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Consider an Arrow–Debreu model economy

E =
(
(Xi,≽

i
)m
i=1, (Yj)n

j=1, ω
)
.

Second Welfare Theorem Assume the economy E satisfies the following
conditions.

1. For each consumer i = 1, . . . , m

(a) Xi is nonempty and convex.
(b) ≽

i
is continuous, locally nonsatiated, and convex.

2. For each producer j = 1, . . . , n,

(a) Yj is nonempty and convex.

Let (x̄1, . . . , x̄m, ȳ1, . . . , ȳn) be an efficient allocation. Then there is a
nonzero price vector p̄ satisfying

1. For each consumer i = 1, . . . , m, x̄i minimizes p̄ · x over the upper
contour set {x ∈ Xi : x≽ x̄i}.
Thus if there is a cheaper point x̃ ∈ Xi satisfying p̄ · x̃ < p̄ · x̄i, then x̄i

actually maximizes ≽
i

over the budget set {x ∈ Xi : p̄ · x ⩽ p̄ · x̄i}.

2. For each producer j = 1, . . . , n, ȳj maximizes profit over Yj at prices
p̄. That is,

p̄ · ȳj ⩾ p̄ · y for all y ∈ Yj .

That is, (x̄1, . . . , x̄m, ȳ1, . . . , ȳn, p̄) is a valuation quasiequilibrium. If the
cheaper point condition holds for each i, then it is a valuation equilibrium.
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Proof : Since (x̄1, . . . , x̄m, ȳ1, . . . , ȳn) is efficient, it is impossible to make
everyone better off. So define the set “Scitovsky set” S by

S =
m∑

i=1
Pi(x̄i)

(see Figure 1), and define the aggregate consumption possibility set A by

A = ω +
n∑

j=1
Yj .

By efficiency A∩S = ∅. (For suppose, x ∈ A∩S. Since x ∈ S, we can write
x =

∑m
i=1 xi, where each xi ∈ P (x̄i), or x ≻ x̄i. Since x ∈ A, we can write

x = ω +
∑n

j=1 yj . But then (x1, . . . , xm, y1, . . . , yn) is an allocation, and
xi ≻ x̄i for each i, contradicting the efficiency of (x̄1, . . . , x̄m, ȳ1, . . . , ȳn).)

It follows from Lemmas 5 and 4 below that S is open and convex since
each summand is, and is nonempty by local nonsatiation. Similarly A is
convex. Thus by the Separating Hyperplane Theorem, there is a nonzero
price vector p̄ satisfying

p̄ · x ⩾ p̄ · y for each x ∈ S, y ∈ A.

From Lemma 2 below, each x̄i belongs to the closure of Pi(x̄i), so ∑m
i=1 x̄i

belongs to the closure of S. Now ∑m
i=1 x̄i = ω +

∑n
j=1 ȳj so it also belongs

to A. It follows that

p̄ · x ⩾ p̄ ·
m∑

i=1
x̄i = p̄ ·

ω +
n∑

j=1
ȳj

 ⩾ p̄ · y for each x ∈ S, y ∈ A.

From the Summation Principle, we then have

p̄ · x̄i ⩽ p̄ · x for all x ∈ P (x̄i) and p̄ · ȳj ⩾ p̄ · y for all y ∈ Yj .

Since U(x̄i) is the closure of P (x̄i) we also have

p̄ · x̄i ⩽ p̄ · x for all x ∈ U(x̄i).

This proves that we have a valuation quasiequilibrium. The role of the
cheaper point condition is well known.
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x̄2

P2(x̄2)
u2 = u2(x̄2)

x̄1

P1(x̄1)
u1 = u1(x̄1)

S = P1(x̄1) + P2(x̄2)

x̄1 + x̄2

Figure 1. Construction of the Scitovsky set for 2 consumers.
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Preliminary results on preferences
We start with some preliminary lemmas on preference relations. For our
purposes, a preference relation ≽ is quasiorder, or preorder, on a set X.
That is, ≽ is a total, transitive, reflexive binary relation on X. The binary
relations ≻ and ∼ are the asymmetric and symmetric parts of ≽, defined
by

x ≻ y if x≽ y and not y ≽x

and
x ∼ y if x≽ y and y ≽x

Recall that a function u : X → R is a utility for ≽ if

x≽ y ⇐⇒ u(x) ⩾ u(y).

