
Division of the Humanities
and Social Sciences

The Gauss–Jordan and Simplex Algorithms
KC Border∗

Revised November 2004

Contents
1 The Gauss–Jordan method of elimination . 2
2 A different look at the Gauss–Jordan method . 3
3 The replacement operation . 5
4 More on tableaux . 7
5 The Fredholm Alternative . 8
6 The simplex method . 9
6.1 The simplex tableau and Phase 2 . 10
6.2 Replacement operations on the simplex tableau 11
6.3 Adding a criterion row . 12
6.4 Choosing the pivot . 13
6.5 The simplex algorithm made explicit . 14
7 The stopping conditions . 15
8 Phase 1: Finding a starting point . 17
8.1 Infeasibility . 18
8.2 Inequality constraints . 19
9 A worked example . 19
10 The simplex algorithm solves the dual program too 22
10.1 Solving the dual with inequality constraints . 24
11 Degeneracy, cycling, and the lexicographic simplex algorithm 24
11.1 A cycling example . 25
11.2 The lexicographic simplex algorithm . 27
11.3 Lexicographic simplex example . 27
12 More worked examples . 29
12.1 Minimization with equality constraints . 29
12.2 An example with a negative right-hand side constant 31
12.3 A tricky point with negative right-hand side constants 34
12.4 Finding a basis . 37
12.5 Finding a basis without the rank assumption . 38

∗These notes borrow extensively from the lucid expositions by David Gale [8] and Joel Franklin [6].

1

KC Border The Gauss–Jordan and Simplex Algorithms 2

The simplex algorithm, a modified version of the Gauss–Jordan elimination algorithm, is
used to find nonnegative solutions of linear equations. Since all linear (and quadratic) programs
can be reduced to this problem, it has proven to be an extremely important tool of applied
mathematics. According to George B. Dantzig [3, p. 24], the widely acknowledged originator of
the algorithm,

During the summer of 1947, Leonid Hurwicz, well-known econometrician associ-
ated with the Cowles Commission, worked with the author on techniques for solving
linear programming problems. This effort and some suggestions of T. C. Koopmans
resulted in the “Simplex Method.”

1 The Gauss–Jordan method of elimination
Consider the following system of equations.

3x1 +2x2 = 8
2x1 +3x2 = 7

The Gauss–Jordan method is a straightforward way to attack problems like this using ele-
mentary row operations.

1 Definition The three elementary row operations on a matrix are:

• Interchange two rows.

• Multiply a row by a nonzero scalar.

• Add one row to another.

It is often useful to combine these into a fourth operation.

• Add a nonzero scalar multiple of one row to another row.

We shall also refer to this last operation as an elementary row operation.1

You should convince yourself that each of these four operations is reversible using only these
four operations, and that none of these operations changes the set of solutions.

The first step in using elementary row operations to solve a system of equations is to write
down the so-called augmented coefficient matrix of the system, which is the 2×3 matrix of just
the numbers above:  3 2 8

2 3 7

 . (1′)

We apply elementary row operations until we get a matrix of the form 1 0 a

0 1 b


which is the augmented matrix of the system

x1 = a

x2 = b
1The operation ‘add α ×row k to row i’ is the following sequence of truly elementary row operations: multiply

row k by α, add (new) row k to row i, multiply row k by 1/α.

KC Border The Gauss–Jordan and Simplex Algorithms 3

and the system is solved. (If there is no solution, then the elementary row operations cannot
produce an identity matrix. There is more to say about this in Section 5.) There is a simple
algorithm for deciding which elementary row operations to apply, namely, the Gauss–Jordan
elimination algorithm.

First we multiply the first row by 1
3 , to get a leading 1: 1 2

3
8
3

2 3 7


We want to eliminate x1 from the second equation, so we add an appropriate multiple of the
first row to the second. In this case the multiple is −2, the result is: 1 2

3
8
3

2−2 ·1 3−2 · 2
3 7−2 · 8

3

 =

 1 2
3

8
3

0 5
3

5
3

 . (2′)

Now multiply the second row by 3
5 to get 1 2

3
8
3

0 1 1

 .
Finally to eliminate x2 from the first row we add − 2

3 times the second row to the first and get 1− 2
3 ·0

2
3 −

2
3 ·1

8
3 −

2
3 ·1

0 1 1

 =

 1 0 2

0 1 1

 , (3′)

so the solution is x1 = 2 and x2 = 1.

2 A different look at the Gauss–Jordan method
David Gale [8] gives another way to look at what we just did. The problem of finding x to solve

3x1 +2x2 = 8
2x1 +3x2 = 7

can also be thought of as finding a coefficients x1 and x2 to solve the vector equation

x1

3

2

+ x2

2

3

=

8

7

 .
That is, we want to write b =

8

7

 as a linear combination of a1 =

3

2

 and a2 =

2

3

. One way

to do this is to begin by writing b as a linear combination of unit coordinate vectors e1 =

1

0


and e2 =

0

1

, which is easy:

8

1

0

+7

0

1

=

8

7

 .

KC Border The Gauss–Jordan and Simplex Algorithms 4

We can do likewise for a1 and a2:

3

1

0

+2

0

1

=

3

2

 , 2

1

0

+3

0

1

=

2

3

 .
We can summarize this information in the following tableau,2 which is fundamental in expositing
the simplex algorithm.

a1 a2 b

e1 3 2 8

e2 2 3 7

(1)

There is a column for each of the vectors a1, a2, and b. There is a row for each element of the
basis e1,e2. The columns in the tableau correspond to the coordinates of the vector labeling
the column with respect to the ordered basis given on the left margin. Thus a1 = 3e1 + 2e2.
b = 8e1 + 7e2, etc. So far, with the exception of the margins, our tableau looks just like the
augmented coefficient matrix (1′), as it should.

But we don’t really want to express b in terms of e1 and e2, we want to express it in terms
of a1 and a2, so we do this in steps. Let us replace e1 in our basis with either a1 or a2. Let’s be
unimaginative and use a1. The new tableau will look something like this:

a1 a2 b

a1 ? ? ?

e2 ? ? ?

Note that the left marginal column now has a1 in place of e1. We now need to fill in the tableau
with the proper coefficients. It is clear that a1 = 1a1 +0e2, so we have

a1 a2 b

a1 1 ? ?

e2 0 ? ?

I claim the rest of the coefficients are

a1 a2 b

a1 1 2
3

8
3

e2 0 5
3

5
3

(2)

That is,
a1 = 1a1 +0e2, a2 =

2
3

a1 +
5
3

e2, b =
8
3

a1 +
5
3

e2.

or 3

2

= 1

3

2

+0

0

1

 ,
2

3

=
2
3

3

2

+ 5
3

0

1

 ,
8

7

=
8
3

3

2

+ 5
3

0

1

 ,
2The term tableau, a French word best translated as “picture” or “painting,” harkens back to Quesnay’s

Tableau économique [11], which inspired Leontief [10], whose work spurred the Air Force’s interest in linear
programming [3, p. 17].

KC Border The Gauss–Jordan and Simplex Algorithms 5

which is correct. Now observe that the tableau (2) is the same as (2′).
Now we proceed to replace e2 in our basis by a1. The resulting tableau is

a1 a2 b

a1 1 0 2

a2 0 1 1

(3)

This is the same as (3′). In other words, in terms of our original problem x1 = 2 and x2 = 1.
So far we have done nothing that we would not have done in the standard method of solving

linear equations. The only difference is in the description of what we are doing.

Instead of describing our steps as eliminating variables from equations
one by one, we say that we are replacing one basis by another, one vector
at a time.

We now formalize this notion more generally.

3 The replacement operation
Let A = {a1, . . . ,an} be a set of vectors in some vector space, and let {b1, . . . ,bm} span A . That
is, each a j can be written as a linear combination of bis. Let T = [ti, j] be the m× n matrix of
coordinates of the a js with respect to the bis.3 That is,

a j =
m

∑
k=1

tk, jbk, j = 1, . . . ,n. (4)

We express this as the following tableau:

a1 . . . a j . . . an

b1 t1,1 . . . t1, j . . . t1,n
...

...
...

...
bi ti,1 . . . ti, j . . . ti,n
...

...
...

...
bm tm,1 . . . tm, j . . . tm,n

• It is obvious that interchanging any two rows or interchanging any two columns repre-
sents the same information, namely that each vector listed in the top margin is a linear
combination of the vectors in the left margin, with the coefficients being displayed in the
tableau.

• We can rewrite (4) in terms of the coordinates of the vectors as

a j
i =

m

∑
k=1

tk, jbk
i

3If the bis are linearly dependent, T may not be unique.

KC Border The Gauss–Jordan and Simplex Algorithms 6

or perhaps more familiarly as the matrix equation

BT = A,

where A is the matrix m× n matrix whose columns are a1, . . . ,an, B is the matrix m×m
matrix whose columns are b1, . . . ,bm, and T is the m×n matrix [ti, j].

The usefulness of the tableau is the ease with which we can change the basis of a subspace.
The next lemma is the key.

2 Replacement Lemma If {b1, . . . ,bm} is a linearly independent set that spans A , then

tk,ℓ ̸= 0 if and only if {b1, . . . ,bk−1,aℓ,bk+1, . . . ,bm} is independent and spans A .

Moreover, in the latter case the new tableau is derived from the old one by applying
elementary row operations that transform the ℓth column into the kth unit coordinate
vector. That is, the tableau

a1 . . . aℓ−1 aℓ aℓ+1 . . . an

b1 t ′1,1 . . . t ′1,ℓ−1 0 t ′1,ℓ+1 . . . t ′1,n
...

...
...

...
...

...
bk−1 t ′k−1,1 . . . t ′k−1,ℓ−1 0 t ′k−1,ℓ+1 . . . t ′k−1,n

aℓ t ′k,1 . . . t ′k,ℓ−1 1 t ′k,ℓ+1 . . . t ′k,n
bk+1 t ′k+1,1 . . . t ′k+1,ℓ−1 0 t ′k+1,ℓ+1 . . . t ′k+1,n

...
...

