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Definition 1 Let ¢: X xY — R. A point (x*,y*) in X XY is a saddlepoint of ¢ (over
X XY ) if it satisfies
oz, y") < p(z*,y") <e(z*,y) forall ze€X, yeY.
That is, (*,y*) is a saddlepoint of ¢ if x* maximizes ¢(-,y*) over X and y* minimizes

o(z*,-) over Y. Saddlepoints of a function have the following nice interchangeability property.

Lemma 2 (Interchangeability of saddlepoints) Let v: X xY — R, and let (z1,y1) and
(z2,y2) be saddlepoints of p. Then (x1,y2) and (x2,y1) are also saddlepoints. Moreover
e(x1,y1) = p(x2,51) = (21, y2) = (22, 92)-
Proof: We are given that
e, y) < ple,y) < pleny)  reX, yey, (1)
(1a) (16)

and

o(z,y2) < @(x2,y2) < @(z2,Y) reX, yey. (2)
(2a) (2b)

Evaluating (la) at = x2 yields

o(x2,91) < (21, 91) (3)
and evaluating (2b) at y = y; yields

P(w2,Y2) < @(w2,91) (4)
Combining these yields

@(xva) < (p(x27y2) < SD(I.Q’yl) < @(‘rlﬂyl) < ‘p(xlay) T e X» Yy e Y7
(2a) (4) (3) (1)

which implies that (x2,y1) is a saddlepoint. By symmetry, so is (z1,y2). The proof that ¢
assumes the same value at each of these four pairs follows from similar reasoning. | |

Saddlepoints play an important role in the analysis of constrained maximum problems via
Lagrangean functions.

Definition 3 Given f,g1,...,9m: C — R, the associated Lagrangean L: C x A — R is
defined by

L(z, ) = f(z) + > _ Ajgi(z) = f(x) + X g(x),
j=1

where A is an appropriate subset of R™. (Usually A = R™ or RY'.) The components of \ are
called Lagrange multipliers.
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The first result is that saddlepoints of Lagrangeans are constrained maxima. This result
makes no restrictive assumptions on the domain or the functions.

Theorem 4 (Lagrangean saddlepoints are constrained maxima) Let X be an arbitrary
set, and let f,qg1,...,9m: X — R. Suppose that (x*,\*) is a saddlepoint of the Lagrangean
L(z,\)=f+X-g (over X x RY). That is,

L(z,\*) < L(z",\") < L(z*, \) zeX, A20. (5)

(5a) (5b)
Then x* mazimizes f over X subject to the constraints gj(x) >0, j =1,...,m, and furthermore
Aigi(z*) =0 j=1,...,m. (6)

Proof: Inequality (5b) implies A* - g(z*) < A - g(z*) for all A = 0. Therefore g(z*) = 0 (why?),
so z* satisfies the constraints. Setting A = 0, we see that A\* - g(x*) < 0. This combined with
A2 0and g(z*) 2 0 implies A* - g(z*) = 0. Indeed it implies Aig;(z*) =0 for j =1,...,m
Now note that (5a) implies f(x) + \* - g(z) < f(a*) for all . Therefore, if = satisfies the
constraints, g(z) 2 0, we have f(z) < f(z*), so x* is a constrained maximizer. [ |

Condition (6) implies that if the multiplier A} is strictly positive, then the corresponding
constraint is binding, g;(z*) = 0; and if a constraint is slack, g;(z*) > 0, then the correspond-
ing multiplier satisfies A7 = 0. These conditions are sometimes called the complementary
slackness conditions.

The converse of Theorem 4 is not quite true, but almost. To state the correct result we now
introduce the notion of a generalized Lagrangean.

Definition 5 A generalized Lagrangean L, : C x A — R is defined by
L,(x,\) = pf(x)+ Z Ajgj(x

where u > 0 and again A is an appropriate subset of R™.

Note that each choice of p generates a different generalized Lagrangean. However, as long
as u > 0, a point (x,)\) is a saddlepoint of the Lagrangean if and only if it is a saddlepoint of
the generalized Lagrangean. Thus the only case to worry about is u = 0.

The next results state that for concave functions satisfying a regularity condition, constrained
maxima are saddlepoints of some generalized Lagrangean.

Theorem 6 (Concave constrained maxima are nearly Lagrangean saddlepoints) Let
C C R" be convez, and let f,g1,...,9m: C — R be concave. Suppose x* mazximizes [ subject
to the constraints g;(x) > 0, j = 1,...,m. Then there exist real numbers p*,A\y,..., A5, >0,
not all zero, such that (z*,\*) is a saddlepoint of the generalized Lagrangean L,~. That is,

a:HZA;gj(x) < +Z>\ g9 (x *f(w*)+ZAjgj(m*) (7)

(7a) (7b)

for all x € C and all Ay,..., Ay, = 0. Furthermore
> Xrgj(a*) =0. (8)
j=1
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Proof: Since z* is a constrained maximizer there is no x € C satisfying f(z) — f(z*) > 0
and g(x) = 0. Therefore the Concave Alternative (see the notes on Separating Hyperplane
Theorems) implies the existence of nonnegative p*, A7, ..., A% , not all zero, satisfying

prf(x) + Z Agi(z) < p*f(2*) for every z € C.
j=1

Evaluating this at x = x* yields E;"Zl Ajg;i(z*) < 0. But each term in this sum is the product
of two nonnegative terms, so (8) holds. This in turn implies (7a). Given that g;(z*) > 0 for all

J, (8) also implies (7b). |

Corollary 7 (When constrained maxima are true Lagrangean saddlepoints) Under
the hypotheses of Theorem 6 suppose in addition that Slater’s Condition,

3z eC g(@) >0, (S)

is satisfied. Then p* > 0, and may be taken equal to 1. Consequently x*,A\],..., A} is a
saddlepoint of the Lagrangean for x € C, A 2 0. That is,

Lz, A") < L(z",A") < L(2",\) z€C, Az20, (9)

where L(xz,\) = f(z) + X - g(x).

