Caltech Division of the Humanities and Social Sciences

The Second Welfare Theorem

KC Border January 2001 v. 2016.01.26::08.52

Consider an Arrow–Debreu model economy

$$E = \left((X_i, \succeq)_{i=1}^m, (Y_j)_{j=1}^n, \omega \right).$$

Second Welfare Theorem Assume the economy *E* satisfies the following conditions.

- 1. For each consumer $i = 1, \ldots, m$
 - (a) X_i is nonempty and convex.
 - (b) \succeq is continuous, locally nonsatiated, and convex.
- 2. For each producer $j = 1, \ldots, n$,
 - (a) Y_i is nonempty and convex.

Let $(\bar{x}^1, \ldots, \bar{x}^m, \bar{y}^1, \ldots, \bar{y}^n)$ be an efficient allocation. Then there is a nonzero price vector \bar{p} satisfying

1. For each consumer i = 1, ..., m, \bar{x}^i minimizes $\bar{p} \cdot x$ over the upper contour set $\{x \in X_i : x \succcurlyeq \bar{x}^i\}$.

Thus if there is a cheaper point $\tilde{x} \in X_i$ satisfying $\bar{p} \cdot \tilde{x} < \bar{p} \cdot \bar{x}^i$, then \bar{x}^i actually maximizes \succeq over the budget set $\{x \in X_i : \bar{p} \cdot x \leq \bar{p} \cdot \bar{x}^i\}$.

2. For each producer j = 1, ..., n, \bar{y}^j maximizes profit over Y_j at prices \bar{p} . That is,

$$\bar{p} \cdot \bar{y}^{j} \ge \bar{p} \cdot y$$
 for all $y \in Y_{j}$.

That is, $(\bar{x}^1, \ldots, \bar{x}^m, \bar{y}^1, \ldots, \bar{y}^n, \bar{p})$ is a valuation quasiequilibrium. If the cheaper point condition holds for each *i*, then it is a valuation equilibrium.

Proof: Since $(\bar{x}^1, \ldots, \bar{x}^m, \bar{y}^1, \ldots, \bar{y}^n)$ is efficient, it is impossible to make everyone better off. So define the set "Scitovsky set" S by

$$S = \sum_{i=1}^{m} P_i(\bar{x}^i)$$

(see Figure 1), and define the aggregate consumption possibility set A by

$$A = \omega + \sum_{j=1}^{n} Y_j.$$

By efficiency $A \cap S = \emptyset$. (For suppose, $x \in A \cap S$. Since $x \in S$, we can write $x = \sum_{i=1}^{m} x^{i}$, where each $x^{i} \in P(\bar{x}^{i})$, or $x \succ \bar{x}^{i}$. Since $x \in A$, we can write $x = \omega + \sum_{j=1}^{n} y^{j}$. But then $(x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{n})$ is an allocation, and $x^{i} \succ \bar{x}^{i}$ for each *i*, contradicting the efficiency of $(\bar{x}^{1}, \ldots, \bar{x}^{m}, \bar{y}^{1}, \ldots, \bar{y}^{n})$.)

It follows from Lemmas 5 and 4 below that S is open and convex since each summand is, and is nonempty by local nonsatiation. Similarly A is convex. Thus by the Separating Hyperplane Theorem, there is a nonzero price vector \bar{p} satisfying

$$\bar{p} \cdot x \ge \bar{p} \cdot y$$
 for each $x \in S, y \in A$.

From Lemma 2 below, each \bar{x}^i belongs to the closure of $P_i(\bar{x}^i)$, so $\sum_{i=1}^m \bar{x}^i$ belongs to the closure of S. Now $\sum_{i=1}^m \bar{x}^i = \omega + \sum_{j=1}^n \bar{y}^j$ so it also belongs to A. It follows that

$$\bar{p} \cdot x \ge \bar{p} \cdot \sum_{i=1}^{m} \bar{x}^i = \bar{p} \cdot \left(\omega + \sum_{j=1}^{n} \bar{y}^j\right) \ge \bar{p} \cdot y \quad \text{for each } x \in S, \ y \in A.$$

From the Summation Principle, we then have

$$\bar{p} \cdot \bar{x}^i \leqslant \bar{p} \cdot x$$
 for all $x \in P(\bar{x}^i)$ and $\bar{p} \cdot \bar{y}^j \geqslant \bar{p} \cdot y$ for all $y \in Y_j$.

Since $U(\bar{x}^i)$ is the closure of $P(\bar{x}^i)$ we also have

$$\bar{p} \cdot \bar{x}^i \leqslant \bar{p} \cdot x$$
 for all $x \in U(\bar{x}^i)$.

This proves that we have a valuation quasiequilibrium. The role of the cheaper point condition is well known.

Figure 1. Construction of the Scitovsky set for 2 consumers.

