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1 Separation by hyperplanes
Given p ∈ Rn and α ∈ R, let [p ⩾ α] denote the set {x ∈ Rn : p · x ⩾ α} where p · x is the
Euclidean inner product

∑n
i=1 pixi. The sets [p = α], etc., are defined similarly. A hyperplane

in Rn is a set of the form [p = α], where p ̸= 0.1 The vector p can be thought of as a real-valued
linear function on Rm, or as a vector normal (orthogonal) to the hyperplane at each point.
Multiplying p and α by the same nonzero scalar does not change the hyperplane. In R2, a
hyperplane is just a line, and in R3, a hyperplane is an ordinary plane. In R1, a hyperplane is
just a point.

A weak half space or closed half space is a set of the form [p ⩾ α] or [p ⩽ α], while a
strict half space or open half space is of the form [p > α] or [p < α]. We say that nonzero p,
or the hyperplane [p = α], separates A and B if either A ⊂ [p ⩾ α] and B ⊂ [p ⩽ α], or
B ⊂ [p ⩾ α] and A ⊂ [p ⩽ α]. Let us agree to write p · A ⩾ p · B to mean p · x ⩾ p · y
for all x in A and y in B. The separation is proper if there exists some x in A and y in B
such that p · x ̸= p · y. Proper separation guarantees that A ∪ B is not wholly included in the
hyperplane [p = α].

Figure 1. Strong separation. Figure 2. These sets cannot be sepa-
rated by a hyperplane.

There are stronger notions of separation. The hyperplane [p = α] strictly separates A and
B if A and B are in disjoint open half spaces, that is, A ⊂ [p > α] and B ⊂ [p < α] (or vice
versa). It strongly separates A and B if A and B are in disjoint closed half spaces. That is,
there is some ε > 0 such that A ⊂ [p ⩾ α + ε] and B ⊂ [p ⩽ α] (or vice versa). Another way to
state strong separation is that infx∈A p · x > supy∈B p · y (or swap A and B).

1In more general linear spaces, a hyperplane is a level set [f = α] of a nonzero real-valued linear function (or
functional, as they are more commonly called). If the space is a topological vector space and the linear functional
is not continuous, the hyperplane is a dense subset. If the function is continuous, then the hyperplane is closed.
[1, Lemma 5.55, p.198] Open and closed half spaces are topologically open and closed if and only if the functional
is continuous.
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There is another notion of separation that is not as useful as the ones above, but I mention
it here to eliminate possible confusion. Let us agree to say that p strictly algebraically
separates A and B if p · x > p · y for all x ∈ A and y ∈ B (or vice versa).2 It should be
clear that strict separation implies strict algebraic separation, but the next example shows the
converse is not true.

1 Example (Examples of separation) These examples in R2 illustrate some subtleties.
Let

A = {(ξ, η) : η > 1/|ξ| and ξ < 0}, B = {(ξ, η) : η > 1/ξ and ξ > 0}

and let C be the ξ-axis,
C = {(ξ, η) : η = 0}.

See Figure 3.

BA

C

Figure 3. A = {(ξ, η) : η > 1/|ξ| and ξ < 0}, B = {(ξ, η) : η > 1/ξ and ξ > 0}, and
C = {(ξ, η) : η = 0}.

Note that p = (1, 0) strictly separates A and B, but they cannot be strongly separated.
Also, B and C can be strictly algebraically separated, but not strictly separated. Any

nonzero vector p that properly separates B and C is of the form of the form p = (0, p2) where
p2 ̸= 0. Consider p2 > 0. Then p · c = 0 for all c ∈ C and p · b > 0 for every b ∈ B, so p strictly
algebraically separates B and C. But 0 ∈ C and p · 0 = 0, and the points bn = (n, 1/n) ∈ B
satisfy p · bn → 0. Consequently, B and C cannot be strictly separated, that is, put into disjoint
open half spaces.