...
...

...
...

bm t ′m,1 . . . t ′m,ℓ−1 0 t ′m,ℓ+1 . . . t ′m,n

is obtained by dividing the kth row by tk,ℓ,

t ′k, j =
tk, j
tk,ℓ

, j = 1, . . . ,n,

and adding −
ti,ℓ
tk,ℓ

times row k to row i for i ̸= k,

t ′i, j = ti, j −
ti,ℓ
tk,ℓ

tk, j
(
= ti, j − ti,ℓt ′k, j

)
,

i = 1, . . . ,m, i ̸= k
j = 1, . . . ,n

.

Proof : If tk,ℓ = 0, then
aℓ = ∑

i:i ̸=k
ti,ℓbi,

or
∑

i:i ̸=k
ti,ℓbi −1aℓ = 0,

so {b1, . . . ,bk−1,aℓ,bk+1, . . . ,bm} is dependent.
For the converse, assume tk,ℓ ̸= 0, and that

0 = αaℓ+ ∑
i:i ̸=k

βibi

= α

(
m

∑
i=1

ti,ℓbi

)
+ ∑

i:i ̸=k
βibi

= αtk,ℓbk + ∑
i:i ̸=k

(αti,ℓ+βi)bi.

KC Border The Gauss–Jordan and Simplex Algorithms 7

Since {b1, . . . ,bm} is independent by hypothesis, we must have (i) αtk,ℓ = 0 and (ii) αti,ℓ+βi = 0
for i ̸= k. Since tk,ℓ ̸= 0, (i) implies that α = 0. But then (ii) implies that each βi = 0, too, which
shows that the set {b1, . . . ,bk−1,aℓ,bk+1, . . . ,bm} is linearly independent.

To show that this set spans A , and to verify the tableau, we must show that for each j ̸= ℓ,

a j = ∑
i:i ̸=k

t ′i, jb
i + t ′k, ja

ℓ.

But the right-hand side is just

= ∑
i:i ̸=k

(
ti, j −

ti,ℓ
tk,ℓ

tk, j︸ ︷︷ ︸
t ′i, j

)
bi +

tk, j
tk,ℓ︸︷︷︸
t ′k, j

m

∑
i=1

ti,ℓbi

︸ ︷︷ ︸
aℓ

=
m

∑
i=1

ti, jbi

= a j,

which completes the proof.

Thus whenever tk,ℓ ̸= 0, we can replace bk by aℓ, and get a valid new tableau. We call this the
replacement operation and the entry tk,ℓ, the pivot. Note that one replacement operation is
actually m elementary row operations.

Here are some observations.

• If at some point, an entire row of the tableau becomes 0, then any replacement operation
leaves the row unchanged. This means that the dimension of the span of A is less than
m, and that row may be omitted.

• We can use this method to select a basis from A . Replace the standard basis with elements
of A until no additional replacements can be made. By construction, the set B of elements
of A appearing in the left-hand margin of the tableau will constitute a linearly independent
set. If no more replacements can be made, then each row i associated with a vector not in
A must have ti, j = 0, for j /∈ B (otherwise we could make another replacement with ti, j as
pivot.) Thus B must be a basis for A . See the examples in Sections 12.4 and 12.5.

• Note that the elementary row operations used preserve the field to which the coefficients
belong. In particular, if the original coefficients belong to the field of rational numbers,
the coefficients after a replacement operation also belong to the field of rational numbers.

4 More on tableaux
An important feature of tableaux is given in the following proposition.

3 Proposition Let b1, . . . ,bm be a basis for Rm and let a1, . . . ,an be vectors in Rm. Consider the

KC Border The Gauss–Jordan and Simplex Algorithms 8

following tableau.

a1 . . . a j . . . an e1 . . . em

b1 t1,1 . . . t1, j . . . t1,n y1,1 y1,m
...

...
...

...
...

...
bi ti,1 . . . ti, j . . . ti,n yi,1 yi,m

...
...

...
...

...
...

bm tm,1 . . . tm, j . . . tm,n ym,1 ym,m

(5)

That is, for each j,

a j =
m

∑
i=1

ti, jbi (6)

and
e j =

m

∑
i=1

yi, jbi. (7)

Let yi be the (row) vector made from the last m elements of the ith row. Then

yi ·a j = ti, j. (8)

Proof : Let B be the m×m matrix whose jth column is b j, let A be the m×n matrix with column
j equal to a j, let T be the m× n matrix with (i, j) element ti, j, and let Y be the m×m matrix
with (i, j) element yi, j (that is, yi is the ith row of Y). Then (6) is just

A = BT

where and (7) is just
I = BY.

Thus Y = B−1, so
YA = B−1(BT) = (B−1B)T = T,

which is equivalent to (8).

5 The Fredholm Alternative
4 Theorem (Fredholm Alternative) Exactly one of the two following alternatives holds.

∃x Ax = b. (9)

∃y yA = 0 and y ·b > 0. (10)
Moreover, if A and b have all rational entries, then x or y may be taken to have rational entries.

Proof : We prove the theorem based on the Replacement Lemma 2, and simultaneously compute
x or y. Let A be m×n with columns A1, . . . ,An in Rm. Then x ∈ Rn and b ∈ Rm. Begin with this
tableau.

A1 . . . An b e1 . . . em

e1 α1,1 . . . α1,n β1 1 0
...

...
...

... . . .

em αm,1 . . . αm,n βm 0 1

KC Border The Gauss–Jordan and Simplex Algorithms 9

Here αi, j is the ith row, jth column element of A and βi is the ith coordinate of b with respect to
the standard ordered basis. Now use the replacement operation to replace as many non-column
vectors as possible in the left-hand margin basis. Say that we have replaced p members of the
standard basis with columns of A. Interchange rows and columns as necessary to bring the
tableau into this form:

A j1 . . . A jp A jp+1 . . . A jn b e1 . . . ek . . . em

A j1 1 0 t1,p+1 . . . t1,n ξ1 y1,1 . . . y1,k . . . y1,m
...

...
...

...
...

...
A jp 0 1 tp,p+1 . . . tp,n ξp yp,1 . . . yp,k . . . yp,m

ei1 0 . . . 0 0 . . . 0 ξp+1 yp+1,1 . . . yp+1,k . . . yp+1,m
...

...
...

...
...

...
...

...
...

eir 0 . . . 0 0 . . . 0 ξp+r yp+r,1 . . . yp+r,k . . . yp+r,m

...
...

...
...

...
...

...
...

...
eim−p 0 . . . 0 0 . . . 0 ξm ym,1 . . . ym,k . . . ym,m

The p× p block in the upper left is an identity matrix, with an (m− p)× p block of zeroes below
it. This comes from the fact that the representation of columns of A in the left-hand margin
basis puts coefficient 1 on the basis element and 0 elsewhere. The (m− p)× (m− p) block to the
right is zero since no additional replacements can be made. The middle column indicates that

b =
p

∑
k=1

ξkA jk +
m−p

∑
r=1

ξp+reir .

If ξp+1 = · · · = ξm = 0 (which must be true if p = m), then b is a linear combination only of
columns of A, so alternative (9) holds, and we have found a solution. (We may have to rearrange
the order of the coordinates of x.)

The Replacement Lemma 2 guarantees that A j1 , . . . ,A jp ,ei1 , . . . ,eim−p is a basis for Rm. So if
some ξk is not zero for m ⩾ k > p, then Proposition 3 implies that the corresponding yk row
vector satisfies yk ·b = ξk ̸= 0, and yk ·A j = 0 for all j. Multiplying by −1 if necessary, yk satisfies
alternative (10).

As for the rationality of x and y, if all the elements of A are rational, then all the elements of
the original tableau are rational, and the results of pivot operation are all rational, so the final
tableau is rational.

5 Remark As an aside, observe that A j1 , . . . ,A jp is a basis for the column space of A, and
yp+1, . . . ,ym is a basis for its orthogonal complement.

6 Remark Another corollary is that if all the columns of A are used in the basis, the matrix Y
is the inverse of A. This is the well-known result that the Gauss–Jordan method can be used to
invert a matrix.

6 The simplex method
We are now ready to apply the replacement operation to linear programming. Dantzig [3] draws
a distinction between the simplex method and the simplex algorithm. The simplex method
consists of two phases, each of which uses the simplex algorithm. The simplex algorithm is

KC Border The Gauss–Jordan and Simplex Algorithms 10

a rule for choosing pivots for successive replacement operations until a stopping condition is
reached.

For concreteness, consider the following linear programming problem. Let A be an m× n
matrix, let b belong to Rm, and p belong to Rn. The primal program is:

maximize
x∈Rn

p · x

subject to

Ax = b

x ≧ 0

The dual program is:
minimize

y∈Rm
b · y

subject to

yA ≧ p

Notice that there are no nonnegativity constraints on y.)
A vector x is feasible for the primal if Ax = b and x ≧ 0, and it is optimal if it is feasible

and attains the maximum. Phase 1 of the simplex method uses the simplex algorithm to find
a feasible vector, or else proves that none exists. Phase 2 starts with a feasible vector, and
uses the simplex algorithm to find an optimal vector. Paradoxically, Phase 1 uses Phase 2, so
we start with that. Phase 1 is covered in Section 8.

6.1 The simplex tableau and Phase 2
The matrix A is m×n, so each column is a vector in Rm. The linear span of the columns is called
the column space of A. The dimension of the column space is called the rank of A. For the
time being, assume:

7 Assumption (Rank Assumption) The column space of the m×n matrix A has dimension
m.

Under the Rank Assumption, every basis for the column space of A has m elements, so we
must have n ⩾ m. In fact we can find a basis (usually more than one) consisting only of columns
of A.

