
Division of the Humanities
and Social Sciences

Constrained maxima and saddlepoints
KC Border

v. 2016.10.21::14.17

Definition 1 Let φ : X × Y → R. A point (x∗, y∗) in X × Y is a saddlepoint of φ (over
X × Y ) if it satisfies

φ(x, y∗) ⩽ φ(x∗, y∗) ⩽ φ(x∗, y) for all x ∈ X, y ∈ Y.

That is, (x∗, y∗) is a saddlepoint of φ if x∗ maximizes φ(·, y∗) over X and y∗ minimizes
φ(x∗, ·) over Y . Saddlepoints of a function have the following nice interchangeability property.

Lemma 2 (Interchangeability of saddlepoints) Let φ : X × Y → R, and let (x1, y1) and
(x2, y2) be saddlepoints of φ. Then (x1, y2) and (x2, y1) are also saddlepoints. Moreover

φ(x1, y1) = φ(x2, y1) = φ(x1, y2) = φ(x2, y2).

Proof : We are given that

φ(x, y1) ⩽
(1a)

φ(x1, y1) ⩽
(1b)

φ(x1, y) x ∈ X, y ∈ Y, (1)

and
φ(x, y2) ⩽

(2a)
φ(x2, y2) ⩽

(2b)
φ(x2, y) x ∈ X, y ∈ Y. (2)

Evaluating (1a) at x = x2 yields
φ(x2, y1) ⩽ φ(x1, y1) (3)

and evaluating (2b) at y = y1 yields

φ(x2, y2) ⩽ φ(x2, y1) (4)

Combining these yields

φ(x, y2) ⩽
(2a)

φ(x2, y2) ⩽
(4)

φ(x2, y1) ⩽
(3)

φ(x1, y1) ⩽
(1b)

φ(x1, y) x ∈ X, y ∈ Y,

which implies that (x2, y1) is a saddlepoint. By symmetry, so is (x1, y2). The proof that φ
assumes the same value at each of these four pairs follows from similar reasoning.

Saddlepoints play an important role in the analysis of constrained maximum problems via
Lagrangean functions.

Definition 3 Given f, g1, . . . , gm : C → R, the associated Lagrangean L : C × Λ → R is
defined by

L(x, λ) = f(x) +
m∑

j=1
λjgj(x) = f(x) + λ · g(x),

where Λ is an appropriate subset of Rm. (Usually Λ = Rm or Rm
+ .) The components of λ are

called Lagrange multipliers.
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The first result is that saddlepoints of Lagrangeans are constrained maxima. This result
makes no restrictive assumptions on the domain or the functions.

Theorem 4 (Lagrangean saddlepoints are constrained maxima) Let X be an arbitrary
set, and let f, g1, . . . , gm : X → R. Suppose that (x∗, λ∗) is a saddlepoint of the Lagrangean
L(x, λ) = f + λ · g (over X × Rm

+). That is,

L(x, λ∗) ⩽
(5a)

L(x∗, λ∗) ⩽
(5b)

L(x∗, λ) x ∈ X, λ ≧ 0. (5)

Then x∗ maximizes f over X subject to the constraints gj(x) ⩾ 0, j = 1, . . . , m, and furthermore

λ∗
j gj(x∗) = 0 j = 1, . . . , m. (6)

Proof : Inequality (5b) implies λ∗ · g(x∗) ⩽ λ · g(x∗) for all λ ≧ 0. Therefore g(x∗) ≧ 0 (why?),
so x∗ satisfies the constraints. Setting λ = 0, we see that λ∗ · g(x∗) ⩽ 0. This combined with
λ ≧ 0 and g(x∗) ≧ 0 implies λ∗ · g(x∗) = 0. Indeed it implies λ∗

j gj(x∗) = 0 for j = 1, . . . , m.
Now note that (5a) implies f(x) + λ∗ · g(x) ⩽ f(x∗) for all x. Therefore, if x satisfies the

constraints, g(x) ≧ 0, we have f(x) ⩽ f(x∗), so x∗ is a constrained maximizer.

Condition (6) implies that if the multiplier λ∗
j is strictly positive, then the corresponding

constraint is binding, gj(x∗) = 0; and if a constraint is slack, gj(x∗) > 0, then the correspond-
ing multiplier satisfies λ∗

j = 0. These conditions are sometimes called the complementary
slackness conditions.