Let

E = {(ξ, η) : η < 0 or [η = 0 and ξ < 0]} and F = {(ξ, η) : η > 0 or [η = 0 and ξ > 0]}.

See Figure 4. These are disjoint and convex. Any nonzero vector p that properly separates
E and F is of the form of the form p = (0, p2) where p2 ̸= 0. For any such p, the points
x = (−1, 0) ∈ E and b = (1, 0) ∈ F satisfy p · x = p · y = 0. In particular, E and F cannot be
strictly algebraically separated. □

2This is not standard terminology, but useful to make this one particular point.
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F

E

Figure 4. E = {(ξ, η) : η < 0 or [η = 0 and ξ < 0]} and F = {(ξ, η) : η > 0 or [η = 0 and ξ > 0]}.
These sets cannot be strictly separated.

2 Example In R2, consider a line L and a point x not on L. Any nonzero vector orthogonal
to the line defines a linear function that strongly separates x from L. However, almost any
perturbation of the function (except scalar multiplication) cannot separate them.

However, if a point in Rm is disjoint from a compact convex set, then a whole open set of
vectors defines linear functions that strongly separate them. □

3 Exercise Prove the last assertion of the above example. □

See Appendix B for the definition and properties of the relative interior ri C of a convex
set C.

4 Lemma If p properly separates A and B, then it properly separates ri A and ri B.

Proof : Since A ⊂ ri A and B ⊂ ri B and x 7→ p · x is continuous, if p does not properly separate
the relative interiors, that is, if p · ri A = p · ri B, then p · A = p · B, and the separation of A and
B is not proper.

Here are some simple results that are used so commonly that they are worth noting in a
lemma.

5 Lemma Let A and B be disjoint nonempty convex subsets of Rn and suppose nonzero p in
Rn properly separates A and B with p · A ⩾ p · B.

1. If A is a linear subspace, then p annihilates A. That is, p · x = 0 for every x in A.

2. If A is a cone, then p · x ⩾ 0 for every x in A.

3. If B is a cone, then p · x ⩽ 0 for every x in B.

4. If A includes a set of the form x + Rn
++, then p > 0.

5. If B includes a set of the form x − Rn
++, then p > 0.

v. 2016.12.08::18.50
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Proof : The proofs of all these are more or less the same, so we shall just prove (4). Since p is
nonzero by hypothesis, it suffices to show that p ≧ 0. Suppose by way of contradiction that
pi < 0 for some i. Note that tei + ε1 belongs to Rm

++ for every t, ε > 0. Now p · (x + tei + ε1) =
p · x + tpi + εp · 1. By letting t → ∞ and ε ↓ 0 we see that p · x + tpi + εp · 1 ↓ −∞, which
contradicts p · (x + tei + ε1) ⩾ p · y for any y in B. Therefore p > 0.

2 Separating Hyperplane Theorems
We now come to the main result on separation of convex sets.3

6 Strong Separating Hyperplane Theorem Let K and C be disjoint nonempty convex
subsets of Rn. Suppose K is compact and C is closed. Then there exists a nonzero p ∈ Rn that
strongly separates K and C.

Proof : Let d(x, y) = ∥x−y∥ denote the Euclidean distance on Rn. Define f : K → R by f(x) =
inf{d(x, y) : y ∈ C}, that is f(x) is the distance from x to C. The function f is continuous. To
see this, observe that for any y, the distance d(x′, y) ⩽ d(x′, x) + d(x, y) (triangle inequality),
and d(x, y) ⩽ d(x, x′) + d(x′, y). Thus |d(x, y) − d(x′, y)| ⩽ d(x, x′), so |f(x) − f(x′)| ⩽ d(x, x′).
Thus f is actually Lipschitz continuous.