Assume that we have somehow found (in Phase 1) a feasible solution x = (x1, . . . ,xn) ≧ 0 of
Ax = b that depends on a basis {Ac1 , . . . ,Acm} of m columns of A. That is,

b =
n

∑
j=1

x jA j =
m

∑
i=1

xci A
ci ,

where
xci ⩾ 0, i = 1, . . . ,m, and x j = 0 for j /∈ {c1, . . . ,cm}.

By the Rank Assumption, every column A j is a unique linear combination of the basis columns
{Ac1 , . . . ,Acm}, say

A j =
m

∑
i=1

ti, jAci , j = 1, . . . ,n.

Given this uniqueness, the basis determines x, and so determines p · x. Thus:

KC Border The Gauss–Jordan and Simplex Algorithms 11

The linear programming problem can be thought of as finding the opti-
mal basis out of the columns of A. The simplex algorithm is a rule for
replacing columns in the basis, one at a time, until the optimal basis is
found.

There is a little gap in my argument here. I have not shown that if the LP has an optimum,
then I can find an optimum that depends only on a linearly independent set of columns. I should
add this to my theory notes, but for now I leave the proof to you, or see Gale [8, Theorem 3.3,
p. 84].

6.2 Replacement operations on the simplex tableau
The idea behind the simplex algorithm is to choose the replacement column so that at each
stage p · x increases. In order to do this, we must examine how the tableau changes when we
change the basis.

Start with the following tableau.

A1 . . . A j . . . An b

Ac1 t1,1 . . . t1, j . . . t1,n xc1

...
...

...
... · · ·

Ack tk,1 . . . tk, j . . . tk,n xck

...
...

...
... · · ·

Acm tm,1 . . . tm, j . . . tm,n xcm

Bear with me while we see what happens when we pivot on tk,ℓ in order to replace Ack by Aℓ.
This replacement will yield the new tableau

A1 . . . Aℓ . . . An b

Ac′1 t ′1,1 . . . t ′1,ℓ . . . t ′1,n x′c′1...
...

...
... · · ·

Ac′k−1 t ′k−1,1 . . . t ′k−1,ℓ . . . t ′k−1,n x′c′k−1

Aℓ = Ac′k t ′k,1 . . . t ′k,ℓ . . . t ′k,n x′ℓ = x′c′k
Ac′k+1 t ′k+1,1 . . . t ′k+1,ℓ . . . t ′k+1,n x′c′k+1

...
...

...
... · · ·

Ac′m t ′m,1 . . . t ′m,ℓ . . . t ′m,n x′c′m

where
c′k = ℓ and c′i = ci for i ̸= k; (11)

the new ℓth column has t ′i,ℓ = 0 for i ̸= k, and t ′k,ℓ = 1; the new kth row has

t ′k, j =
tk, j
tk,ℓ

j = 1, . . . ,n (12)

and
x′ck

= x′ℓ =
xck

tk,ℓ
; (13)

KC Border The Gauss–Jordan and Simplex Algorithms 12

the new ith row for i ̸= k has
t ′i, j = ti, j −

ti,ℓ
tk,ℓ

tk, j j = 1, . . . ,n (14)

(note that this implies t ′i,ℓ = 0) and

x′ci
= xci −

ti,ℓ
tk,ℓ

xck . (15)

We can now compute what happens to p · x when Ack is replaced by Aℓ. Initially

p · x =
m

∑
i=1

pci xci .

After the replacement,

p · x′ =
m

∑
i=1

pci x
′
ci

= pℓ
xck

tk,ℓ︸︷︷︸
x′ℓ=x′ck

+
m

∑
i=1
i̸=k

pci

(
xci −

ti,ℓ
tk,ℓ

xck

)
︸ ︷︷ ︸

x′ci

.

The difference is

p · x′− p · x = pℓ
xck

tk,ℓ
− pck xck −

m

∑
i=1
i̸=k

pci

ti,ℓ
tk,ℓ

xck

=
xck

tk,ℓ

(
pℓ−

m

∑
i=1

pciti,ℓ

)
(16)

This suggest the following definition. Given a tableau, define

π j =
m

∑
i=1

ti, j pci , j = 1, . . . ,n. (17)

The interpretation of π j is this: the jth column A j is a linear combination ∑m
i=1 ti, jAci of the

basis columns Ac1 , . . . ,Acm . The value of the linear combination is π j = ∑m
i=1 ti, j pci . The value of

column j is p j. By (16), we have:

p · x′ > p · x if and only if xck

tk,ℓ
> 0 and pℓ > πℓ.

6.3 Adding a criterion row
Let us keep track of changes in p ·x by adding a criterion row to the bottom of the tableau.

The jth column of the criterion row is π j − p j, for j = 1, . . . ,n and the
last column is p · x = ∑m

i=1 pci xci .

KC Border The Gauss–Jordan and Simplex Algorithms 13

The tableau now looks like this.

A1 . . . Aℓ . . . An b

Ac1 t1,1 . . . t1,ℓ . . . t1,n xc1

...
...

...
... · · ·

Ack tk,1 . . . tk,ℓ . . . tk,n xck

...
...

...
... · · ·

Acm tm,1 . . . tm,ℓ . . . tm,n xcm

π1 − p1 . . . πℓ− pℓ . . . πn − pn p · x

Using (17), after a replacement operation where Ack is replaced by Aℓ, the new criterion row
must be computed:

π ′
j − p j =

m

∑
i=1

t ′i, j pc′i
− p j

=
m

∑
i=1
i ̸=k

t ′i, j pci + t ′k, j pℓ− p j (only ck has changed; c′k = ℓ)

=
m

∑
i=1
i ̸=k

(
ti, j −

ti,ℓ
tk,ℓ

tk, j

)
pci +

tk, j
tk,ℓ

pℓ− p j

=
m

∑
i=1

(
ti, j −

ti,ℓ
tk,ℓ

tk, j

)
pci −

(
tk, j −

tk,ℓ
tk,ℓ

tk, j

)
︸ ︷︷ ︸

=0

pck +
tk, j
tk,ℓ

pℓ− p j

=
m

∑
i=1

ti, j pci︸ ︷︷ ︸
π j

−
tk, j
tk,ℓ

m

∑
i=1

ti,ℓpci︸ ︷︷ ︸
πℓ

+
tk, j
tk,ℓ

pℓ− p j

= (π j − p j)−
tk, j
tk,ℓ

(πℓ− pℓ). (18)

Finally, by (16)
p · x′ = p · x−

xck

tk,ℓ
(πℓ− pℓ). (19)

Comparing equations (18) and (19) to (14), we see that:

The updated criterion row is also computed from the tableau the same way as
any other row!

Equation (19) also explains why we use π − p in the criterion row rather than p−π.

6.4 Choosing the pivot
We want to choose the pivot for the replacement operation to do two things:

1. Make x′ ≧ 0, and

KC Border The Gauss–Jordan and Simplex Algorithms 14

2. Increase p · x.

So when is
x′c′i ⩾ 0?

We already assumed that xci ⩾ 0 for each i = 1, . . . ,m. Thus

x′j = x′c′k
=

xck

tk, j
⩾ 0 if and only if the pivot tk, j > 0.

Thus in order to make x′ ≧ 0, we need to choose the pivot so that tk, j > 0. But that is not
all. Having chosen tk, j > 0, for i ̸= k,

x′c′i = x′ci
= xci −

ti, j
tk, j

xck ⩾ 0 ⇐⇒ xci ⩾
ti, j
tk, j

xck .

Now if ti, j ⩽ 0, the right-hand side is nonpositive, so there is no problem. But if ti, j > 0, then

xci ⩾
ti, j
tk, j

xck ⇐⇒ xci

ti, j
⩾ xck

tk, j
.

In other words, to make sure each new x′c′i
⩾ 0, we have to choose k so that xck

tk, j
⩽ xci

ti, j
for all i

such that ti, j > 0.
Having done this, from (16), it follows that if we choose the column j so that π j − p j < 0,

then p · x′ ⩾ p · x and p · x′ > p · x provided xck > 0.

6.5 The simplex algorithm made explicit
Thus the simplex algorithm is this (but there are many variations):

KC Border The Gauss–Jordan and Simplex Algorithms 15

The naïve simplex algorithm
Step 1. Choose the pivot column j so that

π j − p j < 0 for maximization
π j − p j > 0 for minimization.

If more than one j has this property, the choice is not crucial, and should
be made for convenience.

Step 2. Choose the pivot row k so that

tk, j > 0,

and xck

tk, j
⩽ xci

ti, j
for all i such that ti, j > 0.

Step 3. Perform the replacement operation with pivot tk, j on the tableau.

Step 4. Repeat Steps 1–3 until a stopping condition is reached. The stopping
conditions are: (i) Step 1 cannot be carried out, or (ii) Step 2 cannot be
carried out.
If Step 1 cannot be carried out, then the current x is optimal, and p · x (the
criterion row entry in the b column) is the optimal value. (See Proposition 10
below.)
If Step 2 cannot be carried out, the problem has no optimum, that is, p · x
is unbounded. (See Proposition 11 below.)

This is the algorithm in a nutshell, but there are several remaining issues:

1. How does one get an initial tableau?
This is answered in section 8.

2. Must the algorithm stop?
The answer is generically yes. But it may cycle and never terminate. This appears not to
be common, but there is a simple modification, called the lexicographic simplex algorithm
that is guaranteed to stop and not to cycle. This is discussed in section 11.

3. What happens if the algorithm stops?
This is answered in section 7. Briefly, it stops at an optimum if there is one, or else it
stops and gives a proof that no optimum exists.

4. How many steps until it stops?
This is beyond the scope of these notes, but let me say, for those of you who care, that
generically the simplex algorithm stops in polynomial time, but there are exceptional cases.

7 The stopping conditions
I first turn to the question of whether the simplex algorithm ever stops. A sufficient condition
for stopping is the following.

