
Division of the Humanities
and Social Sciences

More than you wanted to know about
quadratic forms

KC Border
v. 2018.11.11::17.30

Contents
1 Quadratic forms 1

1.1 Quadratic forms on the unit sphere . . . . . . . . . . . . 6

2 Quadratic forms under constraint 8
2.1 Rank and Definiteness of Quadratic Forms under Constraint 9
2.2 Determinantal conditions . . . . . . . . . . . . . . . . . . 12
2.3 Bordered matrices and quadratic forms . . . . . . . . . . 14

1 Quadratic forms
In these notes, I shall treat vectors as column matrices, and use ′ to denote
matrix transposition. Thus the Euclidean inner product x · y = ∑n

i=1 xiyi of
n-vectors can also be written as x′y.

Let A be an n × n symmetric matrix, and let x be an n-vector. Then
x · Ax = x′Ax is a scalar,

x′Ax =
n∑

i=1

n∑
j=1

aijxixj. (1)
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The mapping Q : x 7→ x′Ax is the quadratic form defined by A.1
A symmetric matrix A (or its associated quadratic form) is called

• positive definite if x′Ax > 0 for all nonzero x.

• negative definite if x′Ax < 0 for all nonzero x.

• positive semidefinite if x′Ax ⩾ 0 for all x.

• negative semidefinite if x′Ax ⩽ 0 for all x.

The reason for restricting attention to symmetric matrices is so that their
eigenvectors generate an orthonormal basis for Rn. If A is not symmetric,
then A+A′

2 is symmetric and x′Ax = x · (A+A′

2 )x for any x, so we do not lose
much applicability by this assumption. Some authors use the term quasi
(semi)definite when they do not wish to impose symmetry.

Proposition 1 (Eigenvalues and definiteness) The symmetric matrix
A is

1. positive definite if and only if all its eigenvalues are strictly positive.

2. negative definite if and only if all its eigenvalues are strictly negative.

3. positive semidefinite if and only if all its eigenvalues are nonnegative.

4. negative semidefinite if and only if all its eigenvalues are nonpositive.

Proof : Let {x1, . . . , xn} be an orthonormal basis for Rn consisting of eigen-
vectors of A. (See, e.g., Apostol [2, Theorem 5.4, p. 120].) Let λi be the
eigenvalue corresponding to xi. That is,

Axi = λix
i.

1For decades I was baffled by the term form. I once asked Tom Apostol at a faculty
cocktail party what it meant. He professed not to know (it was a cocktail party, so
that is excusable), but suggested that I should ask John Todd. He hypothesized that
mathematicians don’t know the difference between form and function, a clever reference to
modern architectural philosophy. I was too intimidated by Todd to ask, but I subsequently
learned (where, I can’t recall) that form refers to a polynomial function in several variables
where each term in the polynomial has the same degree. (The degree of the term is the
sum of the exponents. For example, in the expression xyz + x2y + xz + z, the first two
terms have degree three, the third term has degree two and the last one has degree one.
It is thus not a form.) This is most often encountered in the phrases linear form (each
term has degree one) or quadratic form (each term has degree two).
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Writing y = ∑n
j=1(αjx

y), we have

Ay = A
( n∑

j=1
αjx

i
)

=
n∑

j=1
αjAxj =

n∑
j=1

αjλjx
j,

so

y · Ay =
( n∑

i=1
αix

i
)

·
( n∑

j=1
αjλjx

j
)

=
n∑

i=1

n∑
j=1

αiαjλjx
i · xj =

n∑
k=1

(αk)2λk,

where the last equality follows from the orthonormality of {x1, . . . , xn}. All
the statements above follow from this equation and the fact that (αk)2 ⩾ 0
for all k.

Proposition 2 (Definiteness of the inverse) If A is positive definite
(negative definite), then A−1 exists and is also positive definite (negative
definite).

Proof : First off, how do we know the inverse of A exists? Suppose Ax = 0.
Then x′Ax = x′0 = 0. Since A is positive definite, we see that x = 0.
Therefore A is invertible. Here are two proofs of the proposition.

First proof. Since (Ax = λx) =⇒ (x = λA−1x) =⇒ (A−1x = 1
λ
x), the

eigenvalues of A and A−1 are reciprocals, so they must have the same sign.
Apply Proposition 1.

Second proof.

x′A−1x = y · Ay where y = A−1x.