Proof: Suppose p* = 0. Then evaluating (7) at * = z yields A* - g(Z) < 0, but g(z) > 0
implies A7 =0, j=1,...,m. Thus p=0and A\; =0, j =1,...,m, a contradiction. Therefore
@ > 0, and by dividing the Lagrangean by u, we may take y = 1. The remainder is then just
Theorem 6. | |

Karlin [1, vol. 1, Theorem 7.1.1, p. 201] proposed the following alternative to Slater’s Con-
dition:
YA >03dz(\) el Ag(z(N) >0,

which we may as well call Karlin’s condition.

Theorem 8 Let C C R" be convex, and let g1,...,gm: C — R be concave. Then g satisfies
Slater’s Condition if and only it satisfies Karlin’s Condition.

Proof: Clearly Slater’s Condition implies Karlin’s. Now suppose g violates Slater’s Condition.
Then by the Concave Alternative Theorem, it must also violate Karlin’s. | |

The next example shows what can go wrong when Slater’s Condition fails.

Example 9 In this example, due to Slater [2], C = R, f(x) = x, and g(x) = —(1 — z)?. Note
that Slater’s Condition fails because g < 0. The constraint set [g > 0] contains only 1. Therefore
f attains a constrained maximum at 1. There is however no saddlepoint at all of the Lagrangean

Lz, \) =2 - A1 —2)* = =X+ (14 2\)z — \2?.

To see this, observe the first order condition for a maximum in z is % =0,or 1+2X—2X\z =0,
which implies > 1 since A > 0. But for z > 1, ‘g—ﬁ = —(1 — )% < 0, so no minimum with
respect to A exists. O
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The role of Slater’s Condition

In this section we present a geometric argument that illuminates the role of Slater’s Condition
in the Saddlepoint Theorem. Let us return to the underlying argument used in its proof. Define
the function h: C — R™™! by

h(z) = (f(2) = f(@), 91(2), .., gm (@)

and set .
H={hz):2€C} and H={ye R"":3xeC y=<h(z)}.

Then H is a convex set bounded by H. Figure 1 depicts the set H for Slater’s example, where
f(z) — f(z*) is plotted on the horizontal axis afrll(d g)(m) is plotted on the vertical axis. Now if
x

g i f@) - )

-0. 4}

-0.6¢

-0.8}

@)

Figure 1. The set H for Slater’s example.

«* maximizes f over the convex set C' subject to the constraints g;(x) > 0, j = 1,...,m, then
h(z*) has the largest horizontal coordinate among all the points in H whose vertical coordinates
are nonnegative.

There is a semipositive m+1-vector A* = (u*, A%, ..., \* ) obtained by separating the convex
set H and RTil. It has the property that

A h(z) < Nh(z®)

for all z € C. That is, the vector \* defines a hyperplane through h(z*) such that the entire
set H lies in one half-space. It is clear in the case of Slater’s example that the hyperplane is a
horizontal line, since it must be tangent to H at h(xz*) = (0,0). The fact that the hyperplane is
horizontal means that p* (the multiplier on f) must be zero.

If there is a nonhorizontal hyperplane through h(z*), then p* is nonzero, so we can divide by
it and obtain a full saddlepoint of the true Lagrangean. This is where Slater’s condition comes
in.

In the one dimensional, one constraint case, Slater’s Condition reduces to the existence of
Z satisfying g(z) > 0. This rules out having a horizontal supporting line through x*. To see
this, note that the first (horizontal) component of h(z*) = f(z*) — f(2*) = 0. If g(z*) = 0,
then the horizontal line through h(z*) is simply the horizontal axis, which cannot be, since h(Z)
lies above the axis. If g(x*) > 0, then H includes every point below h(z*), so the only line
separating H and Ri . is vertical, not horizontal. See Figure 2.
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Figure 2. Slater’s condition guarantees a nonhorizontal supporting line.

In Figure 2, the shaded area is included in H. For instance, let C' = (—00,0], f(z) = z, and
g(x) =z + 1. Then the set H is just {y € R*:y < (0,1)}.

Later we shall see that if f and the g;s are linear, then Slater’s Condition is not needed to
guarantee a nonhorizontal supporting line. Intuitively, the reason for this is that for the linear
programming problems considered, the set His polyhedral, so even if g(x*) = 0, there is still
a nonhorizontal line separating H and R, . The proof of this fact relies on our earlier results
on linear inequalities. It is subtle because Slater’s condition rules out a horizontal supporting
line. In the linear case, there may be a horizontal supporting line, but if there is, there is also a
nonhorizontal supporting line that yields a Lagrangean saddlepoint. As a case in point, consider
C = (=00,0], f(x) = =, and g(z) = z. Then the set H is just {y € R* : y < 0}, which is
separated from Ri 4 by every semipositive vector.
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