Since K is compact, f achieves a minimum on K at some point x̄. I next claim that
there is some point ȳ in C such that f(x̄) = ∥x̄ − ȳ∥. See Figure 5. The proof of this is

K

C

x̄

ȳ

p = x̄ − ȳ

Figure 5. Minimum distance and separating hyperplanes.

straightforward in Rn, but I will give a subtler proof that works for an arbitrary Hilbert space.
To see that such a ȳ exists, for each n, let Cn = {y ∈ C : d(x̄, y) ⩽ f(x̄) + 1/n}. Then

3Theorem 6 is true in general locally convex spaces, where p is interpreted as continuous linear functional.
(But remember, compact sets can be rare in such spaces.) The proof I give makes use of some of the special
properties of Rn, namely that it has an inner product generating its metric. This proof thus works in any Hilbert
space, with inner product denoted p · x. Roko and I give a proof of the general case in [1, Theorem 5.79, p. 207],
or see Dunford and Schwartz [2, Theorem V.2.10, p. 417]. A topological vector space is locally convex if
every neighborhood of zero includes a convex neighborhood of zero. Consequently a neighborhood of any point
includes a convex neighborhood of that point. Since this is always true in finite dimensional spaces, you might
have trouble thinking of a space that is not locally convex. The ℓp-spaces for 0 < p < 1 are not locally convex.

v. 2016.12.08::18.50
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each Cn is a nonempty, closed, and convex subset of C, and Cn+1 ⊂ Cn for each n. Moreover
f(x̄) = inf{d(x̄, y) : y ∈ Cn}, that is, if such a ȳ exists, it must be in Cn for every n. I now
claim that diam Cn = sup{d(y1, y2) : y1, y2 ∈ Cn} → 0 as n → ∞. To see this, start with the
parallelogram identity4

∥x1 + x2∥2 = 2∥x1∥2 − ∥x1 − x2∥2 + 2∥x2∥2.

Now let y1, y2 belong to Cn. The distance from x̄ to the midpoint of the segment joining y1, y2
is given by d(x̄, 1

2 y1 + 1
2 y2) = ∥ 1

2 (y1 − x̄) + 1
2 (y2 − x̄)∥. Evaluate the parallelogram identity for

xi = 1
2 (yi − x̄) to get

d(x̄, 1
2 y1 + 1

2 y2)2 = 1
2 d(y1, x̄)2 + 1

2 d(y2, x̄)2 − 1
4 d(y1, y2)2.

so rearranging gives

d(y1, y2)2 = 2
[
d(y1, x̄)2 − d(x̄, 1

2 y1 + 1
2 y2)2]

+ 2
[
d(y2, x̄)2 − d(x̄, 1

2 y1 + 1
2 y2)2]

. (1)

Now for any point y ∈ Cn, we have f(x̄) ⩽ d(x̄, y) ⩽ f(x̄) + 1/n, so

d(x̄, y)2 − f(x̄)2 ⩽
(
f(x̄) + 1/n

)2 − f(x̄)2 = 2f(x̄)/n + 1/n2.

Now both y1 and 1
2 y1 + 1

2 y2 belong to Cn, so∣∣d(y1, x̄)2 − d(x̄, 1
2 y1 + 1

2 y2)2∣∣ =
∣∣d(y1, x̄)2 − f(x̄)2 −

(
d(x̄, 1

2 y1 + 1
2 y2)2 − f(x̄)2)∣∣

⩽
∣∣d(y1, x̄)2 − f(x̄)2∣∣ +

∣∣d(x̄, 1
2 y1 + 1

2 y2)2 − f(x̄)2∣∣
⩽ 2

( 2
n f(x̄) + 1

n2

)
,

and similarly for y2. Substituting this in (1) gives

d(y1, y2)2 ⩽ 8( 2
n + 1

n2 ) → 0 as n → ∞,

so diam Cn → 0. Since Rn (or any Hilbert space) is complete, the Cantor Intersection Theo-
rem 19 asserts that

∩∞
n=1 Cn is a singleton {ȳ}. This ȳ has the desired property. Whew! (It also

follows that ȳ is the unique point satisfying f(x̄) = d(x̄, ȳ), but we don’t need to know that.)
Maybe I should make this a separate lemma.5

