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Consider an Arrow—Debreu model economy
E= ((X’La ?)’z(il’ (}/j)?zla w)‘

Second Welfare Theorem Assume the economy E satisfies the following

conditions.
1. For each consumeri=1,...,m

(a) X; is nonempty and conver.

(b) = is continuous, locally nonsatiated, and convex.
2

2. For each producer j =1,...,n,

(a) Y; is nonempty and convex.

Let (z%,..., 2™y, ..., y") be an efficient allocation. Then there is a

nonzero price vector p satisfying

1. For each consumer i = 1,...,m, ' minimizes p - x over the upper

contour set {x € X; : x 3= 7'}
Thus if there is a cheaper point & € X; satisfying p- &

actually maximizes = over the budget set {x € X; : p-
(2

<p-a,

x<p-T'}.

2. For each producer j = 1,...,n, §° mazimizes profit over Y; at prices
p. That is,

p-y =p-y  forally€ey;.
That is, (z',..., 2™, 4%, ..., 4" D) is a valuation quasiequilibrium. If the
cheaper point condition holds for each i, then it is a valuation equilibrium.
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Proof: Since (z',...,2™, y',...,4") is efficient, it is impossible to make
everyone better off. So define the set “Scitovsky set” S by

By efficiency ANS = &. (For suppose, x € ANS. Since x € S, we can write

x =Y., 2%, where each z¢ € P(z%), or x = z'. Since r € A, we can write
r=w+ >y But then (x',...,2™ 9!, ... y") is an allocation, and
x' = 7' for each i, contradicting the efficiency of (z!,..., 2™, ¥',...,9™).)

It follows from Lemmas 5 and 4 below that S is open and convex since
each summand is, and is nonempty by local nonsatiation. Similarly A is
convex. Thus by the Separating Hyperplane Theorem, there is a nonzero
price vector p satisfying

p-x>p-y foreachz e S, ye A.

From Lemma 2 below, each z* belongs to the closure of P;(z*), so >/,
belongs to the closure of S. Now /", 7 = w + > 7= 77 so it also belongs
to A. It follows that

m n
ﬁ-m}ﬁ-Za‘;i:ﬁ- w+Z§j >p-y foreachz e S, ye A
; ot

From the Summation Principle, we then have
p-Z<p-z forall ze Pz and Py =py for all y € Y.
Since U(7") is the closure of P(z') we also have

p-Z<p-x forall zeUT).

This proves that we have a valuation quasiequilibrium. The role of the
cheaper point condition is well known. |
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T1 + T2

S =P + Pj(z2)
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N\ Py(22) ug = uz(Z2)
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u = u(71)

Figure 1. Construction of the Scitovsky set for 2 consumers.
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Preliminary results on preferences

We start with some preliminary lemmas on preference relations. For our
purposes, a preference relation = is quasiorder, or preorder, on a set X.
That is, = is a total, transitive, reflexive binary relation on X. The binary
relations > and ~ are the asymmetric and symmetric parts of =, defined
by

x=y if x>y and not y=x

and
x~y ifx=yandy=x

Recall that a function u: X — R is a utility for = if

vry = (@) > uly).

Nonsatiation

A preference relation = on a set X has a satiation point z if x is a greatest
element, that is, if z >=y for all y € X. A preference relation is nonsatiated
if it has no satiation point. That is for every x there is some y € X with
Y-

If (X,d) is a metric space, the preference relation = is locally nonsa-
tiated if for every x € X and every € > 0, there exists a point y € X with
d(y,z) < € and y > z. Note that this is a joint condition on X and 3. In
particular, if X is nonempty, it must be that for each point € X and every
e > 0 there is a point y # = belonging to X with d(y,z) < e. That is, X
may have no isolated points.

Continuity

Given a preference relation = on a set X, define the strict and weak upper
contour sets

Pz)={ye X :y>zx} and Ul)={ye X:y=a}.
We also define the strict and weak lower contour sets
Plz)={ye X x>y} and Ulz)={ye X :x=y}

When (X, d) is a metric space, we say that = is continuous if its graph
is closed. There are other equivalent characterizations.

v. 2016.01.26::08.52
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Lemma 1 For a total, transitive, reflexive preference relation = on a metric
space X, the following are equivalent.

1. The graph of = is closed. That is, if yp, — Yy, Tn — x, and Yy, = T, for
each n, then y = x.

2. The graph of = is open. That is, if y > x, there is an € > 0 such that
if d(y',y) < e and d(2',z) < e, then y' = a'.

3. For each x, the weak contour sets U(x) = {y € X : y=xz} and
U lz)={y e X :z=y} are closed.

4. For each x, the strict contour sets P(z) = {y € X : y>=z} and
P Yx)={y€ X :x>~y} are open.

Proof: Since = is total, it is clear that (1) <= (2) and (3) <= (4).
Moreover it is also immediate that (1) = (3) and (2) = (4). So it
suffices to prove that (4) implies (1).

