculate that this is so, but it is difficult to evaluate such
a proposition based on only a few months of data. Con-
sidering the issue from a broader and longer-run perspec-
tive provides a more informative
view of this economic landscape.

The allocation of national
income between workers and the
owners of capital is considered
one of the more remarkably 
stable relationships in the U.S.
economy. As a general rule of
thumb, economists often cite
labor’s share of income to be
about two-thirds of national
income—although the exact 
figure is sensitive to the specific
data used to calculate the ratio.
Over time, this ratio has shown
no clear tendency to rise or fall. 

The figure provides a perspec-
tive on this issue. The dashed line

shows wage and salary income as a fraction of national
income. This measure clearly shows a declining trend in
recent decades. Having reached a peak of 58 percent in
1970, wages and salaries have declined to only 52 per-
cent of national income in 2003. However, if we consider
total compensation—including employer social insurance
contributions and benefits—labor’s share has shown very
little variation.1 By this measure, labor’s share of national
income has averaged 70.5 percent over the past 50 years
and has remained within a narrow range of that average.  

Only time will tell if a significant shift in income allo-
cations is underway. However, a long-run perspective
suggests that it would indeed be unusual for labor’s share
to deviate far from its historic value. 

—Michael R. Pakko
1 One complicating factor is the allocation of proprietors’ income, which includes
both labor and capital components.  In the data for the figure, proprietors’
income is assumed to be allocated in the same proportions as in the rest of the
economy.  

Please go to research.stlouisfed.org/publications/net for important information about your subscription
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Example: Cobb–Douglas Production (Solow)

F (K,L) = KαL1−α

f(k) = kα

k̇ = skα − nk

k(t) =
[(

k1−α
0 −

s

n

)
e−n(1−α)t +

s

n

] 1
1−α
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So

k(t) −→ k∗ =
(
s

n

) 1
1−α

y(t) −→ y∗ =
(
s

n

) α
1−α

Again growth stops.
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This differential equation is more difficult, and we shall come back to it in a mo-
ment. But the convergence result is intuitive.
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Cobb–Douglas Steady states

k∗ =
(
s

n

) 1
1−α

y∗ =
(
s

n

) α
1−α

c∗ = (1− s)
(
s

n

) α
1−α

k∗, y∗ decrease with n and increase with s.
c∗ decreases with n, but is maximized when s = α.
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Which savings rate s leads to the highest steady state per capita consumption?
First order condition for a maximum of c∗ with respect to s:

dc∗

ds
= −

(
s

n

) α
1−α

+ (1− s)
α

1− α

1

n

(
s

n

) α
1−α−1

= 0.

(
s

n

) α
1−α

= (1− s)
α

1− α

1

n

(
s

n

) α
1−α−1

1 = (1− s)
α

1− α

1

s
s

1− s
=

α

1− α
s = α.

This says that in order to maximize the long-run consumption per worker, all the
return on capital should be saved and reinvested. This is more or less the way
Marx saw capitalists.

20-1



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

n = .03, α = .25, maximum c=1.52

s

c

Steady state consumption as a function of the saving rate s.

21



100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

n = .02, α = .25, k0 = .1

Behavior of k̇(t) = skα − nk.

s = .4

s = .2

s = .1

22



10 20 30 40 50

0.6

0.8

1

1.2

1.4

1.6

1.8

2

n = .03, α = .25, k0 = .1

The effect of savings rates on income levels y(t).

s = .4

s = .2

s = .1

t

23



5 10 15 20 25

0.4

0.6

0.8

1

n = .03, α = .25, k0 = .1

The effect of savings rates on consumption levels c(t).

s = .25

s = .4
s = .1
s = .5

t

c

24



2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

n = .02, α = .25, k0 = .1

The effect of savings rates on income growth rates ẏ(t)/y(t).
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Room to grow

One way to put growth into the model for now is to assume a growing technological
progress. Let h(t) be the level of labor-augmenting technology at time t. Assume
that

Y (t) = F
(
K(t), h(t)L(t)

)
,

and
h(t) = eht.

If we define H(t) to be the augmented labor

H(t) = h(t)L(t),

We can analyze the model as before, replacing L by H , and noting that H grows
at the rate (n+ h). Defining

κ(t) =
K(t)

H(t)
=

k(t)

h(t)
.
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Then we see that κ obeys the differential equation

κ̇(t) = sf
(
κ(t)

)
− (n+ h)κ(t).