Put p = x̄ − ȳ. Since K and C are disjoint, we must have p ̸= 0. Then 0 < ∥p∥2 = p · p =
p · (x̄ − ȳ), so p · x̄ > p · ȳ. What remains to be shown is that p · ȳ ⩾ p · y for all y ∈ C and
p · x̄ ⩽ p · x for all x ∈ K:

So let y belong to C. Since ȳ minimizes the distance (and hence the square of the distance)
to x̄ over C, for any point z = ȳ + λ(y − ȳ) (with 0 < λ ⩽ 1) on the line segment between y and
ȳ we have

(x̄ − z) · (x̄ − z) ⩾ (x̄ − ȳ) · (x̄ − ȳ).
4This says that the sum of the squares of the lengths of the diagonals of a parallelogram is equal to the sum of

the squares of the lengths of the sides. (Consider the parallelogram with vertices 0, x1, x2, x1 + x2. Its diagonals
are the segments [0, x1 + x2] and [x1, x2], and their lengths are ∥x1 + x2∥ and ∥x1 − x2∥. It has two sides of
length ∥x1∥ and two of length ∥x2∥.) To prove this, note that

(x1 + x2) · (x1 + x2) = x1 · x1 + 2x1 · x2 + x2 · x2

(x1 − x2) · (x1 − x2) = x1 · x1 − 2x1 · x2 + x2 · x2.

Solve the latter for 2x1 · x2 and substitute in into the former to get
(x1 + x2) · (x1 + x2) = 2x1 · x1 − (x1 − x2) · (x1 − x2) + 2x2 · x2,

and the desired result is restated in terms of norms.
5This argument can be greatly simplified in Rn by noting that the set C1 is compact, which need not be

true in an infinite dimensional Hilbert space. Compactness implies that a sequence yn ∈ Cn has a subsequence
converging to some point ȳ as above.

v. 2016.12.08::18.50



KC Border Separating Hyperplane Theorems 6

Rewrite this as

0 ⩾ (x̄ − ȳ) · (x̄ − ȳ) − (x̄ − z) · (x̄ − z)
= (x̄ − ȳ) · (x̄ − ȳ) −

(
x̄ − ȳ − λ(y − ȳ)

)
·
(
x̄ − ȳ − λ(y − ȳ)

)
= (x̄ − ȳ) · (x̄ − ȳ) − (x̄ − ȳ) · (x̄ − ȳ) + 2λ(x̄ − ȳ) · (y − ȳ) − λ2(y − ȳ) · (y − ȳ)
= 2λ(x̄ − ȳ) · (y − ȳ) − λ2(y − ȳ) · (y − ȳ)
= 2λp · (y − ȳ) − λ2(y − ȳ) · (y − ȳ).

Divide by λ > 0 to get
2p · (y − ȳ) − λ(y − ȳ) · (y − ȳ) ⩽ 0.

Letting λ ↓ 0, we conclude p · ȳ ⩾ p · y.
A similar argument for x ∈ K completes the proof.

This proof is a hybrid of several others. The manipulation in the last series of inequalities
appears in von Neumann and Morgenstern [7, Theorem 16.3, pp. 134–38], and is probably older.
Hiriart-Urruty and Lemaréchal [4, pp. 41, 46] use the parallelogram identity to show that ȳ is
unique, but they stop short of computing the diameter of the sets Cn. Those authors rely on the
compactness of closed balls in Rn for the existence of ȳ, so their argument does not generalize
to Hilbert spaces. A different proof appears in Rockafellar [6, Corollary 11.4.2, p. 99].

7 Corollary Let C be a nonempty closed convex subset of Rn. Assume that the point x does
not belong to C. Then there exists a nonzero p ∈ Rn that strongly separates x and C.