Preliminary results on preferences

We start with some preliminary lemmas on preference relations. For our purposes, a preference relation \succeq is quasiorder, or preorder, on a set X. That is, \succeq is a total, transitive, reflexive binary relation on X. The binary relations \succ and \sim are the **asymmetric** and **symmetric parts** of \succeq , defined by

$$x \succ y$$
 if $x \succcurlyeq y$ and not $y \succcurlyeq x$

and

 $x \sim y$ if $x \succcurlyeq y$ and $y \succcurlyeq x$

Recall that a function $u: X \to \mathbf{R}$ is a **utility for** \succeq if

 $x \succcurlyeq y \quad \iff \quad u(x) \geqslant u(y).$

Nonsatiation

A preference relation \succeq on a set X has a **satiation point** x if x is a greatest element, that is, if $x \succeq y$ for all $y \in X$. A preference relation is **nonsatiated** if it has no satiation point. That is for every x there is some $y \in X$ with $y \succeq x$.

If (X, d) is a metric space, the preference relation \succeq is **locally nonsa**tiated if for every $x \in X$ and every $\varepsilon > 0$, there exists a point $y \in X$ with $d(y, x) < \varepsilon$ and $y \succ x$. Note that this is a joint condition on X and \succeq . In particular, if X is nonempty, it must be that for each point $x \in X$ and every $\varepsilon > 0$ there is a point $y \neq x$ belonging to X with $d(y, x) < \varepsilon$. That is, X may have no isolated points.

Continuity

Given a preference relation \succeq on a set X, define the **strict** and **weak upper** contour sets

$$P(x) = \{y \in X : y \succ x\} \qquad \text{and} \qquad U(x) = \{y \in X : y \succcurlyeq x\}.$$

We also define the **strict** and **weak lower contour sets**

$$P^{-1}(x) = \{y \in X : x \succ y\}$$
 and $U^{-1}(x) = \{y \in X : x \succcurlyeq y\}.$

When (X, d) is a metric space, we say that \succeq is **continuous** if its graph is closed. There are other equivalent characterizations.

Lemma 1 For a total, transitive, reflexive preference relation \succeq on a metric space X, the following are equivalent.

- 1. The graph of \succeq is closed. That is, if $y_n \to y$, $x_n \to x$, and $y_n \succeq x_n$ for each n, then $y \succeq x$.
- 2. The graph of \succ is open. That is, if $y \succ x$, there is an $\varepsilon > 0$ such that if $d(y', y) < \varepsilon$ and $d(x', x) < \varepsilon$, then $y' \succ x'$.
- 3. For each x, the weak contour sets $U(x) = \{y \in X : y \succeq x\}$ and $U^{-1}(x) = \{y \in X : x \succeq y\}$ are closed.
- 4. For each x, the strict contour sets $P(x) = \{y \in X : y \succ x\}$ and $P^{-1}(x) = \{y \in X : x \succ y\}$ are open.

Proof: Since \succeq is total, it is clear that (1) \iff (2) and (3) \iff (4). Moreover it is also immediate that (1) \implies (3) and (2) \implies (4). So it suffices to prove that (4) implies (1).

So assume by way of contradiction that $y_n \to y, x_n \to x$, and $y_n \succeq x_n$ for each n, but $x \succ y$. Since P(y) is open by condition (4) and $x \in P(y)$ by hypothesis, there is some $\varepsilon > 0$ such that $d(z, x) < \varepsilon$ implies $z \in P(y)$, or $z \succ y$. Similarly, since $P^{-1}(x)$ is open and $y \in P^{-1}(x)$ there is some $\varepsilon' > 0$ such that $d(w, y) < \varepsilon'$ implies $x \succ w$. Since $x_n \to x$ and $y_n \to y$, for large enough n, we have $d(x_n, x) < \varepsilon$ and $d(y_n, y) < \varepsilon'$, so

$$x \succ y_n \succcurlyeq x_n \succ y$$

for these large n. Pick one such n, call it n_0 , and observe that

$$x \succ x_{n_0} \succ y.$$

Now condition (4) implies $P(x_{n_0})$ is open and since $x \in P(x_{n_0})$, there is some $\eta > 0$ such that $d(z, x) < \eta$ implies $z \succ x_{n_0}$. Similarly, since $P^{-1}(x_{n_0})$ and $y \in P^{-1}(x_{n_0})$, there is $\eta' > 0$ such that $d(w, y) < \eta'$ implies $x_{n_0} \succ w$. Now for large enough n we have $d(x_n, x) < \eta$ and $d(y_n, y) < \eta'$, so

$$x_n \succ x_{n_0} \succ y_n$$

which contradicts $y_n \succeq x_n$ for all n.

We also say that \succeq is **upper semicontinuous** if for each x, the set $U(x) = \{y \in X : y \succeq x\}$ is closed, or equivalently, $P^{-1}(x) = \{y \in X : x \succeq y\}$ is open in X. Similarly, \succeq is **lower semicontinuous** if for each x, the set $U^{-1}(x) = \{y \in X : x \succeq y\}$ is closed, or equivalently, $P(x) = \{y \in X : y \succeq x\}$ is open in X. Observe that a preference relation is continuous if and only if it is both upper and lower semicontinuous.

v. 2016.01.26::08.52

Lemma 2 If \succeq is continuous and locally nonsatiated, then U(x) is the closure of P(x).