So assume by way of contradiction that y, — y, z, — =z, and y, =z,
for each n, but x > y. Since P(y) is open by condition (4) and x € P(y) by
hypothesis, there is some € > 0 such that d(z,z) < e implies z € P(y), or
z>=1y. Similarly, since P~!(z) is open and y € P~!(x) there is some &' > 0
such that d(w,y) < ¢ implies z > w. Since z,, — x and y, — y, for large
enough n, we have d(zy,z) < ¢ and d(y,,y) < €, so

T>Yn =Tn > Y
for these large n. Pick one such n, call it ng, and observe that
T Tng ™ Y-

Now condition (4) implies P(x,,) is open and since x € P(x,,), there is
some 7 > 0 such that d(z,x) < 1 implies z = x,,. Similarly, since P~ (z,,)
and y € P~ Y(zy,), there is ' > 0 such that d(w,y) < 1’ implies x,, = w.
Now for large enough n we have d(z,,x) < n and d(y,,y) < 1/, so

Tp ™ Tng > Yn,

which contradicts y, = x, for all n. |

We also say that = is upper semicontinuous if for each z, the set
U(z) = {y € X : y=2} is closed, or equivalently, P~!(z) = {y € X : 2=y}
is open in X. Similarly, = is lower semicontinuous if for each z, the set
U Yz) ={y € X : =y} is closed, or equivalently, P(z) = {y € X : y = x}
is open in X. Observe that a preference relation is continuous if and only if
it is both upper and lower semicontinuous.

v. 2016.01.26::08.52



KC Border The Second Welfare Theorem 6

Lemma 2 If = is continuous and locally nonsatiated, then U(x) is the
closure of P(x).

Proof: P(x) C U(z): Let y belong to P(z). That is, there is a sequences
Yn in P(x) with y, — y. Then for each n, we have y, =z, so a fortiori
Yn = x. Since y, — y, we have (yn, ) — (y,z), so by continuity, y > =, that
is, y € U(z).

U(x) C P(z): Let y belong to U(z). By local nonsatiation, for each n
there is a y, satisfying d(yn,y) < % and y, > y. Since y, >y and y > x, we
have y, =y, so y, € P(z). But y, — y, so y € P(x). |

Convexity

When X is a subset of a linear space, we say that > is

o weakly convex if

Y= = A+ (1=XNzz=z forall0 <A< 1.

e convex if

Y- = A+ (1=XNz>=z foral0 <A< 1.

e strictly convex if

YyrET = Ay+ (I =XNz>=z forall0 <A< 1.

To simplify the discussion of these properties let say that z is between x
and y if (i) z # y, and (ii) z = Az + (1 — \)y for some 0 < X < 1.
The property of weak convexity is not actually weaker than convexity.

Example 3 Let X = [—1, 1] and define = by means of the utility function
1 x#0
u(z) =
0 xz=0.

Then = is convex, but not weakly convex. Why? 0

The preference relation in the example above is not continuous, which
brings up the next lemma.

v. 2016.01.26::08.52
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Lemma 4 If = is convex and upper semicontinuous, then it is weakly con-
ver.

Proof: Assume that y >= . In case y > x, then by convexity Ay+(1—\)x =z
for 0 < A\ < 1, so a fortiori Ay + (1 — M)z =2x. So now consider the case
y~z and assume by way of contradiction that for some 0 < A < 1 we have
= y+ (1— 5\)56 = z. By upper semicontinuity, we may choose X close to A,
but with A > X so that = Ay + (1 — A\)z = w. See Figure 2. But this means
that z is between w and «x, and since = > w, convexity implies z > w. On the
other hand, w is between y and z, and y ~ = > z, so convexity implies w > z,
a contradiction. |

Figure 2. y>2 = w>zand z>w = 2> w, oops.

Lemma 5 If X is convexr and = is weakly convex, then for each x, both
U(z) and P(x) are convex sets.

If X is convex and %= is convex and continuous, then for each x, both
U(z) and P(x) are convex sets.

Proof: The first statement is easy to prove. The second statement follows
from the first and Lemma 4. |

The next result gives conditions that rules out “thick” indifference classes.

Lemma 6 If X is convex, and = is convex, continuous, and nonsatiated,
then P(x) is the interior of U(z).

Proof: Since P(x) C U(x) and P(z) is open by lower semicontinuity, we
have P(x) C int U(z). For the reverse inclusion, let y belong to the interior
of U(x), so there is some € > 0 such that the e-ball centered at y lies
wholly in U(z). Assume by way of contradiction that y ¢ P(x). Then since
y € U(x), it must be that y~x. Since = is nonsatiated, there is a point
z € X with z>y. Choose o < 0 but close enough to zero, so that the point

v. 2016.01.26::08.52
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w = (1—a)y+ az is within ¢ of y and also so that z > w, which can be done
by upper semicontinuity of >=. See Figure 3. Then z > w = x ~y. But since y
lies between z and w, by convexity we must have y > w, a contradiction. N

=(l-a)y+az

Figure 3. w=z~y and z >y > w, oops.

Example 7 Lemma 6 may fail without convexity. Let X = R and let =
be defined by the utility u(z) = 22. Then = is locally nonsatiated and
continuous, but P(0) = R\ {0} # R =int U(0). O
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