8 Definition Let C be a set in Rn and x a point belonging to C. The nonzero vector p
supports C at x if p · y ⩾ p · x for all y ∈ C (or if p · y ⩽ p · x for all y ∈ C). The hyperplane
{y : p ·y = p ·x} is a supporting hyperplane for C at x. The support is proper if p ·y > p ·x
for some y in C.

9 Lemma If p properly supports the convex set C at x, then the relative interior of C does not
meet the supporting hyperplane. That is, if p · C ⩾ p · x, then p · y > p · x for all y ∈ ri C.

Proof : Geometrically, this says that if z is in the hyperplane, and y is on one side, the line
through y and z must go through to the other side. Algebraically, let p properly support C
at x, say p · C ⩾ p · x. Then there exists y ∈ C with p · y > p · x. Let z belong to ri C.
By separation p · z ⩾ p · x, so suppose by way of contradiction that p · z = p · x. Since z is
in the relative interior of C, there is some ε > 0 such that z + ε(z − y) belongs to C. Then
p ·

(
z + ε(z − y)

)
= p · x − εp · (x − y) < p · x, a contradiction.

10 Finite Dimensional Supporting Hyperplane Theorem Let C be a convex subset of
Rn and let x̄ belong to C. Then there is hyperplane properly supporting C at x̄ if and only if
x̄ /∈ ri C.

Proof of Theorem 10: ( =⇒ ) This is just Lemma 9.
(⇐=) Without loss of generality, we can translate C by −x̄, and thus assume x̄ = 0.
Assume 0 /∈ ri C. (This implies that C is not a singleton, and also that C ̸= Rn.) Define

A =
∪
λ>0

λ ri C.

Clearly ∅ ̸= ri C ⊂ A, 0 /∈ A but 0 ∈ A, and A is a deleted cone. More importantly, A is convex
(a simple exercise), and A lies in the span of ri C (cf. Proposition 16). (The closure of A is called
the tangent cone to C at 0.)

v. 2016.12.08::18.50



KC Border Separating Hyperplane Theorems 7

0

v1

v2

v

−v

C

A

Figure 6.

Since Rn is finite dimensional there exists a finite maximal collection of linearly independent
vectors v1, . . . , vk that lie in ri C. Since ri C contains at least one nonzero point, we have k ⩾ 1.
Let v =

∑k
i=1 vi, and note that (1/k)v belongs to ri C. I claim that −v /∈ A. See Figure 6. To

see this, assume by way of contradiction that −v belongs to A. Thus, there exists a sequence
{xn} in A satisfying xn → −v. Since v1, . . . , vk is a maximal independent set, we must be able
to write xn =

∑k
i=1 λn

i vi. By Lemma 15 (at the end of this section), λn
i −−−−→

n→∞
−1 for each i.

In particular, for some n we have λn
i < 0 for each i. Now if for this n we let λ =

∑k
i=1 λn

i < 0,
then

0 = 1
1−λ xn +

k∑
i=1

( −λn
i

1−λ

)
vi ∈ A, as A is convex,

which is a contradiction. Hence −v /∈ A.
Now by Corollary 7 there exists some nonzero p strongly separating −v from A. That is,

p · (−v) < p · y for all y ∈ A. Moreover, since A is a cone, p · y ⩾ 0 = p · 0 for all y ∈ A, and
p · (−v) < 0 (Lemma 5). Thus p supports A ⊃ C at 0. Moreover, p · (1/k)v > 0, so p properly
supports C at 0.

The next theorem yields only proper separation but requires only that the sets in question
have disjoint relative interiors. In particular it applies whenever the sets themselves are disjoint.
It is a strictly finite-dimensional result.

11 Finite Dimensional Separating Hyperplane Theorem Two nonempty convex subsets
of Rn can be properly separated by a hyperplane if and only their relative interiors are disjoint.