We now digress a bit. Recall that the characteristic polynomial f of a
square matrix A is defined by f(λ) = det(λI − A). Roots of this polynomial
are called characteristic roots of A.

Lemma 3 Every eigenvalue of a matrix is a characteristic root, and every
real characteristic root is an eigenvalue.

Proof : To see this note that if λ is an eigenvalue with eigenvector x ̸= 0,
then (λI − A)x = λx − Ax = 0, so (λI − A) is singular, so det(λI − A) = 0.
That is, λ is a characteristic root of A.

Conversely, if det(λI−A) = 0, then the matrix λI−A is singular, so there
is some nonzero vector x with (λI − A)x = 0. In other words, Ax = λx.
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Lemma 4 The determinant of a square matrix is the product of its charac-
teristic roots.

Proof : (cf. Apostol [2, p. 106]) Let A be an n × n square matrix and let f
be its characteristic polynomial. Then f(0) = det(−A) = (−1)n det A. On
the other hand, we can factor f as

f(λ) = (λ − λ1) · · · (λ − λn)

where λ1, . . . , λn are its characteristic roots. Thus f(0) = (−1)nλ1 · · · λn.

The proof of the next theorem may be found in Debreu [5] or Gant-
macher [8, pp. 306–308].

Theorem 5 For a symmetric matrix A:

1. A is positive definite if and only if all its NW principal minors are
strictly positive.

2. A is negative definite if and only if all its kth-order NW principal minors
have sign (−1)k.

3. A is positive semidefinite if and only if all its principal minors are
nonnegative.

4. A is negative semidefinite if and only if all its kth-order principal minors
have sign (−1)k or 0.

Proof : We start with the necessity of the conditions on the minors.
First note that every principal submatrix of a matrix A inherits its def-

initeness. To see this let I ⊂ {1, . . . , n} be the (nonempty) set of indices
of rows and columns for the submatrix. Let x be any nonzero vector with
xk = 0 for k /∈ I. Then

x′Ax =
n∑

i=1

n∑
j=1

aijxixj =
∑
i∈I

∑
j∈I

aijxixj,

so the quadratic form defined by the submatrix cannot have a different sign
from the quadratic form defined by A.

By Proposition 1, if a matrix is positive definite, all its eigenvalues are
positive, so by Lemma 4 its determinant must be positive, as the product of
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the eigenvalues. Thus every principal submatrix of a positive definite matrix
has a strictly positive determinant. Similarly, every principal submatrix of a
positive semidefinite matrix has a nonnegative determinant.

The results for negative (semi)definiteness stem from the observation
that a matrix A is negative (semi)definite if and only if −A is positive
(semi)definite, and that the determinant of a kth order submatrix of −A
is (−1)k times the corresponding subdeterminant of A.

The sufficiency part is harder. To see why such a result might be true,
consider first the case n = 2. Then, completing the square, we get

x′Ax = a11x
2
1 + 2a12x1x2 + a22x

2
2

= a11
(
x1 + a12

a11
x2

)2
+ a11a22 − a2

12
a11

x2
2

= D1y
2
1 + D2

D1
y2

2,

where y1

y2

 =

1 a12
a11

0 1

 x1

x2

 ,

D1 = a11, the determinant of the 1 × 1 NW principal minor of A, and
D2 = det A, the determinant of the 2 × 2 NW principal minor. In this case
it is easy to see that D1 > 0 and D2 > 0 imply that A is positive definite.

Lagrange noticed that this technique could be generalized. That is, if
D1 ̸= 0, . . . , Dn ̸= 0 there is always a nonsingular upper triangular matrix U
(with 1’s on the main diagonal), so that

x′Ax =
n∑

i=1

Di

Di−1
y2

i ,

where y = Ux, D0 = 1, and Di is the determinant of the i × i NW principal
minor of A. Given this decomposition, known as Jacobi’s formula, it is easy
to see why the conditions D1 > 0, . . . , Dn > 0 guarantee that A is positive
definite. The matrix U is computed by using Gaussian elimination on A. For
details, see, e.g., Gantmacher [8, pp. 33–41, 300–302]. This proves parts (1)
and (2).