Proof: $\overline{P}(x) \subset U(x)$: Let y belong to $\overline{P}(x)$. That is, there is a sequences y_n in P(x) with $y_n \to y$. Then for each n, we have $y_n \succ x$, so a fortiori $y_n \succcurlyeq x$. Since $y_n \to y$, we have $(y_n, x) \to (y, x)$, so by continuity, $y \succcurlyeq x$, that is, $y \in U(x)$.

 $U(x) \subset \overline{P}(x)$: Let y belong to U(x). By local nonsatiation, for each n there is a y_n satisfying $d(y_n, y) < \frac{1}{n}$ and $y_n \succ y$. Since $y_n \succ y$ and $y \succcurlyeq x$, we have $y_n \succ y$, so $y_n \in P(x)$. But $y_n \to y$, so $y \in \overline{P}(x)$.

Convexity

When X is a subset of a linear space, we say that \succeq is

• weakly convex if

 $y \succcurlyeq x \implies \lambda y + (1 - \lambda)x \succcurlyeq x \text{ for all } 0 < \lambda < 1.$

• convex if

$$y \succ x \implies \lambda y + (1 - \lambda)x \succ x \text{ for all } 0 < \lambda < 1.$$

• strictly convex if

$$y \succcurlyeq x \implies \lambda y + (1 - \lambda)x \succ x \text{ for all } 0 < \lambda < 1.$$

To simplify the discussion of these properties let say that z is between x and y if (i) $x \neq y$, and (ii) $z = \lambda x + (1 - \lambda)y$ for some $0 < \lambda < 1$.

The property of weak convexity is not actually weaker than convexity.

Example 3 Let X = [-1, 1] and define \succeq by means of the utility function

$$u(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Then \succeq is convex, but not weakly convex. Why?

The preference relation in the example above is not continuous, which brings up the next lemma.

v. 2016.01.26::08.52

Lemma 4 If \succ is convex and upper semicontinuous, then it is weakly convex.

Proof: Assume that $y \geq x$. In case $y \succ x$, then by convexity $\lambda y + (1-\lambda)x \succ x$ for $0 < \lambda < 1$, so a fortiori $\lambda y + (1-\lambda)x \geq x$. So now consider the case $y \sim x$ and assume by way of contradiction that for some $0 < \overline{\lambda} < 1$ we have $x \succ \overline{\lambda}y + (1-\overline{\lambda})x = z$. By upper semicontinuity, we may choose $\overline{\lambda}$ close to $\overline{\lambda}$, but with $\overline{\lambda} > \overline{\lambda}$ so that $x \succ \overline{\lambda}y + (1-\overline{\lambda})x = w$. See Figure 2. But this means that z is between w and x, and since $x \succ w$, convexity implies $z \succ w$. On the other hand, w is between y and z, and $y \sim x \succ z$, so convexity implies $w \succ z$, a contradiction.

Figure 2. $y \succ z \implies w \succ z$ and $x \succ w \implies z \succ w$, oops.

Lemma 5 If X is convex and \succeq is weakly convex, then for each x, both U(x) and P(x) are convex sets.

If X is convex and \succeq is convex and continuous, then for each x, both U(x) and P(x) are convex sets.

Proof: The first statement is easy to prove. The second statement follows from the first and Lemma 4.

The next result gives conditions that rules out "thick" indifference classes.

Lemma 6 If X is convex, and \succeq is convex, continuous, and nonsatiated, then P(x) is the interior of U(x).

Proof: Since $P(x) \subset U(x)$ and P(x) is open by lower semicontinuity, we have $P(x) \subset \operatorname{int} U(x)$. For the reverse inclusion, let y belong to the interior of U(x), so there is some $\varepsilon > 0$ such that the ε -ball centered at y lies wholly in U(x). Assume by way of contradiction that $y \notin P(x)$. Then since $y \in U(x)$, it must be that $y \sim x$. Since \succ is nonsatiated, there is a point $z \in X$ with $z \succ y$. Choose $\alpha < 0$ but close enough to zero, so that the point

 $w = (1 - \alpha)y + \alpha z$ is within ε of y and also so that $z \succ w$, which can be done by upper semicontinuity of \succeq . See Figure 3. Then $z \succ w \succeq x \sim y$. But since ylies between z and w, by convexity we must have $y \succ w$, a contradiction.

Figure 3. $w \succcurlyeq x \sim y$ and $z \succ y \succ w$, oops.

Example 7 Lemma 6 may fail without convexity. Let $X = \mathbf{R}$ and let \succeq be defined by the utility $u(x) = x^2$. Then \succeq is locally nonsatiated and continuous, but $P(0) = \mathbf{R} \setminus \{0\} \neq \mathbf{R} = \operatorname{int} U(0)$.