Proof : (⇐=) Let A and B be nonempty convex subsets of Rn with ri A ∩ ri B = ∅. Put
C = A − B. By Proposition 18 ri C = ri A − ri B, so 0 /∈ ri C. It suffices to show that there
exists some nonzero p ∈ Rn satisfying p · x ⩾ 0 for all x ∈ C, and p · y > 0 for some y ∈ C. If
0 /∈ C, this follows from Corollary 7. If 0 ∈ C, it follows from Theorem 10.

( =⇒ ) If p properly separates A and B, then the same argument used in the proof of
Theorem 10 shows that ri A ∩ ri B = ∅.

Recall Example 1, which gave examples of sets that could not be strictly separated. In
each case, the boundary of one of these sets included a half-line, that is, a set of the form
{(1 − λ)x + λy : λ ⩾ 0}, where x ̸= y. In finite dimensional spaces Klee [5] has proven that
absence of these half-lines is a sufficient condition for strict separation of closed convex sets.
Here is the result without proof.

12 Theorem (Strict separation) A pair of disjoint nonempty closed convex subsets of a
finite dimensional vector space can be strictly separated by a hyperplane if neither includes a
half-line in its boundary.

v. 2016.12.08::18.50
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Now I’ll state without proof a general theorem that applies in infinite dimensional spaces.

13 Infinite Dimensional Separating Hyperplane Theorem Two disjoint nonempty con-
vex subsets of a (not necessarily locally convex) topological vector space can be properly separated
by a closed hyperplane (or continuous linear functional) if one of them has a nonempty interior.

As an application we have the following result due to Fan, Glicksberg, and Hoffman [3]. It
is the basis of the saddlepoint theorem for constrained optimization.

14 Concave Alternative Theorem Let C be a nonempty convex subset of a vector space,
and let f1, . . . , fm : C → R be concave. Letting f = (f1, . . . , fm) : C → Rm, exactly one of the
following is true.

∃x̄ ∈ C f(x̄) ≫ 0. (2)

Or (exclusive),
∃p > 0 ∀x ∈ C p · f(x) ⩽ 0. (3)

Proof : Clearly both cannot be true. Suppose (2) fails. Set

H = {f(x) : x ∈ C} and set Ĥ = {y ∈ Rm : ∃x ∈ C y ≦ f(x)}.

Since (2) fails, we see that H and Rm
++ are disjoint. Consequently Ĥ and Rm

++ are disjoint.
Now observe that Ĥ is convex. To see this, suppose y1, y2 ∈ Ĥ. Then yi ≦ f(xi), i = 1, 2.
Therefore, for any λ ∈ (0, 1),

λy1 + (1 − λ)y2 ≦ λf(x1) + (1 − λ)f(x2) ≦ f
(
λx1 + (1 − λ)x2)

,

since each f j is concave. Therefore λy1 + (1 − λ)y2 ∈ Ĥ.
Thus, by the Separating Hyperplane Theorem 11, there is a nonzero vector p ∈ Rm properly

separating Ĥ and Rm
++. We may assume

p · Ĥ ⩽ p · Rm
++. (4)

By Lemma 5, p > 0. Evaluating (4) at z = ε1 for ε > 0, we get p · y ⩽ εp · 1. Since ε may be
taken arbitrarily small, we conclude that p · y ⩽ 0 for all y in Ĥ. In particular, p · f(x) ⩽ 0 for
all x in C.

A Continuity of the coordinate map
The following lemma may be obvious to you. Certainly many other authors take it for granted.

15 Lemma Let v1, . . . , vp be linearly independent vectors in Rm. Let xn =
∑p

i=1 λn
i vi. If the

sequence xn converges, say xn → x, then for each i = 1, . . . , p, the sequence λn
i converges, say

λn
i → λi, and x =

∑p
i=1 λivi.

Proof of Lemma 15: Let V denote the m × p matrix whose columns are v1, . . . , vp, and observe
that V has full rank. For each n there is a vector λn in Rp satisfying

V λn = xn.