To prove parts (3) and (4), we use the fact that if A has rank k, then there
is a permutation matrix P so that Â = P ′AP satisfies D̂1 > 0, . . . , D̂k > 0
and D̂k+1 = · · · = D̂n = 0. Furthermore, each D̂i is some i × i minor
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subdeterminant of the original A. Thus there is an upper triangular matrix
Û such that

x′Ax = x · PÂP ′x = P ′x · ÂP ′x =
k∑

i=1

D̂i

D̂i−1
y2

i ,

where y = ÛP ′x. Again see Gantmacher [8, pp. 33—41] for details.

1.1 Quadratic forms on the unit sphere
In this section we deduce some properties of quadratic forms restricted to
subsets of the unit sphere. Consider an n × n symmetric matrix A. The
quadratic form Q(x) = x′Ax is a continuous function of x, so it achieves a
maximum on the unit sphere S = {x ∈ Rn : x · x = 1}, which is compact.
This maximizer turns out to be an eigenvector of A, and the value of the
maximum is its corresponding eigenvalue. This eigenvalue also turns out
to be the Lagrange Multiplier for the constraint that the maximizer lies
on the sphere. We can say even more, for if we restrict attention to the
subspace orthogonal to the eigenvector and look for a maximizer, we get
another eigenvector and eigenvalue. We can repeat this procedure until we
have found them all.

The next proposition is, I believe, well known, but I had trouble finding
it written out. It is implicit in Carathéodory [3, § 195].2 It also follows from
result 1f.2.iii in Rao [13, p. 62]. Anderson [1, pp. 273–275] and Franklin [7,
Section 6.2, pp. 141–145] give somewhat more explicit treatments.

Proposition 6 (Extrema of quadratic forms on the sphere) Let A
be an n × n symmetric matrix. Define x1, . . . , xn recursively so that xk+1

maximizes the quadratic form Q(x) = x′Ax over Sk = S ∩ Mk⊥, where S is
the unit sphere in Rn, and Mk denotes the span of x1, . . . , xk, with M0 = {0}.
Then each xk, k = 1, . . . , n is an eigenvector of A, and λk = Q(xk) is its
corresponding eigenvalue.

Note that by construction Sk+1 ⊂ Sk, so λ1 ⩾ · · · ⩾ λn. If A is positive
definite, then λn > 0, so we have an alternate proof of Proposition 1.

2Be advised that [3] uses the peculiar convention that an expression like aijxj , where
a subscript is repeated, means to sum over that subscript, that is, aijxj means

∑
j aijxj

and aijxixj means
∑

i

∑
j aijxixj .

v. 2018.11.11::17.30
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Proof 3: The quadratic form Q(x) = x′Ax is continuously differentiable and
∇Q(x) = 2Ax. Let x1 be a maximizer of Q on S = S0. (The maximizer
is not unique as ((Q(x) = Q(−x).) Then x1 maximizes Q subject to the
constraint 1 − x · x = 0. Now the gradient of this constraint function is −2x,
which is clearly nonzero (hence linearly independent) on S. It is a nuisance
to have these 2s popping up, so let us agree to maximize 1

2x′Ax subject
1
2(1 − x · x) = 0 instead. Therefore by the Lagrange Multiplier Theorem,
there exists λ1 satisfying

Ax1 − λ1x
1 = 0. (2)

This obviously implies that the Lagrange multiplier λ1 is an eigenvalue of
A and x1 is a corresponding eigenvector. Further, it is the value of the
maximum:

Q(x1) = x1 · Ax1 = λ1x
1 · x1 = λ1, (3)

since x1 · x1 = 1.
We now proceed by induction on k. Let x1, . . . , xk be recursively defined

as above and assume they satisfy the conclusion of the theorem. Let xk+1 be
a maximizer of 1

2Q over Sk. We wish to show that xk+1 is an eigenvector of
A and λk+1 = Q(xk+1) is its corresponding eigenvalue.

By hypothesis, xk+1 maximizes 1
2Q(x) subject to the constraints

1
2(1 − x · x) = 0, x · x1 = 0, . . . x · xk = 0.

The gradients of these constraint functions are −x and x1, . . . , xk respectively.
By construction, x1, . . . , xk+1 are orthonormal, so at x = xk+1 the constraint
gradients are linearly independent. Therefore by the Lagrange Multiplier
Theorem there exist multipliers λk+1 and µ1, . . . , µk satisfying

Axk+1 − λk+1x
k+1 + µ1x

1 + · · · + µkxk = 0. (4)

Therefore
Q(xk+1) = xk+1 · Axk+1

= λk+1x
k+1 · xk+1 − µ1x

k+1 · x1 − · · · − µkxk+1 · xk

= λk+1,

(5)

since x1, . . . , xk+1 are orthonormal. That is, the multiplier λk+1 is the maxi-
mum value of Q over Sk.