KC Border The Gauss–Jordan and Simplex Algorithms 16

8 Assumption (Nondegeneracy) The m×n matrix A has rank m, and the vector b cannot
be written as a linear combination of fewer than m columns of A.

9 Proposition Under the Nondegeneracy Assumption 8, after each replacement operation in
the simplex algorithm, the value p · x′ is strictly greater (for a maximization problem) than the
previous value p · x. Therefore, no basis is repeated. Since there are finitely many bases, the
algorithm must stop in a finite number of steps.

Proof : By equations (16–17),
p · x′− p · x =

xck

tk, j
(p j −π j).

But we chose k, j so that π j − p j < 0, and tk, j > 0. In addition, xck ⩾ 0 for all k. Nondegeneracy
implies that in fact xck > 0 for all k. Thus p · x′ > p · x.

The lexicographic simplex algorithm described in section 11 will always stop, even in the
degenerate case, see Gale [8, Chapter 4, section 7, pp. 123–128] or Dantzig [3, pp. 234–235].
The remainder of the section is devoted to examining the two states in which the algorithm can
stop.

10 Proposition (Gale [8, Theorem 4.2, p. 109]) Under the Rank Assumption 7, if the
algorithm reaches a tableau with π j − p j ⩾ 0 for all j = 1, . . . ,n, then x is optimal for a maximiza-
tion problem; and if the algorithm reaches a tableau with π j − p j ⩽ 0 for all j = 1, . . . ,n, then x
is optimal for a minimization problem.

Proof : The proof makes use of the dual program

minimize
y∈Rm

b · y

subject to

yA ≧ p

Given the tableau

A1 . . . A j . . . An b

Ac1 t1,1 . . . t1, j . . . t1,n xc1

...
...

...
...

...
Ack tk,1 . . . tk, j . . . tk,n xck

...
...

...
...

...
Acm tm,1 . . . tm, j . . . tm,n xcm

π − p π1 − p1 . . . π j − p j . . . πn − pn p · x

we know that Ac1 , . . . ,Acm are linearly independent. Therefore the m equations

y ·Aci = pi, i = 1, . . . ,m

have a solution y. For j /∈ {c1, . . . ,cm}, we have from the tableau that

A j =
m

∑
i=1

ti, jAci

KC Border The Gauss–Jordan and Simplex Algorithms 17

so
y ·A j =

m

∑
i=1

ti, jy ·Aci =
m

∑
i=1

ti, j pi = π j ⩾ p j.

That is,
yA ≧ p

so y is feasible for the dual. (Remember there are no nonnegativity constraints on y.)
Now remember that x is given by x j = 0 for j /∈ {c1, . . . ,cm}. Thus

p · x =
m

∑
i=1

pci xci =
m

∑
i=1

(y ·Aci)xci = y ·
m

∑
i=1

Aci xci = y ·b,

where the last equality comes from the b column of the tableau. Now recall that p · x = b · y
implies that x is optimal for the primal and y is optimal for the dual.

11 Proposition If the algorithm stops with π j − p j < 0, but ti, j ⩽ 0 for all i = 1, . . . ,m, then the
primal has no optimum. That is, p · x is unbounded.

Proof : From the tableau

A j =
m

∑
i=1

ti, jAci and b =
m

∑
i=1

xci A
ci .

Thus for any λ > 0,

b =
m

∑
i=1

xci A
ci +λ

(
A j −

m

∑
i=1

ti, jAci

)
= λA j +

m

∑
i=1

(xci −λ ti, j)Aci . (20)

So define x′ by

x′j = λ , x′ci
= xci −λ ti, j, i = 1, . . . ,m, and xk = 0 otherwise.

By (20), Ax′ = b and x′ ≧ 0 since each ti, j ⩽ 0. But

p · x′ = λ p j +
m

∑
i=1

pci(xci −λ ti, j) =
m

∑
i=1

pcixci +λ (p j −
m

∑
i=1

pciti, j) = p · x+λ (p j −π j).

Since λ > 0 is arbitrary and p j −π j > 0, we see that p ·x′ is unbounded above. Thus no optimum
exists.

The following corollary deals minimization problems, where the pivot is chosen to satisfy
π j − p j > 0.

12 Corollary If the algorithm stops with π j − p j > 0, but ti, j ⩽ 0 for all i = 1, . . . ,m, then p · x
is unbounded below.

8 Phase 1: Finding a starting point
In order to get started with Phase 2, we need to find a nonnegative x with Ax = b.

KC Border The Gauss–Jordan and Simplex Algorithms 18

Case 1: b ≧ 0.

We can reduce this to an ancillary LP, namely:

minimize
z∈Rm

1 · z

subject to

Ax+ z = b

x ≧ 0
z ≧ 0

This LP has one important property—Phase 1 is trivial. Indeed

x = 0, z = b,

is a feasible nonnegative solution. Applying Phase 2 to the ancillary problem solves Phase 1.

Case 2: b ̸≧ 0.

If b ̸≧ 0, setting z = b does not give a nonnegative feasible starting point. But we can fix that
as follows. If bi < 0, multiply the ith constraint by −1. Then the constraints become

DAx+ z = Db,

where D is the diagonal matrix with dii = 1 if bi ⩾ 0 and dii =−1 if bi < 0, so that the right-hand
side constants satisfy Db ≧ 0. We now use the simplex algorithm to solve the ancillary problem

minimize
z∈Rm

1 · z

subject to x ≧ 0, z ≧ 0, and
DAx+ z = Db.

Phase 1 is also trivial for this LP:
x = 0, z = Db,

is a feasible nonnegative solution.
Note that while the solution to the primal remains the same under this transformation, the

solution to the dual does not. If y is the solution to the unmodified dual, then Dy is the solution
to the modified dual. That is, the solution to the original dual is obtained from the solution to
the modified dual by flipping the sign of yi whenever bi < 0.

8.1 Infeasibility
Phase 1 consists of the application of the simplex algorithm as described in Phase 2 to this
ancillary problem, starting as described above. If the optimum (x̄, z̄) of the ancillary problem
has z̄ = 0, then x̄ is feasible for the primal. But if the optimal z̄ ̸= 0 then the primal has no
feasible solution.

Note that if all we want to do is find some solution to a system of inequalities, we can stop
at the end of Phase 1.

KC Border The Gauss–Jordan and Simplex Algorithms 19

8.2 Inequality constraints
Often linear programs are not given with equality constraints, but with inequality constraints,
typically like this:

maximize
x∈Rn

p · x

subject to

Ax ≦ b

x ≧ 0

For some kinds of inequality constraints, Phase 1 is trivial. If all m constraints are
inequality constraints, introduce slack variables z1, . . . ,zm ⩾ 0. Let Ai denote the ith row of A.
There are four cases, depending on the sense of the inequality and the sign of bi.

Replace Ai · x ⩽ bi where bi ⩾ 0 with Ai · x+ zi = bi.

Replace Ai · x ⩾−bi where bi ⩾ 0 withAi · x− zi =−bi.

Then an initial feasible solution is given by

x = 0, z = b.

On the other hand, if we have one of these cases, then Phase 1 is non trivial, and we have
to introduce auxiliary variables u:

Replace Ai · x ⩽−bi where bi ⩾ 0 with−Ai · x− zi +ui = bi.

Replace Ai · x ⩾ bi where bi ⩾ 0 with Ai · x− zi +ui = bi.

Then an initial feasible solution is given by

x = 0, z = 0, u = b

but now we must minimize 1 ·u in order to find a feasible solution of the original problem, where
u = 0.

9 A worked example
The first example illustrates how a problem involving inequalities can combine Phases 1 and 2.

maximize 2x1 +4x2 + x3 + x4

subject to x1 ⩾ 0, . . . ,x4 ⩾ 0, and

2x1 + x2 ⩽ 3

x2 + 4x3 + x4 ⩽ 3

x1 + 3x2 + x4 ⩽ 4

To convert this to a problem with equalities, introduce three slack variables z1, z2, and z3, and
write the problem as

maximize 2x1 +4x2 + x3 + x4 +0z1 +0z2 +0z3

KC Border The Gauss–Jordan and Simplex Algorithms 20

subject to x1 ⩾ 0, . . . ,x4 ⩾ 0, z1,z2,z3 ⩾ 0, and

2x1 + x2 + z1 = 3

x2 + 4x3 + x4 + z2 = 3

x1 + 3x2 + x4 + z3 = 4

Since the right-hand side is already nonnegative there is no need to multiply any rows by −1.
Moreover, the right-hand side provides a ready made feasible vector: x1 = · · · = x4 = 0, z1 = 3,
z2 = 3, z3 = 4. The columns corresponding to these three slack variables are simply the three unit
coordinate vectors. This makes it especially easy to create a starting tableau with these three
vectors as the basis in the left-hand margin. But since the three slack variables are in a sense
artificial, it is customary to segregate the columns corresponding to them. Finally, note that by
introducing three new variables, we must extend the p vector to include three zero components.
This makes the computation of the criterion row especially easy. Here then is the initial tableau.

pci a1 a2 a3 a4 e1 e2 e3 b

Initial tableau
0 e1 2 1 0 0 1 0 0 3 3

0 e2 0 1 4 1 0 1 0 3 3

0 e3 1 3 0 1 0 0 1 4 1 1
3

−2 −4 −1 −1 0 0 0 0

Notice that the tableau is obtained by filling the matrix inequality with an identity matrix to
the right. The criterion row π − p is just −p, as everything is expressed as a linear combination
of e1,e2,e3, which have zero prices associated with them. To help you keep track, I have placed
the “prices” pci associated with each row in the far left margin.