Since V has full rank, so does the p × p matrix V ′V . Define the p-vector λ by

λ = (V ′V )−1V ′x.

v. 2016.12.08::18.50
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That is, λ is the coefficient vector of the ordinary least squares regression of x on the vis.6 Or
in mathematical terms V λ is the orthogonal projection of x on the space spanned by the vis.
Since xn → x,

(V ′V )−1V ′xn → (V ′V )−1V ′x = λ,

but
(V ′V )−1V ′yn = (V ′V )−1V ′V λn = λn,

so λn → λ. This implies that V λn → V λ. But V λn → x, so we conclude x = V λ.

B Relative interior of a convex set
A set A in a vector space is affine if it includes all the lines (not just line segments) generated
by its points. For the algebraically inclined, A is affine if x, y ∈ A imply λx + (1 − λ)y ∈ A for
all λ ∈ R. Intersections of affine sets are affine, so every set is included in a smallest affine set,
called its affine hull. A set A is affine if and only if for each x ∈ A, the set A − x is a linear
subspace (prove it as an exercise). In Rn, every linear subspace and so every affine subspace is
closed. This need not be true in an infinite dimensional topological vector space.

The relative interior of a convex set C, denoted ri C, is taken to be its interior relative
to its affine hull. Even a one point set has a nonempty relative interior in this sense. The only
convex set with an empty relative interior is the empty set. Similarly, the relative boundary
of a convex set is the boundary relative to the affine hull. This turns out to be the closure less
the relative interior.

Note that this is not the same relative interior that a topologist would mean. In particular,
it is not true that A ⊂ B implies ri A ⊂ ri B. For instance, consider a closed interval and one of
its endpoints. The relative interior of the interval is the open interval and the relative interior
of the singleton endpoint is itself, which is disjoint from the relative interior of the interval.

An important consequence of the definition is:

If x ∈ ri C and y ∈ C, the line L through x and y lies in the affine hull of C,
so x is in the interior of L ∩ C relative to L. Thus for small enough ε, we have
x + ε(x − y) ∈ C.

We may use this fact without any special mention.
I will now state without proof some useful properties of relative interiors.

16 Proposition (Rockafellar [6, Theorem 6.3, p. 46]) For a convex subset C of Rn,

ri C = C, and ri(ri C) = ri C.

A consequence of this is that the affine hull of ri C and of C coincide.

17 Proposition (Rockafellar [6, Theorem 6.5, p. 47]) Let {Ci}i∈I be a family of convex
subsets of Rn, and assume

∩
i ri Ci ̸= ∅. Then∩

i

Ci =
∩

i

Ci, and for finite I, ri
∩

i

Ci =
∩

i

ri Ci.

18 Proposition (Rockafellar [6, Corollaries 6.6.1, 6.6.2, pp. 48–49]) For convex sub-
sets C, C1, C2 of Rn, and λ ∈ R,

ri(λC) = λ ri C, ri(C1 + C2) = ri C1 + ri C2, and C1 + C2 ⊃ C1 + C2.

6 Econometrics can be useful to theorists too.

v. 2016.12.08::18.50
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19 Cantor Intersection Theorem In a complete metric space, if a decreasing sequence
of nonempty closed subsets has vanishing diameter, then the intersection of the sequence is a
singleton.

Proof : Let {Fn} be a decreasing sequence of nonempty closed subsets of the complete metric
space (X, d), and assume limn→∞ diameter Fn = 0. The intersection F =

∩∞
n=1 Fn cannot have

more that one point, for if a, b ∈ F , then d(a, b) ⩽ diameter Fn for each n, so d(a, b) = 0, which
implies a = b.

To see that F is nonempty, for each n pick some xn ∈ Fn. Since d(xn, xm) ⩽ diameter Fn

for m ⩾ n, the sequence {xn} is Cauchy. Since X is complete there is some x ∈ X with xn → x.
But xn belongs to Fm for m ⩾ n, and each Fn is closed, so x belongs to Fn for each n.
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