3I thank Professor Tony E. Smith, Department of Electrical and Systems Engineering,
University of Pennsylvania for pointing out how to simply the proof.
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Next note that if x ∈ Mk⊥, then Ax ∈ Mk⊥. To see this, note that by the
induction hypothesis, Axi = λixi for i = 1, . . . , k. Then since A is symmetric,

xi · Ax = x · Axi = x · λixi = 0, i = 1, . . . , k.

That is, Ax ∈ Mk⊥. By construction xk+1 ∈ Mk⊥, so we just showed that
Axk+1 ∈ Mk⊥.

Recall that if x ⊥ y and x + y = 0, then x = 0 and y = 0. 4 Therefore by
equation (4)

Axk+1 − λk+1x
k+1︸ ︷︷ ︸

∈Mk⊥

= 0 and µ1x
1 + · · · + µkxk︸ ︷︷ ︸

∈Mk

= 0.

We conclude therefore that Axk+1 = λk+1x
k+1, so that xk+1 is an eigenvector

of A and λk+1 is the corresponding eigenvalue.

2 Quadratic forms under constraint
In subsection 1.1 above, we were interested in a quadratic form restricted
to a subspace orthogonal to a set of eigenvectors. In this section we will
generalize this problem.

Definition 7 A matrix A is positive definite under the orthogonality
constraints b1, . . . , bm if it is symmetric and

x′Ax > 0 for all x ̸= 0 satisfying bi · x = 0, i = 1, . . . , m.

For brevity, when the vectors b1, . . . , bm are understood, we often say simply
that A is positive definite under constraint. The notions of negative
definiteness and semidefiniteness under constraint are defined in the
obvious way.

We can replace b1, . . . , bm by any basis for the span of b1, . . . , bm, so with-
out loss of generality we may assume that b1, . . . , bm are linearly independent,
or even orthonormal.

4This follows from (x + y) · (x + y) = x · x + 2x · y + y · y = x · x + y · y when x · y = 0.

v. 2018.11.11::17.30
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2.1 Rank and Definiteness of Quadratic Forms under
Constraint

Theorem 8 Suppose A is an n×n symmetric matrix that is negative definite
under orthogonality constraints for the linearly independent vectors b1, . . . , bm.
That is,

x′Ax < 0 for all nonzero x satisfying B′x = 0, (6)
where B is the n × m matrix whose jth column is bj. Then:

1. The bordered matrix  A B

B′ 0


is invertible.

2. Write the inverse bordered matrix as A B

B′ 0

−1

=

 C D

D′ E

.

Then C is negative semidefinite of rank n−m, with Cx = 0 if and only
if x is a linear combination of b1, . . . , bm.

Proof : (cf. Samuelson [14, pp. 378–379], Quirk [12, pp. 22–25], and Diewert
and Woodland [6, Appendix, Lemma 3])

(1) To see that the bordered matrix is invertible, suppose A B

B′ 0

 x

z

 = 0. (7)

We wish to show that x = 0 and z = 0. Now (7) reduces to

Ax + Bz = 0 (8)

and
B′x = 0. (9)

Simple calculation shows that the quadratic form associated with the bor-
dered matrix satisfies

[
x′ z′

] A B

B′ 0

 x

z

 =
[

x′ z′
] Ax + Bz

B′x

 = x′Ax + 2z′B′x.

v. 2018.11.11::17.30
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Now if (7) holds, this quadratic form is zero, so x′Ax+2z′B′x = 0. But by (9),
this implies x′Ax = 0. By assumption, A is definite under the constraint (9)
we must have that x = 0. Thus 8 implies Bz = 0. Since B has linearly
independent columns, this implies z = 0.

We have just shown that A B

B′ 0

 x

z

 = 0 =⇒

 x

z

 = 0.