The converse of Theorem 4 is not quite true, but almost. To state the correct result we now
introduce the notion of a generalized Lagrangean.

Definition 5 A generalized Lagrangean Lµ : C × Λ → R is defined by

Lµ(x, λ) = µf(x) +
m∑

j=1
λjgj(x),

where µ ⩾ 0 and again Λ is an appropriate subset of Rm.

Note that each choice of µ generates a different generalized Lagrangean. However, as long
as µ > 0, a point (x, λ) is a saddlepoint of the Lagrangean if and only if it is a saddlepoint of
the generalized Lagrangean. Thus the only case to worry about is µ = 0.

The next results state that for concave functions satisfying a regularity condition, constrained
maxima are saddlepoints of some generalized Lagrangean.

Theorem 6 (Concave constrained maxima are nearly Lagrangean saddlepoints) Let
C ⊂ Rn be convex, and let f, g1, . . . , gm : C → R be concave. Suppose x∗ maximizes f subject
to the constraints gj(x) ⩾ 0, j = 1, . . . , m. Then there exist real numbers µ∗, λ∗

1, . . . , λ∗
m ⩾ 0,

not all zero, such that (x∗, λ∗) is a saddlepoint of the generalized Lagrangean Lµ∗ . That is,

µ∗f(x) +
m∑

j=1
λ∗

j gj(x) ⩽
(7a)

µ∗f(x∗) +
m∑

j=1
λ∗

j gj(x∗) ⩽
(7b)

µ∗f(x∗) +
m∑

j=1
λjgj(x∗) (7)

for all x ∈ C and all λ1, . . . , λm ⩾ 0. Furthermore
m∑

j=1
λ∗

j gj(x∗) = 0. (8)
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Proof : Since x∗ is a constrained maximizer there is no x ∈ C satisfying f(x) − f(x∗) > 0
and g(x) ≧ 0. Therefore the Concave Alternative (see the notes on Separating Hyperplane
Theorems) implies the existence of nonnegative µ∗, λ∗

1, . . . , λ∗
m, not all zero, satisfying

µ∗f(x) +
m∑

j=1
λ∗

j gj(x) ⩽ µ∗f(x∗) for every x ∈ C.

Evaluating this at x = x∗ yields
∑m

j=1 λ∗
j gj(x∗) ⩽ 0. But each term in this sum is the product

of two nonnegative terms, so (8) holds. This in turn implies (7a). Given that gj(x∗) ⩾ 0 for all
j, (8) also implies (7b).

Corollary 7 (When constrained maxima are true Lagrangean saddlepoints) Under
the hypotheses of Theorem 6 suppose in addition that Slater’s Condition,

∃x̄ ∈ C g(x̄) ≫ 0, (S)

is satisfied. Then µ∗ > 0, and may be taken equal to 1. Consequently x∗, λ∗
1, . . . , λ∗

m is a
saddlepoint of the Lagrangean for x ∈ C, λ ≧ 0. That is,

L(x, λ∗) ⩽ L(x∗, λ∗) ⩽ L(x∗, λ) x ∈ C, λ ≧ 0, (9)

where L(x, λ) = f(x) + λ · g(x).

Proof : Suppose µ∗ = 0. Then evaluating (7) at x = x̄ yields λ∗ · g(x̄) ⩽ 0, but g(x̄) > 0
implies λ∗

j = 0, j = 1, . . . , m. Thus µ = 0 and λj = 0, j = 1, . . . , m, a contradiction. Therefore
µ > 0, and by dividing the Lagrangean by µ, we may take µ = 1. The remainder is then just
Theorem 6.

Karlin [1, vol. 1, Theorem 7.1.1, p. 201] proposed the following alternative to Slater’s Con-
dition:

∀λ > 0 ∃x̄(λ) ∈ C λ · g
(
x̄(λ)

)
> 0,

which we may as well call Karlin’s condition.

Theorem 8 Let C ⊂ Rn be convex, and let g1, . . . , gm : C → R be concave. Then g satisfies
Slater’s Condition if and only it satisfies Karlin’s Condition.

Proof : Clearly Slater’s Condition implies Karlin’s. Now suppose g violates Slater’s Condition.
Then by the Concave Alternative Theorem, it must also violate Karlin’s.

The next example shows what can go wrong when Slater’s Condition fails.