Nonsatiation
A preference relation ≽ on a set X has a satiation point x if x is a greatest
element, that is, if x≽ y for all y ∈ X. A preference relation is nonsatiated
if it has no satiation point. That is for every x there is some y ∈ X with
y ≻ x.

If (X, d) is a metric space, the preference relation ≽ is locally nonsa-
tiated if for every x ∈ X and every ε > 0, there exists a point y ∈ X with
d(y, x) < ε and y ≻ x. Note that this is a joint condition on X and ≽. In
particular, if X is nonempty, it must be that for each point x ∈ X and every
ε > 0 there is a point y ̸= x belonging to X with d(y, x) < ε. That is, X
may have no isolated points.

Continuity
Given a preference relation ≽ on a set X, define the strict and weak upper
contour sets

P (x) = {y ∈ X : y ≻ x} and U(x) = {y ∈ X : y ≽x}.

We also define the strict and weak lower contour sets

P −1(x) = {y ∈ X : x ≻ y} and U−1(x) = {y ∈ X : x≽ y}.

When (X, d) is a metric space, we say that ≽ is continuous if its graph
is closed. There are other equivalent characterizations.
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Lemma 1 For a total, transitive, reflexive preference relation ≽ on a metric
space X, the following are equivalent.

1. The graph of ≽ is closed. That is, if yn → y, xn → x, and yn ≽xn for
each n, then y ≽x.

2. The graph of ≻ is open. That is, if y ≻ x, there is an ε > 0 such that
if d(y′, y) < ε and d(x′, x) < ε, then y′ ≻ x′.

3. For each x, the weak contour sets U(x) = {y ∈ X : y ≽x} and
U−1(x) = {y ∈ X : x≽ y} are closed.

4. For each x, the strict contour sets P (x) = {y ∈ X : y ≻ x} and
P −1(x) = {y ∈ X : x ≻ y} are open.

Proof : Since ≽ is total, it is clear that (1) ⇐⇒ (2) and (3) ⇐⇒ (4).
Moreover it is also immediate that (1) =⇒ (3) and (2) =⇒ (4). So it
suffices to prove that (4) implies (1).

So assume by way of contradiction that yn → y, xn → x, and yn ≽xn

for each n, but x ≻ y. Since P (y) is open by condition (4) and x ∈ P (y) by
hypothesis, there is some ε > 0 such that d(z, x) < ε implies z ∈ P (y), or
z ≻ y. Similarly, since P −1(x) is open and y ∈ P −1(x) there is some ε′ > 0
such that d(w, y) < ε′ implies x ≻ w. Since xn → x and yn → y, for large
enough n, we have d(xn, x) < ε and d(yn, y) < ε′, so

x ≻ yn ≽xn ≻ y

for these large n. Pick one such n, call it n0, and observe that

x ≻ xn0 ≻ y.

Now condition (4) implies P (xn0) is open and since x ∈ P (xn0), there is
some η > 0 such that d(z, x) < η implies z ≻ xn0 . Similarly, since P −1(xn0)
and y ∈ P −1(xn0), there is η′ > 0 such that d(w, y) < η′ implies xn0 ≻ w.
Now for large enough n we have d(xn, x) < η and d(yn, y) < η′, so

xn ≻ xn0 ≻ yn,

which contradicts yn ≽xn for all n.

We also say that ≽ is upper semicontinuous if for each x, the set
U(x) = {y ∈ X : y ≽x} is closed, or equivalently, P −1(x) = {y ∈ X : x ≻ y}
is open in X. Similarly, ≽ is lower semicontinuous if for each x, the set
U−1(x) = {y ∈ X : x≽ y} is closed, or equivalently, P (x) = {y ∈ X : y ≻ x}
is open in X. Observe that a preference relation is continuous if and only if
it is both upper and lower semicontinuous.
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Lemma 2 If ≽ is continuous and locally nonsatiated, then U(x) is the
closure of P (x).