Therefore the bordered matrix is invertible.
(2) So write  A B

B′ 0

−1

=

 C D

D′ E


and observe that  C D

D′ E

 A B

B′ 0

 =

 In 0
0 Im

,

and that C and E are symmetric. (The inverse of a symmetric matrix is
symmetric.) Expanding this yields

CA + DB′ = I (10)
CB = 0 (11)

D′A + EB′ = 0 (12)
D′B = I (13)

Now postmultiply (10) by C to get

CAC + D B′C︸ ︷︷ ︸
=0

by (11)

= C,

so
CAC = C. (14)

By (11), for any x, we have B′Cx = 0, so Cx is orthogonal to each column
of B. That is, Cx satisfies the constraints, so (x′C)A(Cx) ⩽ 0 with < 0 if
Cx ̸= 0. So by (14), x′Cx = x′CACx ⩽ 0 with < 0 if Cx ̸= 0. That is, C is
negative semidefinite.

v. 2018.11.11::17.30
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To see that C has rank n − m, we show that Cx = 0 if and only if x
is a linear combination of the columns of the m independent columns of B.
Equation (11) already implies that x = Bz implies Cx = 0. Now suppose
Cx = 0. Premultiply (10) by x′ to get

x′CA + x′DB′ = x′.

Thus x′C = 0 implies (x′D)B′ = x′, or x = Bz, where z = Dx.
Thus Cx = 0 if and only if x is a linear combination of the columns of B.

Therefore the null space of C has dimension equal to the rank of B, which
is m, so the rank of C equals n − m.

The next result is a partial converse to Theorem 8.

Theorem 9 Suppose A is an n×n symmetric matrix that is negative semidef-
inite under orthogonality constraints for the linearly independent vectors
b1, . . . , bm. That is, x′Ax ⩽ 0 for all nonzero x satisfying B′x = 0, where B
is the n × m matrix whose jth column is bj. Suppose also that the matrix A B

B′ 0


is invertible. Then A is actually negative definite under constraint. That is,
x′Ax < 0 for all nonzero x satisfying B′x = 0.

Note that if B has full rank, then there are no nonzero x with B′x = 0.
In that case the theorem is trivially true.

Proof : Suppose
x̄′Ax̄ = 0 and B′x̄ = 0.

Then x̄ maximizes the quadratic form 1
2x · Ax subject to the orthogonality

constraints B′x = 0. Since the columns of B are independent, the constraint
qualification is satisfied, so by the Lagrange Multiplier Theorem, there is a
vector λ ∈ Rm satisfying the first order conditions:

Ax̄ + Bλ = 0.

Thus  A B

B′ 0

 x̄

λ

 =

 Ax̄ + Bλ

B′x̄

 =

 0
0

.

v. 2018.11.11::17.30
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Since
 A B

B′ 0

 is invertible, we see that x̄ = 0 (and λ = 0). Thus B′x = 0

and x ̸= 0 imply x′Ax < 0.

2.2 Determinantal conditions
Now consider the problem of maximizing the quadratic form Q(x) = 1

2x′Ax
over the unit sphere subject to the orthogonality constraints b1·x = 0, . . . , bm·
x = 0. As in the proof of Proposition 6, we conclude that if x∗ is a constrained
maximizer, then there exist Lagrange multipliers λ∗, µ∗

1, . . . , µ∗
m satisfying the

first-order conditions

Ax∗ − λ∗x + µ∗
1b

1 + · · · + µ∗
mbm = 0. (15)

(Here we wrote the unit sphere constraint as 1
2(1−x·x) = 0 to avoid unsightly

fractions.) Premultiplying equation (15) by x∗, and using the fact that x∗ is
orthogonal to each bi, we get

Q(x∗) = x∗ · Ax∗ = λ∗x∗ · x∗ = λ∗.

That is, the Lagrange multiplier λ∗ is the maximum value of Q.
We can combine equation (15) with the orthogonality conditions in one

big matrix equation:  A − λ∗I B

B′ 0

 x∗

µ∗

 =

 0
0

,

where B is the matrix whose columns are b1, . . . , bm and µ∗ is the vector with
components µ∗

1, . . . , µ∗
m. Since x∗ is nonzero (it lies on the unit sphere), the

matrix
 A − λ∗I B

B′ 0

 must be singular, so

det

 A − λ∗I B

B′ 0

 = 0.

The next result is due to Hancock [9, pp. 105–114], who attributes the
approach to Lagrange.

v. 2018.11.11::17.30
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Proposition 10 (Hancock) Let A be an n × n symmetric matrix and let
{b1, . . . , bm} be linearly independent. Let

f(λ) = det

 A − λI B

B′ 0

.

If all the coefficients of f have the same sign, then A is negative semidefinite
under constraint.