Example 9 In this example, due to Slater [2], C = R, f(x) = x, and g(x) = −(1 − x)2. Note
that Slater’s Condition fails because g ⩽ 0. The constraint set [g ⩾ 0] contains only 1. Therefore
f attains a constrained maximum at 1. There is however no saddlepoint at all of the Lagrangean

L(x, λ) = x − λ(1 − x)2 = −λ + (1 + 2λ)x − λx2.

To see this, observe the first order condition for a maximum in x is ∂L
∂x = 0, or 1 + 2λ − 2λx = 0,

which implies x > 1 since λ ⩾ 0. But for x > 1, ∂L
∂λ = −(1 − x)2 < 0, so no minimum with

respect to λ exists. □
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The role of Slater’s Condition
In this section we present a geometric argument that illuminates the role of Slater’s Condition
in the Saddlepoint Theorem. Let us return to the underlying argument used in its proof. Define
the function h : C → Rm+1 by

h(x) =
(
f(x) − f(x∗), g1(x), . . . , gm(x)

)
and set

H = {h(x) : x ∈ C} and Ĥ = {y ∈ Rm+1 : ∃x ∈ C y ≦ h(x)
}

.

Then Ĥ is a convex set bounded by H. Figure 1 depicts the set Ĥ for Slater’s example, where
f(x) − f(x∗) is plotted on the horizontal axis and g(x) is plotted on the vertical axis. Now if

h(x∗)

g(x)

f(x) − f(x∗)-1 -0.5 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

Figure 1. The set Ĥ for Slater’s example.

x∗ maximizes f over the convex set C subject to the constraints gj(x) ⩾ 0, j = 1, . . . , m, then
h(x∗) has the largest horizontal coordinate among all the points in H whose vertical coordinates
are nonnegative.

There is a semipositive m+1-vector λ̂∗ = (µ∗, λ∗
1, . . . , λ∗

m) obtained by separating the convex
set Ĥ and Rm+1

++ . It has the property that

λ̂∗ · h(x) ⩽ λ̂∗h(x∗)

for all x ∈ C. That is, the vector λ̂∗ defines a hyperplane through h(x∗) such that the entire
set Ĥ lies in one half-space. It is clear in the case of Slater’s example that the hyperplane is a
horizontal line, since it must be tangent to H at h(x∗) = (0, 0). The fact that the hyperplane is
horizontal means that µ∗ (the multiplier on f) must be zero.

If there is a nonhorizontal hyperplane through h(x∗), then µ∗ is nonzero, so we can divide by
it and obtain a full saddlepoint of the true Lagrangean. This is where Slater’s condition comes
in.

In the one dimensional, one constraint case, Slater’s Condition reduces to the existence of
x̄ satisfying g(x̄) > 0. This rules out having a horizontal supporting line through x∗. To see
this, note that the first (horizontal) component of h(x∗) = f(x∗) − f(x∗) = 0. If g(x∗) = 0,
then the horizontal line through h(x∗) is simply the horizontal axis, which cannot be, since h(x̄)
lies above the axis. If g(x∗) > 0, then Ĥ includes every point below h(x∗), so the only line
separating Ĥ and R2

++ is vertical, not horizontal. See Figure 2.
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f(x) − f(x∗)

g(x)

h(x̄)
h(x∗)

⊂ Ĥ

Figure 2. Slater’s condition guarantees a nonhorizontal supporting line.

In Figure 2, the shaded area is included in Ĥ. For instance, let C = (−∞, 0], f(x) = x, and
g(x) = x + 1. Then the set Ĥ is just {y ∈ R2 : y ≦ (0, 1)}.

Later we shall see that if f and the gjs are linear, then Slater’s Condition is not needed to
guarantee a nonhorizontal supporting line. Intuitively, the reason for this is that for the linear
programming problems considered, the set Ĥ is polyhedral, so even if g(x∗) = 0, there is still
a nonhorizontal line separating Ĥ and Rm

++. The proof of this fact relies on our earlier results
on linear inequalities. It is subtle because Slater’s condition rules out a horizontal supporting
line. In the linear case, there may be a horizontal supporting line, but if there is, there is also a
nonhorizontal supporting line that yields a Lagrangean saddlepoint. As a case in point, consider
C = (−∞, 0], f(x) = x, and g(x) = x. Then the set Ĥ is just {y ∈ R2 : y ≦ 0}, which is
separated from R2

++ by every semipositive vector.
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