Since we are maximizing, we look for a criterion row entry that is strictly negative. We may
as well choose the most negative column, but that is not essential. It corresponds to the column
a2. Now to choose the row, look at the ratios of the b column entries (the current x,z) to the
positive a2 entries, and choose the smallest ratio. For convenience I have put these ratios in the
right-hand margin. In this case the smallest is 1 1

3 < 3. Thus we want to replace e3 by a2, as is
indicated by the rectangle around the pivot above.

KC Border The Gauss–Jordan and Simplex Algorithms 21

The new tableau is given below, and the next pivot is indicated.

pci a1 a2 a3 a4 e1 e2 e3 b

Replace e3 by a2:
0 e1 1 2

3 0 0 − 1
3 1 0 − 1

3 1 2
3

0 e2 − 1
3 0 4 2

3 0 1 − 1
3 1 2

3
5

12

4 a2 1
3 1 0 1

3 0 0 1
3 1 1

3

− 2
3 0 −1 1

3 0 0 1 1
3 5 1

3

Replace e2 by a3:
0 e1 1 2

3 0 0 − 1
3 1 0 − 1

3 1 2
3 1

1 a3 − 1
12 0 1 1

6 0 1
4 − 1

12
5

12

4 a2 1
3 1 0 1

3 0 0 1
3 1 1

3 4

− 3
4 0 0 1

2 0 1
4 1 1

4 5 3
4

Replace e1 by a1:
2 a1 1 0 0 − 1

5
3
5 0 − 1

5 1

1 a3 0 0 1 3
20

1
20

1
4 − 1

10
1
2

4 a2 0 1 0 2
5 − 1

5 0 2
5 1

0 0 0 7
20

9
20

1
4 1 1

10 6 1
2

The algorithm stops here because the criterion row has no more negative entries. Note that we
have replaced all the unit coordinate vectors by columns of A.

Warning! The solution can now be read off from column b, but remember what those �
numbers are—the coefficients on the corresponding left-hand basis element, and that basis is
in no particular order, so read them with care! If the basis element in the left-hand column of
row i is ac, then the right-hand column value (under b) is xc, the cth coordinate of x̄, not x̄i, the
ith coordinate! If the basis element in the left-hand column of row i is ec, then the right-hand
column value (under b) is zc, the cth coordinate of z̄, a slack variable.

The solution we have found is

x̄1 = 1, x̄2 = 1, x̄3 =
1
2 , x̄4 = 0,

and the value p · x̄ is 6 1
2 .

Let me just verify that this satisfies the constraints:

2(1)+1(1)+0(1
2)+0(0) = 2+1+0+0 = 3

0(1)+1(1)+4(1
2)+1(0) = 0+1+2+0 = 3

1(1)+3(1)+0(1
2)+1(0) = 1+3+0+0 = 4

Now you either have to redo these calculations yourself or put your faith in the computer
program that I wrote to produce these tableaux. I don’t recommend the latter, as I am a
notoriously poor programmer. But you don’t need to do the former either. Remember that I
told you that it is enough to find a solution to the dual that yields the same value. And here is
the surprise I have been saving:

KC Border The Gauss–Jordan and Simplex Algorithms 22

The criterion row entries under the unit vectors comprise a solution
to the dual program.

That is,
ȳ1 =

9
20

, ȳ2 =
1
4
, ȳ3 = 1

1
10

,

solves the dual problem, which is

minimize 3y1 +3y2 +4y3

subject to
2y1 + y3 ⩾ 2

y1 + y2 + 3y3 ⩾ 4

+ 4y2 ⩾ 1

y2 + y3 ⩾ 1

Now it is easy to verify that

b · ȳ = 3(9
20)+3(1

4)+4(1 1
10) = 1 7

20 +
3
4 +4 2

5 = 6 1
2 .

has the same value as primal, and I leave it to you to verify the feasibility. But I can tell you
right now that the first three inequalities will be satisfied as equalities (since the dual variables
x̄1, x̄2, x̄3 are strictly positive), and the fourth inequality is likely strict (as x̄4 = 0).

I changed my mind. Here is the verification that ȳ is feasible for the dual:

2(9
20)+0(1

4)+1(1 1
10) = 9

10 + 0+1 1
10 = 2 = 2

1(9
20)+1(1

4)+3(1 1
10) = 9

20 +
1
4 +3 3

10 = 4 = 4

0(9
20)+4(1

4)+0(1 1
10) = 0+ 1+ 0 = 1 = 1

0(9
20)+1(1

4)+1(1 1
10) = 0+ 1

4 +1 1
10 = 1 7

20 > 1

Now either this is an incredibly contrived example, or there is something magical I haven’t
yet told you about the simplex algorithm. It’s the latter.

10 The simplex algorithm solves the dual program too
The simplex algorithm applied to the following sort of problem also computes a solution to the
dual program.

maximize
x∈Rn

p · x

subject to

Ax = b

x ≧ 0

The dual program is
minimize

y∈Rm
b · y

subject to

yA ≧ p

KC Border The Gauss–Jordan and Simplex Algorithms 23

As we saw in the last section, the initial tableau can be written

A1 An e1 em b

e1 a1,1 a1,n 1 0 . . . 0 b1
...

...
... 0

.
...

...
...

...
... . . . 0

...
em am,1 am,n 0 . . . 0 1 bm

π − p −p1 −pn 0 0 0

Assume now that the simplex algorithm enables us to replace all the coordinate vectors with
columns of A. Without loss of generality, by rearranging the rows and columns of A if necessary,
we can assume the algorithm stops in the following configuration, which has the property that
ci = i for i = 1, . . . ,m.

A1 Am Am+1 . . . An e1 . . . em b

A1 1 0 . . . 0 t1,m+1 . . . t1,n s1,1 . . . s1,m x1
... 0

.
...

...
...

...
...

...
... . . . 0

...
...

...
...

...
Am 0 . . . 0 1 tm,m+1 . . . tm,n sm,1 . . . sm,m xm

π − p 0 0 πm+1 − pm+1 . . . πn − pn y1 . . . ym p · x

There are three key observations to make here.
1. The block [si, j] j=1...m

i=1...m
is the inverse of the block Am,m = [ai, j] j=1...m

i=1...m
. (Recall the use of the

Gauss–Jordan method for inverting a matrix.)

2. By construction of the criterion row, the yks satisfy

yk =
m

∑
i=1

si,k pi k = 1, . . . ,m.

3. For j > m, we have π j ⩾ p j. (Otherwise the algorithm would not stop here with an optimal
x.)

Thus, as in the proof of Proposition 10, for j = 1, . . . ,m we have

y ·A j =
m

∑
k=1

ykak, j =
m

∑
k=1

(
m

∑
i=1

si,k pi

)
ak, j =

m

∑
i=1

pi

m

∑
k=1

(
si,kak, j

)
=

m

∑
i=1

piδi, j = p j,

where the penultimate equality follows because [si, j] is the inverse of Am,m. For j > m,

y ·A j = y ·
m

∑
i=1

ti, jAi =
m

∑
i=1

ti, jy ·Ai =
m

∑
i=1

ti, j pi = π j ⩾ p j,

by the third observation. In other words,
yA ≧ p.

In addition,

b · y =

(
m

∑
i=1

xiAi

)
· y =

m

∑
i=1

xi(Ai · y) =
m

∑
i=1

xi pi = p · x

since x j = 0 for j > m. Thus p · x = b · y, so y is optimal.

KC Border The Gauss–Jordan and Simplex Algorithms 24

10.1 Solving the dual with inequality constraints
The same technique also solves the dual for problems of the form

maximize
x∈Rn

p · x

subject to

Ax ≦ b

x ≧ 0

The dual program is
minimize

y∈Rm
b · y

subject to y ≧ 0 and

yA ≧ p

Instead, we introduce a vector z of slack variables and solve the following problem:

maximize
x∈Rn, z∈Rm

p · x+0 · z

subject to

Ax+ Iz = b

x ≧ 0
z ≧ 0

The dual program is
minimize

y∈Rm
b · y

subject to y ≧ 0 and

y[A, I] ≧ [p,0]

with no inequality constraints on y.
Our algorithm applied to this problem produces vectors x̄, z̄, and ȳ that satisfies b · ȳ =

p · x̄(+0 · z̄), and ȳ[A, I]≧ [p,0]. But this implies ȳA ≧ p and ȳ ≧ 0, so the computed solution ȳ to
the dual of the equality case also solves the dual for the inequality case.

11 Degeneracy, cycling, and the lexicographic simplex al-
gorithm

Proposition 9 shows that the simplex algorithm must stop if the linear program is nondegenerate.
But verification of nondegeneracy is difficult. This is unfortunate, as the next example shows
that the naïve simplex algorithm can cycle and never stop in the degenerate case. However
there is a simple modification, the lexicographic simplex algorithm, that will stop even in the
degenerate case.

KC Border The Gauss–Jordan and Simplex Algorithms 25

11.1 A cycling example
The first example of cycling in the simplex algorithm is due to Hoffman [9]. Beale [1] constructed
the following simpler example of cycling. (See also [3, pp. 228–230].) The problem is to

maximize 3
4 x1 −150x2 +

1
50 x3 −6x4

subject to x ≧ 0, and
1
4 x1 −60x2 − 1

25 x3 +9x4 ⩽ 0
1
2 x1 −90x2 − 1

50 x3 +3x4 ⩽ 0

+ x3 ⩽ 1

Introducing slack variables z and setting them to the right-hand side constants leads directly to
the next tableau.