If the coefficients of f alternate in sign, then A is positive semidefinite un-
der constraint. (Here we must consider the zero coefficients to be alternating
in sign.)

If in addition, f(0) = det

 A B

B′ 0

 ̸= 0, then A is actually definite

under constraint.

Proof : Even without resort to Descartes’ infamous Rule of Signs the following
fact is easy to see: If all the nonzero coefficients of a nonzero polynomial f (of
degree at least one) have the same sign, then f has no strictly positive roots.
For if all the coefficients of a polynomial f are nonnegative, then f(0) ⩾ 0
and f is strictly increasing on (0, ∞), so it has no positive roots. Likewise if
all the coefficients are nonpositive, then f(0) ⩽ 0 and f is strictly decreasing
on (0, ∞), so it has no positive roots. Trivially, if f(0) ̸= 0, then 0 is not a
root.

From the discussion preceding the proposition, λ∗, the maximum value of
x′Ax on the unit sphere, is a root of f . If the coefficients of f do not change
sign, then λ∗ ⩽ 0. That is, A is negative semidefinite under constraint, and
is actually definite if f(0) ̸= 0.

The results on positive (semi)definiteness follow from the fact that λ∗ is
a negative root of f(λ) if and only if −λ∗ is a positive root of f(−λ).

The problem with applying Hancock’s result is that he does not provide
a simple formula for the coefficients.

v. 2018.11.11::17.30
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2.3 Bordered matrices and quadratic forms
We define the matrices of the form

a11 . . . a1r b1
1 . . . bm

1
... ... ... ...

ar,1 . . . arr b1
r . . . bm

r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...

bm
1 . . . bm

r 0 . . . 0


to be rth order bordered minors of A. Note that the r refers to the
number of rows and columns from A. The actual rth order minor has m + r
rows and columns, where m is the number of constraint vectors. The proof
of the following result may be found in Debreu [5, Theorems 4 and 5] or
Mann [10]. Note that Mann errs in the statement of part 2. A proof may
also be found sketched in Samuelson [14, pp. 376–378].

Theorem 11 Let A be an n × n symmetric matrix and let {b1, . . . , bm} be
linearly independent.

1. A is positive definite under the orthogonality constraints b1, . . . , bm if
and only if

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r b1
1 . . . bm

1
... ... ... ...

ar,1 . . . arr b1
r . . . bm

r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...

bm
1 . . . bm

r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

for r = m+1, . . . , n. That is, if and only if every rth-order NW bordered
principal minor has sign (−1)m for r > m.

2. A is negative definite under the orthogonality constraints b1, . . . , bm if
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and only if

(−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r b1
1 . . . bm

1
... ... ... ...

ar,1 . . . arr b1
r . . . bm

r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...

bm
1 . . . bm

r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

for r = m+1, . . . , n. That is, if and only if every rth-order NW bordered
principal minor has sign (−1)r for r > m.

Note that for positive definiteness under constraint all the NW bordered
principal minors of order greater than m have the same sign, the sign de-
pending on the number of constraints. For negative definiteness the NW
bordered principal minors alternate in sign. For the case of one constraint
(m = 1) if A is positive definite under constraint, then these minors are neg-
ative. Again with one constraint, if A is negative definite under constraint,
then the minors of even order are positive and of odd order are negative.

To see how to derive statement (2) from statement (1), observe that A is
negative definite under constraint if and only if −A is positive definite under
constraint, which by statement (1) is equivalent to

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a11 . . . −a1r b1
1 . . . bm

1
... ... ... ...

−ar,1 . . . −arr b1
r . . . bm

r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...

bm
1 . . . bm

r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

for r = m + 1, . . . , n. But multiplying the first r rows by −1 multiplies the
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determinant by (−1)r, so

(−1)m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a11 . . . −a1r b1
1 . . . bm

1
... ... ... ...

−ar,1 . . . −arr b1
r . . . bm

r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r −b1
1 . . . −bm

1
... ... ... ...

ar,1 . . . arr −b1
r . . . −bm

r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and then multiplying the last m columns by −1 multiplies the determinant
by (−1)m,

= (−1)2m+r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1r b1
1 . . . bm

1
... ... ... ...
ar,1 . . . arr b1

r . . . bm
r

b1
1 . . . b1

r 0 . . . 0
... ... ... ...
bm

1 . . . bm
r 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since (−1)2m+r = (−1)r, statement (2) follows.
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