Proof : P (x) ⊂ U(x): Let y belong to P (x). That is, there is a sequences
yn in P (x) with yn → y. Then for each n, we have yn ≻ x, so a fortiori
yn ≽x. Since yn → y, we have (yn, x) → (y, x), so by continuity, y ≽x, that
is, y ∈ U(x).

U(x) ⊂ P (x): Let y belong to U(x). By local nonsatiation, for each n
there is a yn satisfying d(yn, y) < 1

n and yn ≻ y. Since yn ≻ y and y ≽x, we
have yn ≻ y, so yn ∈ P (x). But yn → y, so y ∈ P (x).

Convexity
When X is a subset of a linear space, we say that ≽ is

• weakly convex if

y ≽x =⇒ λy + (1 − λ)x≽x for all 0 < λ < 1.

• convex if

y ≻ x =⇒ λy + (1 − λ)x ≻ x for all 0 < λ < 1.

• strictly convex if

y ≽x =⇒ λy + (1 − λ)x ≻ x for all 0 < λ < 1.

To simplify the discussion of these properties let say that z is between x
and y if (i) x ̸= y, and (ii) z = λx + (1 − λ)y for some 0 < λ < 1.

The property of weak convexity is not actually weaker than convexity.

Example 3 Let X = [−1, 1] and define ≽ by means of the utility function

u(x) =

1 x ̸= 0

0 x = 0.

Then ≽ is convex, but not weakly convex. Why? □

The preference relation in the example above is not continuous, which
brings up the next lemma.
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Lemma 4 If ≽ is convex and upper semicontinuous, then it is weakly con-
vex.

Proof : Assume that y ≽x. In case y ≻ x, then by convexity λy+(1−λ)x ≻ x
for 0 < λ < 1, so a fortiori λy + (1 − λ)x≽x. So now consider the case
y ∼ x and assume by way of contradiction that for some 0 < λ̄ < 1 we have
x ≻ λ̄y +(1− λ̄)x = z. By upper semicontinuity, we may choose λ̃ close to λ̄,
but with λ̃ > λ̄ so that x ≻ λ̃y +(1− λ̄)x = w. See Figure 2. But this means
that z is between w and x, and since x ≻ w, convexity implies z ≻ w. On the
other hand, w is between y and z, and y ∼ x ≻ z, so convexity implies w ≻ z,
a contradiction.

3y

3x
3z = λ̄y + (1 − λ̄)x3

λ̃y + (1 − λ̄)x = w

Figure 2. y ≻ z =⇒ w ≻ z and x ≻ w =⇒ z ≻ w, oops.

Lemma 5 If X is convex and ≽ is weakly convex, then for each x, both
U(x) and P (x) are convex sets.

If X is convex and ≽ is convex and continuous, then for each x, both
U(x) and P (x) are convex sets.

Proof : The first statement is easy to prove. The second statement follows
from the first and Lemma 4.

The next result gives conditions that rules out “thick” indifference classes.

Lemma 6 If X is convex, and ≽ is convex, continuous, and nonsatiated,
then P (x) is the interior of U(x).

Proof : Since P (x) ⊂ U(x) and P (x) is open by lower semicontinuity, we
have P (x) ⊂ int U(x). For the reverse inclusion, let y belong to the interior
of U(x), so there is some ε > 0 such that the ε-ball centered at y lies
wholly in U(x). Assume by way of contradiction that y /∈ P (x). Then since
y ∈ U(x), it must be that y ∼ x. Since ≽ is nonsatiated, there is a point
z ∈ X with z ≻ y. Choose α < 0 but close enough to zero, so that the point
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w = (1−α)y +αz is within ε of y and also so that z ≻ w, which can be done
by upper semicontinuity of ≽. See Figure 3. Then z ≻ w≽x ∼ y. But since y
lies between z and w, by convexity we must have y ≻ w, a contradiction.

3z

3w = (1 − α)y + αz3y

Figure 3. w≽x ∼ y and z ≻ y ≻ w, oops.

Example 7 Lemma 6 may fail without convexity. Let X = R and let ≽
be defined by the utility u(x) = x2. Then ≽ is locally nonsatiated and
continuous, but P (0) = R \ {0} ̸= R = int U(0). □
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