The Cobb–Douglas Case with Augmented Labor

From our previous analysis we know that if

Y = F (K,H) = KαL1−α,

then

κ(t) =

[(
k1−α
0 −

s

n+ h

)
e−(n+h)(1−α)t +

s

(n+ h)

] 1
1−α

Thus κ(t) −→ (s/(n+h))1/(1−α), and Y (t)/H(t) −→ (s/(n+h))α/(1−α).
But per capita income

y(t) =
Y (t)

L(t)
=

Y (t)

H(t)
h(t),

grows at the asymptotic rate h. This does not depend on the saving rate r or
capital’s share α, although these affect the level of y(t), just not its growth rate.
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Appendix on Solving the Differential Equations
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Summary

k̇ = s− nk (t > τ, k(τ) = 1)

k(t) =
(
1−

s

n

)
e−n(t−τ) +

s

n

k̇ = skα − nk (k(0) = k0)

k(t) =
[(

k1−α
0 −

s

n

)
e−n(1−α)t +

s

n

] 1
1−α
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Theorem 1 (First order linear differential equations) Assume P,Q are continu-
ous on the open interval I . Let a ∈ I , b ∈ R.

Then there is one and only one function y = f(t) that satisfies the initial value
problem

y′ + P (t)y = Q(t)

with f(a) = b. It is given by

f(t) = be−A(t) + e−A(t)
∫ t

a
Q(x)eA(x) dx

where

A(t) =
∫ t

a
P (x) dx.

For a proof see [1, Theorems 8.2 and 8.3, pp. 309–310].
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Solution to the linear differential equation k̇ = s − nk (t > τ )

Apply Theorem 1 with a = τ , b = 1, P (t) = n, Q(t) = s. Then

A(t) =
∫ t

τ
P (x) dx =

∫ t

τ
ndx = n(t− τ),

∫ t

τ
Q(x)eA(x) dx =

∫ t

τ
sen(x−τ) dx =

s

n
en(x−τ)

∣∣∣∣∣∣
t

τ

=
s

n

(
en(t−τ) − 1

)

k(t) = e−n(t−τ) + e−n(t−τ) s

n

(
en(t−τ) − 1

)
= e−n(t−τ) +

s

n

(
1− e−n(t−τ)

)
=

(
1−

s

n

)
e−n(t−τ) +

s

n
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Theorem 2 (Separable differential equations) Let y=Y(t) be any solution of the
separable differential equation

A(y)y′ = Q(t), (3)

such that Y ′ is continuous on an open interval I . Assume that both Q and A◦Y
are continuous on I . Let G be any primitive of A, that is, G′ = A. Then the
solution Y satisfies the implicit formula

G(y) =
∫

Q(t) dt+ C (4)

for some constant C. Conversely if y satisfies (4), then y is a solution of (3).

For a proof see [1, Theorem 8.10, pp. 345–346].
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Solution to the nonlinear differential equation k̇ = skα − nk

Rewrite this as:
k̇

skα − nk
= 1.

To apply Theorem 2, we need to find a function G satisfying

G′(k) =
1

skα − nk
.

This is not easy. The answer just happens to be

G(k) =
α ln k − ln(nk − skα)

n(1− α)
.
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I used Mathematica to find the primitive, since I couldn’t find it in my table of integrals. To verify:

d

dk

1

(1− α)n
(α ln k − ln(nk − skα)) =

1

(1− α)n

(
α

k
+

n− αskα−1

skα − nk

)

=
1

(1− α)n

α(skα − nk) + k(n− αskα−1)

k(skα − nk)

=
1

(1− α)n

−αnk + kn

k(skα − nk)

=
1

(1− α)n

(1− α)nk

k(skα − nk)

=
1

skα − nk
.
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Use Theorem 2 to observe that k(t) must satisfy
α ln k − ln(nk − skα)

n(1− α)
=

∫
1 dt+ C = t+ C.

Rearrange to get

α ln k − ln(nk − skα) = n(1− α)t+ C.

Exponentiate to get
kα

nk − skα
= Cen(1−α)t

kα = C(nk − skα)en(1−α)t

(1 + Csen(1−α)t)kα = Cnken(1−α)t

1+ Csen(1−α)t

Cnen(1−α)t
= k1−α
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So

Ae−n(1−α)t +
s

n
= k1−α

where A = 1
Cn. Solve for k(t):

k(t) =
(
Ae−n(1−α)t +

s

n

) 1
1−α
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To determine A, evaluate at t = 0:

k0 =
(
A+

s

n

) 1
1−α

so

A = k1−α
0 −

s

n
.

That is,

k(t) =
[(

k1−α
0 −

s

n

)
e−n(1−α)t +

s

n

] 1
1−α

Q.E.D.
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