KC Border The Gauss–Jordan and Simplex Algorithms 26

pci a1 a2 a3 a4 e1 e2 e3 b

Initial tableau
0 e1 1

4 −60 − 1
25 9 1 0 0 0 0

0 e2 1
2 −90 − 1

50 3 0 1 0 0 0

0 e3 0 0 1 0 0 0 1 1

− 3
4 150 − 1

50 6 0 0 0 0

Replace e1 by a1:
3
4 a1 1 −240 − 4

25 36 4 0 0 0

0 e2 0 30 3
50 −15 −2 1 0 0 0

0 e3 0 0 1 0 0 0 1 1

0 −30 − 7
50 33 3 0 0 0

Replace e2 by a2:
3
4 a1 1 0 8

25 −84 −12 8 0 0 0

−150 a2 0 1 1
500 − 1

2 − 1
15

1
30 0 0 0

0 e3 0 0 1 0 0 0 1 1 1

0 0 − 2
25 18 1 1 0 0

Replace a1 by a3:
1
50 a3 3 1

8 0 1 −262 1
2 −37 1

2 25 0 0

−150 a2 − 1
160 1 0 1

40
1

120 − 1
60 0 0 0

0 e3 −3 1
8 0 0 262 1

2 37 1
2 −25 1 1 2

525
1
4 0 0 −3 −2 3 0 0

Replace a2 by a4:
1
50 a3 −62 1

2 10500 1 0 50 −150 0 0 0

−6 a4 − 1
4 40 0 1 1

3 − 2
3 0 0 0

0 e3 62 1
2 −10500 0 0 −50 150 1 1

− 1
2 120 0 0 −1 1 0 0

Replace a3 by e1:
0 e1 −1 1

4 210 1
50 0 1 −3 0 0

−6 a4 1
6 −30 − 1

150 1 0 1
3 0 0 0

0 e3 0 0 1 0 0 0 1 1

−1 3
4 330 1

50 0 0 −2 0 0

Replace a4 by e2:
0 e1 1

4 −60 − 1
25 9 1 0 0 0

0 e2 1
2 −90 − 1

50 3 0 1 0 0

0 e3 0 0 1 0 0 0 1 1

− 3
4 150 − 1

50 6 0 0 0 0

KC Border The Gauss–Jordan and Simplex Algorithms 27

The algorithm was implemented to choose the pivot column with the most negative value in
the criterion row, and when more than one row minimized the ratio, the first row to do so
was selected for the pivot. As you can see, the seventh tableau is the same as the first, so the
algorithm is doomed to repeat itself.

A peculiar (and nongeneric) feature of this problem is that the tableau always gives a choice
of two pivot rows, and the minimum ratio is always zero. Indeed the proof of Proposition 9
shows that a zero ratio is necessary for cycling.

11.2 The lexicographic simplex algorithm
Dantzig, Orden, and Wolfe [4] provide a pivot choice rule that will not cycle. Their rule for
choosing the pivot row is lexicographic. To use it, we need to use an extended tableau with an
identity matrix spliced in to the left of the b column. (You will probably want this anyway to
compute the solution to the dual.) Here is a typical tableau:

A1 . . . A j . . . An e1 . . . em b

Ac1 t1,1 . . . t1, j . . . t1,n s1,1 . . . s1,m xc1

...
...

...
...

...
...

...
Ack tk,1 . . . tk, j . . . tk,n sk,1 . . . sk,m xck

...
...

...
...

...
...

...
Acm tm,1 . . . tm, j . . . tm,n sm,1 . . . sm,m xcm

π − p π1 − p1 . . . π j − p j . . . πn − pn y1 . . . ym p · x

The rule for choosing the column k is this

Lexicographic rule

Choose the pivot row k so that

tk, j > 0

and the vector
qk =

(
xck

tk, j
,

sk,1

tk, j
, . . . ,

sk,m

tk, j

)
is lexicographically minimal in {qi : ti, j > 0}.

This differs from our previous rule, which only looked at the first component of these vectors.
The proof that this rule works is not hard, and may be found in Gale [8, Chapter 4, section 7,
pp. 123–128] or Dantzig [3, pp. 234–235]. In practice, it appears that cycling is not a problem.
Charnes [2] deals with the problem by slightly perturbing b.

11.3 Lexicographic simplex example
Here is the lexicographic simplex method applied to Beale’s example. I have placed the entire
qi vector in the right-hand margin. (This is not computationally efficient—if you have tens of
thousands of variables, you don’t want to compute these extra ratios unless you need them all
to break ties.)

KC Border The Gauss–Jordan and Simplex Algorithms 28

pci a1 a2 a3 a4 e1 e2 e3 b

Initial tableau
0 e1 1

4 −60 − 1
25 9 1 0 0 0 0 4 0 0

0 e2 1
2 −90 − 1

50 3 0 1 0 0 0 0 2 0

0 e3 0 0 1 0 0 0 1 1

− 3
4 150 − 1

50 6 0 0 0 0

Replace e2 by a1:
0 e1 0 −15 − 3

100 7 1
2 1 − 1

2 0 0
3
4 a1 1 −180 − 1

25 6 0 2 0 0

0 e3 0 0 1 0 0 0 1 1 1 0 0 1

0 15 − 1
20 10 1

2 0 1 1
2 0 0

Replace e3 by a3:
0 e1 0 −15 0 7 1

2 1 − 1
2

3
100

3
100

3
4 a1 1 −180 0 6 0 2 1

25
1
25

1
50 a3 0 0 1 0 0 0 1 1

0 15 0 10 1
2 0 1 1

2
1
20

1
20

There is no pivot column, so the current basis is optimal. A solution is

x =
(1

25 , 0, 1, 0
)

Verify that x satisfies the constraints:

1
4 (

1
25)−60(0)− 1

25 (1)+9(0) = 1
100 +0− 1

25 +0 = − 3
100 < 0

1
2 (

1
25)−90(0)− 1

50 (1)+3(0) = 1
50 +0− 1

50 +0 = 0 = 0

0(1
25)+0(0)+1(1)+0(0) = 0+0+1+0 = 1 = 1 .

Thus a solution is

x =
(1

25 , 0, 1, 0
)

Check the value of p · x:
3
4 (

1
25)−150(0)+ 1

50 (1)−6(0) = 3
100 +0+ 1

50 +0 = 1
20 .

A solution to the dual is

y =
(
0, 1 1

2 ,
1
20

)
.

Recall that the dual problem is
minimize y3

KC Border The Gauss–Jordan and Simplex Algorithms 29

subject to y ≧ 0 and
1
4 y1 + 1

2 y2 ⩾ 3/4

−60y1 − 90y2 ⩾ −150

− 1
25 y1 − 1

50 y2 + y3 ⩾ 1/50

9y1 + 3y2 ⩾ −6 .

Check that the value of the dual is

0(0)+0(1 1
2)+1(1

20) = 0+0+ 1
20 = 1

20 .

Now verify the feasibility of the dual.

1
4 (0)+

1
2 (1

1
2)+0(1

20) = 0+ 3
4 +0 = 3

4 = 3
4

−60(0)−90(1 1
2)+0(1

20) = 0−135+0 = −135 > −150

− 1
25 (0)−

1
50 (1

1
2)+1(1

20) = 0− 3
100 +

1
20 = 1

50 = 1
50

9(0)+3(1 1
2)+0(1

20) = 0+4 1
2 +0 = 4 1

2 > −6 .

12 More worked examples
Just as a picture is worth a thousand words, a good example is worth several pages of dense
notation.

12.1 Minimization with equality constraints
Consider the following problem.

minimize x1 +6x2 −7x3 + x4 +5x5

subject to x ≧ 0, and
5x1 −4x2 +13x3 −2x4 + x5 = 20

x1 − x2 +5x3 − x4 + x5 = 8

Since the constraints take the form of equalities, no slack variables are necessary, but there is
no obvious starting point. So in Phase I, we introduce nonnegative artificial variables u1 and
u2, and proceed to solve the ancillary problem

minimize u1 +u2

subject to x ≧ 0, u ≧ 0, and

5x1 −4x2 +13x3 −2x4 + x5 + u1 = 20

x1 − x2 +5x3 − x4 + x5 + u2 = 8

Since we require that u ≧ 0, the minimum of u1 +u2 ⩾ 0, with equality only if u1 = u2 = 0. Thus
if the solution to this LP has value zero, we will have succeeded in finding a feasible solution to
the original problem. The virtue of this ancillary problem is that there is an obvious starting
point: set x = 0, and setting u = (20,8) (that is, set u to the right-hand side). The criterion row

KC Border The Gauss–Jordan and Simplex Algorithms 30

is based on the artificial price vector indicated in the left margin of the tableau, and is searched
for positive entries. Here is the initial tableau.

pci a1 a2 a3 a4 a5 e1 e2 b

Initial tableau
1 u1 5 −4 13 −2 1 1 0 20 1 7

13

1 u2 1 −1 5 −1 1 0 1 8 1 3
5

6 −5 18 −3 2 1 1 28

Replace u1 by a3:
0 a3 5

13 − 4
13 1 − 2

13
1
13

1
13 0 1 7

13 20

1 u2 − 12
13

7
13 0 − 3

13
8
13 − 5

13 1 4
13

1
2

− 12
13

7
13 0 − 3

13
8
13 − 5

13 1 4
13

Replace u2 by a5:
0 a3 1

2 − 3
8 1 − 1

8 0 1
8 − 1

8 1 1
2

0 a5 −1 1
2

7
8 0 − 3

8 1 − 5
8 1 5

8
1
2

0 0 0 0 0 0 0 0

According to this, the value (found in the lower right-hand corner) is zero, so we have indeed
found a feasible solution to the original problem, namely

x =
(
0, 0, 1 1

2 , 0, 1
2

)
.

I leave it to you to check that x does indeed satisfy the constraints.
In Phase II, we now proceed with the original minimization problem. To do so, we must

recalculate the π− p criterion row, and search for positive entries. Here is the new initial tableau.

pci a1 a2 a3 a4 a5 e1 e2 b

Initial tableau
−7 a3 1

2 − 3
8 1 − 1

8 0 1
8 − 1

8 1 1
2

5 a5 −1 1
2

7
8 0 − 3

8 1 − 5
8 1 5

8
1
2

4
7

−12 1 0 −2 0 −4 9 −8

Replace a5 by a2:
−7 a3 − 1

7 0 1 − 2
7

3
7 − 1

7
4
7 1 5

7

6 a2 −1 5
7 1 0 − 3

7 1 1
7 − 5

7 1 6
7

4
7

−10 2
7 0 0 −1 4

7 −1 1
7 −3 2

7 7 1
7 −8 4

7

Notice that in Phase II, I never pivot on a column corresponding to the artificial variables (look
at that nice fat 9 in the criterion row of the first tableau), because they may not be used in a
bona fide solution. Why, then you might ask, do I keep them in the tableau? The answer is that
they compute the solution to the dual.

