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Consider an n-person pure exchange economy with aggregate endowment
ω ∈ Rm. Assume ω ≫ 0. Let ui : Rm

+ → R denote person i’s utility
function. (This implicitly assumes that preferences are selfish.) Recall that
an allocation is a vector x = (x1, . . . , xn) ∈ (Rm

+)n satisfying ∑n
i=1 xi = ω.

An allocation x̄ = (x̄1, . . . , x̄n) is Pareto efficient if there is no allocation
x = (x1, . . . , xn) satisfying

ui(xi) ⩾ ui(x̄i) for all i = 1, . . . , n and ui(xi) > ui(x̄i) for some i.

An allocation x̃ = (x̃1, . . . , x̃n) is a competitive market allocation with
respect to the allocation (ω1, . . . , ωn) if there exists a nonzero price vector
p ∈ Rm such that for every i = 1, . . . , n,

ui(x̃i) ⩾ ui(z) for all z ∈ Rm
+ satisfying p · z ⩽ p · ωi.

That is, everyone is maximizing their utility subject to their budget con-
straint.

Assume now that each utility function is concave and strictly monotonic.
Use the Saddlepoint Theorem to show that every strictly positive Pareto
efficient allocation is a competitive market allocation with respect to itself.

Sample Answer
Let x̄ = (x̄1, . . . , x̄n) be a strictly positive Pareto efficient allocation. Set
vi = ui(x̄i). Then x̄ solves the following constrained maximization problem.

maximize
(x1,...,xn)∈(Rm

+)n
u1(x1) subject to ui(xi) ⩾ vi, i = 2, . . . , n, and

n∑
i=1

xi = ω.

Since each ui is monotonic, we may replace the resource constraints with
the inequality constraints ωj −

∑n
i=1 xi

j ⩾ 0, for j = 1, . . . , m. Since each
x̄i > 0 and each ui is monotonic, we see that x̃, defined by x̃1 = 0 and
x̃i = x̄i + 1

n x̄1 for i = 2, . . . , n, satisfies ui(x̃i) − vi > 0 for i = 2, . . . , n and
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ωj −
∑n

i=1 x̃i
j = 1

n x̄1
j > 0, so Slater’s Condition is satisfied. Now observe that

all the constraints are defined by concave functions.
Thus by the Saddlepoint Theorem there exist nonnegative multipliers

µ̄2, . . . , µ̄n and π̄1, . . . , π̄m such that (x̄; µ̄, π̄) is a saddlepoint of the La-
grangean

L(x; µ, π) = u1(x1) +
n∑

i=2
µi

(
ui(xi) − vi

)
+

m∑
j=1

πj
[
ωj −

n∑
i=1

xi
j

]
over (Rm

+)n ×
[
Rn

+ × Rm
+

]
. To make things more symmetric, set µ̄1 = 1.

Then the saddlepoint conditions become
n∑

i=1
µ̄i

(
ui(xi) − vi

)
+

m∑
j=1

π̄j
[
ωj −

n∑
i=1

xi
j

]
⩽ +

n∑
i=1

µ̄i
(
ui(x̄i) − vi

)
+

m∑
j=1

π̄j
[
ωj −

n∑
i=1

x̄i
j

]
(1)

⩽
n∑

i=1
µi

(
ui(x̄i) − vi

)
+

m∑
j=1

πj
[
ωj −

n∑
i=1

x̄i
j

]
(2)

for all x ∈ (Rm
+)n and all (µ, π) ∈ Rn

+ × Rm
+ . Furthermore, the complemen-

tary slackness conditions

µ̄i
(
ui(x̄i) − vi

)
= 0 i = 1, . . . , n

and
π̄j

[
ωj −

n∑
i=1

x̄i
j

]
j = 1, . . . , m

are satisfied.
We now show that no π̄j is zero. For suppose π̄k = 0. Let ek denote the

kth unit coordinate vector in Rm. Let us now evaluate (1) for x given by
x1 = x̄1 + ek and xi = x̄i for i = 2, . . . , n. This yields

u1(x̄1 + ek) − v1 +
n∑

i=2
µ̄i

(
ūi(x̄i) − vi

)
+

∑
j=1

π̄j
[
ωj −

n∑
i=1

x̄i
j

]
− π̄k

⩽ u1(x̄1) − v1 +
n∑

i=2
µ̄i

(
ui(x̄i) − vi

)
+

m∑
j=1

π̄j
[
ωj −

n∑
i=1

x̄i
j

]
,

which in light of the assumption that π̄k = 0 boils down to

u1(x̄1 + ek) ⩽ u1(x̄1),
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which contradicts the strict monotonicity of u1.

Moreover, no µ̄i = 0 either. For suppose µ̄k = 0 for some k > 1. Consider
equation (1) for x given by x1 = x̄1 + x̄k, xk = 0, and xi = x̄i for i ̸= 1, k.
Then we get

u1(x̄1 + x̄k) ⩽ u1(x̄1),

which again contradicts the strict monotonicity of u1.

We now show that for each i = 1, . . . , n, the point (x̄i; 1
µ̄i

) is a saddlepoint
of the function

Li(z; ν) = ui(z) + ν
( m∑

j=1
π̄j(x̄i

j − zj)
)

(3)

over Rm
+ × R+. That is, we need to show that

ui(z) + 1
µ̄i

( m∑
j=1

π̄j(x̄i
j − zj)

)
⩽ ui(x̄i) + 1

µ̄i

( m∑
j=1

π̄j(x̄i
j − x̄i

j)
)

(4)

⩽ ui(x̄i) + ν
( m∑

j=1
π̄j(x̄i

j − x̄i
j)

)
(5)

for all z ∈ Rm
+ and all ν ∈ R+. Clearly (5) is true. Suppose by way of

contradiction that for some k and some zk ∈ Rm, inequality (4) is violated.
That is,

uk(zk) + 1
µ̄k

( m∑
j=1

π̄j(x̄k
j − zk

j )
)

> uk(x̄k). (6)

Then subtracting vk from each side and multiplying by the positive scalar
µ̄k yields

µ̄k

(
uk(zk) − vk

)
+

m∑
j=1

π̄j(x̄k
j − zk

j ) > µ̄k

(
uk(x̄k) − vk

)
.

Evaluating (1) evaluated at x ∈ (Rm
+)n defined by xi = x̄i for i ̸= k and

xk = zk, we get

∑
i̸=k

µ̄i
(
ui(x̄i) − vi

)
+

m∑
j=1

π̄j
[
ωj −

∑
i̸=k

x̄i
j

]
+ µ̄k

(
uk(zk) − vk

)
−

m∑
j=1

π̄jzk
j

⩽
n∑

i=1
µ̄i

(
ui(x̄i) − vi

)
+

m∑
j=1

π̄j
[
ωj −

n∑
i=1

x̄i
j

]
,



KC Border Saddlepoints and the Second Welfare Theorem 4

which implies

uk(zk) + 1
µ̄k

( m∑
j=1

π̄j(x̄k
j − zk

j )
)
⩽ uk(x̄k),

which in turn contradicts (6). This contradiction shows that (x̄k; 1
µ̄k

) is a
saddlepoint of (3). But now by the easy half of the Saddlepoint Theorem,
we see that x̄k maximizes uk(z) over Rm

+ subject to π̄ · z ⩽ π̄x̄k for each k.
That is, x̄ is a competitive market allocation with respect to itself at the
prices π̄.