We can read a solution from the final tableau above:

x =
(
0, 4

7 , 1 5
7 , 0, 0

)

KC Border The Gauss–Jordan and Simplex Algorithms 31

Let me verify that the constraints are satisfied:

5(0)−4(4
7)+13(1 5

7)−2(0)+1(0) = 0−2 2
7 +22 2

7 +0+0 = 20 = 20

1(0)−1(4
7)+5(1 5

7)−1(0)+1(0) = 0− 4
7 +8 4

7 +0+0 = 8 = 8

The value is −8 4
7 .

We can also read off a solution to the dual:

y =
(
−3 2

7 , 7 1
7

)
.

Recall that the dual problem is

maximize 20y1 +8y2

subject to
5y1 + y2 ⩽ 1

−4y1 − y2 ⩽ 6

13y1 +5y2 ⩽ −7

−2y1 − y2 ⩽ 1

y1 + y2 ⩽ 5

Verify the feasibility of the dual.

5(−3 2
7)+1(7 1

7) = −16 3
7 +7 1

7 = −9 2
7 < 1

−4(−3 2
7)−1(7 1

7) = 13 1
7 −7 1

7 = 6 = 6

13(−3 2
7)+5(7 1

7) = −42 5
7 +35 5

7 = −7 = −7

−2(−3 2
7)−1(7 1

7) = 6 4
7 −7 1

7 = − 4
7 < 1

1(−3 2
7)+1(7 1

7) = −3 2
7 +7 1

7 = 3 6
7 < 5

12.2 An example with a negative right-hand side constant
Consider the problem

maximize 2x1 −3x2 + x3 + x4

subject to x ≧ 0, and
x1 +2x2 + x3 + x4 = 3

x1 −2x2 +2x3 + x4 = −2

3x1 − x2 − x4 = −1

Rewrite the constraints as
x1 +2x2 + x3 + x4 = 3

− x1 +2x2 −2x3 − x4 = 2

−3x1 + x2 + x4 = 1

KC Border The Gauss–Jordan and Simplex Algorithms 32

This has no effect on the primal, but the dual is different. This form has the virtue that the
following ancillary problem has an obvious starting feasible point.

minimize u1 + u2 + u3

subject to x ≧ 0, u ≧ 0, and

x1 +2x2 + x3 + x4 + u1 = 3

− x1 +2x2 −2x3 − x4 + u2 = 2

−3x1 + x2 + x4 + u3 = 1

A feasible starting point is given by setting x = 0, and setting u = (3,2,1). Here is the initial
tableau.

a1 a2 a3 a4 e1 e2 e3 b

Initial tableau:
e1 1 2 1 1 1 0 0 3 1 1

2

e2 −1 2 −2 −1 0 1 0 2 1

e3 −3 1 0 1 0 0 1 1 1

−3 5 −1 1 0 0 0 6

Replace e2 by a2 to get:
e1 2 0 3 2 1 −1 0 1 1

3

a2 − 1
2 1 −1 − 1

2 0 1
2 0 1

e3 −2 1
2 0 1 1 1

2 0 − 1
2 1 0 0

− 1
2 0 4 3 1

2 0 −2 1
2 0 1

Replace e3 by a3 to get:
e1 9 1

2 0 0 −2 1
2 1 1

2 −3 1 2
19

a2 −3 1 0 1 0 0 1 1

a3 −2 1
2 0 1 1 1

2 0 − 1
2 1 0

9 1
2 0 0 −2 1

2 0 − 1
2 −4 1

Replace e1 by a1 to get:
a1 1 0 0 − 5

19
2
19

1
19 − 6

19
2
19

a2 0 1 0 4
19

6
19

3
19

1
19 1 6

19

a3 0 0 1 16
19

5
19 − 7

19
4
19

5
19

0 0 0 0 −1 −1 −1 0

Since the value is 0, we have found a feasible starting point for the original problem.
Now to maximize. But first we must recalculate the π − p criterion row. Here is the new

KC Border The Gauss–Jordan and Simplex Algorithms 33

initial tableau.

a1 a2 a3 a4 e1 e2 e3 b

Initial tableau:
a1 1 0 0 − 5

19
2
19

1
19 − 6

19
2

19

a2 0 1 0 4
19

6
19

3
19

1
19 1 6

19 6 1
4

a3 0 0 1 16
19

5
19 − 7

19
4

19
5

19
5
16

0 0 0 −1 6
19 − 9

19 − 14
19 − 11

19 −3 9
19

Replace a3 by a4 to get:
a1 1 0 5

16 0 3
16 − 1

16 − 1
4

3
16

a2 0 1 − 1
4 0 1

4
1
4 0 1 1

4

a4 0 0 1 3
16 1 5

16 − 7
16

1
4

5
16

0 0 1 9
16 0 − 1

16 −1 5
16 − 1

4 −3 1
16

Thus a solution is

x =
(3

16 , 1 1
4 , 0, 5

16

)
Verify the constraints are satisfied:

1(3
16)+2(1 1

4)+1(0)+1(5
16) = 3

16 +2 1
2 +0+ 5

16 = 3 = 3

1(3
16)−2(1 1

4)+2(0)+1(5
16) = 3

16 −2 1
2 +0+ 5

16 = −2 = −2

3(3
16)−1(1 1

4)+0(0)−1(5
16) = 9

16 −1 1
4 +0− 5

16 = −1 = −1

The value is −3 1
16 .

According to the criterion row we see that a solution to the dual is y =
(
− 1

16 , −1 5
16 , − 1

4

)
.

But this is a solution to the modified dual, not the original dual. To convert it we must flip
the signs on the components corresponding to negative right-hand sides in the original problem.
These are the second and third components. Thus a solution to the original dual is

y =
(
− 1

16 , 1 5
16 ,

1
4

)
.

Recall that the original dual problem is

minimize 3y1 −2y2 − y3

subject to
y1 + y2 +3y3 ⩾ 2

2y1 −2y2 − y3 ⩾ −3

y1 +2y2 ⩾ 1

y1 + y2 − y3 ⩾ 1

KC Border The Gauss–Jordan and Simplex Algorithms 34

Check that the value of the dual solution is

3(− 1
16)−2(1 5

16)−1(1
4) =− 3

16 −2 5
8 −

1
4 =−3 1

16 .

Now verify the feasibility of the dual solution for the original dual.

1(− 1
16)+1(1 5

16)+3(1
4) = − 1

16 +1 5
16 +

3
4 = 2 = 2

2(− 1
16)−2(1 5

16)−1(1
4) = − 1

8 −2 5
8 −

1
4 = −3 = −3

1(− 1
16)+2(1 5

16)+0(1
4) = − 1

16 +2 5
8 +0 = 2 9

16 > 1

1(− 1
16)+1(1 5

16)−1(1
4) = − 1

16 +1 5
16 −

1
4 = 1 = 1

12.3 A tricky point with negative right-hand side constants
If the constraints are inequality constraints and the right-hand side has negative values, simply
adding slack variables does not immediately lead to a feasible point, so Phase 1 cannot be
combined with Phase 2.

Change the constraints in the previous problem to inequalities.

maximize 2x1 −3x2 + x3 + x4

subject to x ≧ 0, and
x1 +2x2 + x3 + x4 ⩽ 3

x1 −2x2 +2x3 + x4 ⩽ −2

3x1 − x2 − x4 ⩽ −1

Add nonnegative slack variables to convert the constraints to equalities.

x1 +2x2 + x3 + x4 + z1 = 3

x1 −2x2 +2x3 + x4 + z2 = −2

3x1 − x2 − x4 + z3 = −1

Now multiply the second and third equations by −1 to get

x1 +2x2 + x3 + x4 + z1 = 3

− x1 +2x2 −2x3 − x4 − z2 = 2

−3x1 + x2 + x4 − z3 = 1

In this case setting x = 0 and z = b does not give a feasible solution to the primal. To find a
nonnegative feasible point, solve the ancillary problem

minimize u1 + u2 + u3

subject to x ≧ 0, z ≧ 0, u ≧ 0, and

x1 +2x2 + x3 + x4 + z1 + u1 = 3

− x1 +2x2 −2x3 − x4 − z2 + u2 = 2

−3x1 + x2 + x4 − z3 + u3 = 1

KC Border The Gauss–Jordan and Simplex Algorithms 35

This problem has a trivial starting point, given by x = 0, z = 0, and u = (3,2,1). Here is the
initial tableau.

a1 a2 a3 a4 e1 e2 e3 u1 u2 u3 b

Initial tableau:
u1 1 2 1 1 1 0 0 1 0 0 3 1 1

2

u2 −1 2 −2 −1 0 −1 0 0 1 0 2 1

u3 −3 1 0 1 0 0 −1 0 0 1 1 1

−3 5 −1 1 1 −1 −1 0 0 0 6

Replace u2 by a2 to get:
u1 2 0 3 2 1 1 0 1 −1 0 1 1

3

a2 − 1
2 1 −1 − 1

2 0 − 1
2 0 0 1

2 0 1

u3 −2 1
2 0 1 1 1

2 0 1
2 −1 0 − 1

2 1 0 0

− 1
2 0 4 3 1

2 1 1 1
2 −1 0 −2 1

2 0 1

Replace u3 by a3 to get:
u1 9 1

2 0 0 −2 1
2 1 − 1

2 3 1 1
2 −3 1 2

19

a2 −3 1 0 1 0 0 −1 0 0 1 1

a3 −2 1
2 0 1 1 1

2 0 1
2 −1 0 − 1

2 1 0

9 1
2 0 0 −2 1

2 1 − 1
2 3 0 − 1

2 −4 1

Replace u1 by a1 to get:
a1 1 0 0 − 5

19
2

19 − 1
19

6
19

2
19

1
19 − 6

19
2

19

a2 0 1 0 4
19

6
19 − 3

19 − 1
19

6
19

3
19

1
19 1 6

19

a3 0 0 1 16
19

5
19

7
19 − 4

19
5

19 − 7
19

4
19

5
19

0 0 0 0 0 0 0 −1 −1 −1 0

The value is 0, so we have found a feasible starting point for Phase 2. Now to recalculate
the π − p criterion row and maximize. Here is the new initial tableau.

a1 a2 a3 a4 e1 e2 e3 u1 u2 u3 b

Initial tableau:
a1 1 0 0 − 5

19
2
19 − 1

19
6
19

2
19

1
19 − 6

19
2
19

a2 0 1 0 4
19

6
19 − 3

19 − 1
19

6
19

3
19

1
19 1 6

19 6 1
4

a3 0 0 1 16
19

5
19

7
19 − 4

19
5

19 − 7
19

4
19

5
19

5
16

0 0 0 −1 6
19 − 9

19
14
19

11
19 − 9

19 − 14
19 − 11

19 −3 9
19

KC Border The Gauss–Jordan and Simplex Algorithms 36

Replace a3 by a4 to get:
a1 1 0 5

16 0 3
16

1
16

1
4

3
16 − 1

16 − 1
4

3
16 1

a2 0 1 − 1
4 0 1

4 − 1
4 0 1

4
1
4 0 1 1

4 5

a4 0 0 1 3
16 1 5

16
7

16 − 1
4

5
16 − 7

16
1
4

5
16 1

0 0 1 9
16 0 − 1

16 1 5
16

1
4 − 1

16 −1 5
16 − 1

4 −3 1
16

Replace a1 by e1 to get:
e1 5 1

3 0 1 2
3 0 1 1

3 1 1
3 1 − 1

3 −1 1
3 1

a2 −1 1
3 1 − 2

3 0 0 − 1
3 − 1

3 0 1
3

1
3 1

a4 −1 2
3 0 2

3 1 0 1
3 − 2

3 0 − 1
3

2
3 0

1
3 0 1 2

3 0 0 1 1
3

1
3 0 −1 1

3 − 1
3 −3

Thus a solution is

x = (0, 1, 0, 0)

Verify the constraints are satisfied:

1(0)+2(1)+1(0)+1(0) = 0+2+0+0 = 2 < 3

1(0)−2(1)+2(0)+1(0) = 0−2+0+0 = −2 = −2

3(0)−1(1)+0(0)−1(0) = 0−1+0+0 = −1 = −1

The value is −3.

Note that by relaxing the constraints from equations in the previous section to inequalities, the
value has increased.

A solution to the dual is

y =
(
0, 1 1

3 ,
1
3

)
.

This can be read off the criterion row in two places, under the slack variables, or by appropriate
sign flips under the auxiliary variables. Recall that the dual problem is

minimize 3y1 −2y2 − y3

subject to
y1 + y2 +3y3 ⩾ 2

2y1 −2y2 − y3 ⩾ −3

y1 +2y2 ⩾ 1

y1 + y2 − y3 ⩾ 1

Check that the value of the dual is

3(0)−2(1 1
3)−1(1

3) = 0−2 2
3 −

1
3 =−3.

KC Border The Gauss–Jordan and Simplex Algorithms 37

Now verify the feasibility of the dual.

1(0)+1(1 1
3)+3(1

3) = 0+1 1
3 +1 = 2 1

3 > 2

2(0)−2(1 1
3)−1(1

3) = 0−2 2
3 −

1
3 = −3 = −3

1(0)+2(1 1
3)+0(1

3) = 0+2 2
3 +0 = 2 2

3 > 1

1(0)+1(1 1
3)−1(1

3) = 0+1 1
3 −

1
3 = 1 = 1

12.4 Finding a basis
The replacement operation can be used to find a basis for a set of columns vectors. To be picky,
this does not really use the simplex method, but it is useful.

13 Example Find a basis for the column space of
1 2 0 1 1 1

0 1 1 1 0 1

3 2 −4 1 1 1

−2 0 4 −2 2 1


Start with a basis of unit coordinate vectors.

a1 a2 a3 a4 a5 a6

Initial tableau:
e1 1 2 0 1 1 1

e2 0 1 1 1 0 1

e3 3 2 −4 1 1 1

e4 −2 0 4 −2 2 1

Replace e1 by a1 to get:
a1 1 2 0 1 1 1

e2 0 1 1 1 0 1

e3 0 −4 −4 −2 −2 −2

e4 0 4 4 0 4 3

KC Border The Gauss–Jordan and Simplex Algorithms 38

Replace e2 by a2 to get:
a1 1 0 −2 −1 1 −1

a2 0 1 1 1 0 1

e3 0 0 0 2 −2 2

e4 0 0 0 −4 4 −1

Replace e3 by a4 to get:
a1 1 0 −2 0 0 0

a2 0 1 1 0 1 0

a4 0 0 0 1 −1 1

e4 0 0 0 0 0 3

Replace e4 by a6 to get:
a1 1 0 −2 0 0 0

a2 0 1 1 0 1 0

a4 0 0 0 1 −1 0

a6 0 0 0 0 0 1

This asserts that {a1,a2,a4,a6} is a basis for the column space. □

12.5 Finding a basis without the rank assumption
14 Example Find a basis for the column space of

1 2 0 1 1 1

0 1 1 1 0 1

3 2 −4 1 1 1

4 5 −3 3 2 3


Note that the last row is the sum of the first three rows, so the rows are not independent.

KC Border The Gauss–Jordan and Simplex Algorithms 39

Start with a basis of unit coordinate vectors.

a1 a2 a3 a4 a5 a6

Initial tableau:
e1 1 2 0 1 1 1

e2 0 1 1 1 0 1

e3 3 2 −4 1 1 1

e4 4 5 −3 3 2 3

Replace e1 by a1 to get:
a1 1 2 0 1 1 1

e2 0 1 1 1 0 1

e3 0 −4 −4 −2 −2 −2

e4 0 −3 −3 −1 −2 −1

Replace e2 by a2 to get:
a1 1 0 −2 −1 1 −1

a2 0 1 1 1 0 1

e3 0 0 0 2 −2 2

e4 0 0 0 2 −2 2

Replace e3 by a4 to get:
a1 1 0 −2 0 0 0

a2 0 1 1 0 1 0

a4 0 0 0 1 −1 1

e4 0 0 0 0 0 0

Notice that we are unable to replace the unit coordinate vector e4, but none of the columns of
A depend on it. That is, {a1,a2,a4} is a basis for the column space.

□

References
[1] E. M. L. Beale. 1955. Cycling in the dual simplex algorithm. Naval Research Logistics

Quarterly 2(4):269–276. DOI: 10.1002/nav.3800020406

[2] A. Charnes. 1952. Optimality and degeneracy in linear programming. Econometrica
20(2):160–170. http://www.jstor.org/stable/1907845

[3] G. B. Dantzig. 1963. Linear programming and extensions. Princeton: Princeton University
Press.

[4] G. B. Dantzig, A. Orden, and P. Wolfe. 1955. The generalized simplex method for min-
imizing a linear form under linear inequality constraints. Pacific Journal of Mathematics
5(2):183–195.

http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1103044531

http://dx.doi.org/10.1002/nav.3800020406
http://www.jstor.org/stable/1907845
http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.pjm/1103044531

KC Border The Gauss–Jordan and Simplex Algorithms 40

[5] R. Dorfman, P. A. Samuelson, and R. M. Solow. 1987. Linear programming and economic
analysis. New York: Dover. Reprint of the 1958 edition published by McGraw-Hill in New
York.

[6] J. Franklin. 2002. Methods of mathematical economics: Linear and nonlinear programming,
fixed point theorems. Number 37 in Classics in Applied Mathematics. Philadelphia: SIAM.
Corrected reprint of the 1980 edition published by Springer–Verlag.

[7] D. Gale. 1969. How to solve linear inequalities. American Mathematical Monthly 76(6):589–
599. http://www.jstor.org/stable/2316658

[8] . 1989. Theory of linear economic models. Chicago: University of Chicago Press.
Reprint of the 1960 edition published by McGraw-Hill.

[9] A. J. Hoffman. 1953. Cycling in the simplex algorithm. Report 2974, National Bureau of
Standards. December 16, 1953. 7 pp.

[10] W. W. Leontief. 1941. The structure of the American economy, 1919–1939. New York:
Oxford University Press.

[11] F. Quesnay. 1758. Tableau Économique. Versailles.

http://www.jstor.org/stable/2316658

	The Gauss–Jordan method of elimination
	A different look at the Gauss–Jordan method
	The replacement operation
	More on tableaux
	The Fredholm Alternative
	The simplex method
	The simplex tableau and Phase 2
	Replacement operations on the simplex tableau
	Adding a criterion row
	Choosing the pivot
	The simplex algorithm made explicit

	The stopping conditions
	Phase 1: Finding a starting point
	Infeasibility
	Inequality constraints

	A worked example
	The simplex algorithm solves the dual program too
	Solving the dual with inequality constraints

	Degeneracy, cycling, and the lexicographic simplex algorithm
	A cycling example
	The lexicographic simplex algorithm
	Lexicographic simplex example

	More worked examples
	Minimization with equality constraints
	An example with a negative right-hand side constant
	A tricky point with negative right-hand side constants
	Finding a basis
	Finding a basis without the rank assumption

