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Let A be a subset of Rm. Convex analysts may give one of two definitions for the support
function of A as either an infimum or a supremum. Recall that the supremum of a set of real
numbers is its least upper bound and the infimum is its greatest lower bound. If A has no upper
bound, then by convention sup A = ∞ and if A has no lower bound, then inf A = −∞. For the
empty set, sup A = −∞ and inf A = ∞; otherwise inf A ⩽ sup A. (This makes a kind of sense:
Every real number λ is an upper bound for the empty set, since there is no member of the empty
set that is greater than λ. Thus the least upper bound must be −∞. Similarly, every real number
is also a lower bound, so the infimum is ∞.) Thus support functions (as infima or suprema) may
assume the values ∞ and −∞.

By convention, 0 · ∞ = 0; if λ > 0 is a real number, then λ · ∞ = ∞ and λ · (−∞) = −∞; and
if λ < 0 is a real number, then λ · ∞ = −∞ and λ · (−∞) = ∞. These conventions are used to
simplify statements involving positive homogeneity.

Rather than choose one definition, I shall give the two definitions different names based on their
economic interpretation.

Profit maximization Cost minimization

The profit function πA of A is defined by

πA(p) = sup
y∈A

p · y.

The cost function cA of A is defined by

cA(p) = inf
y∈A

p · y.

Clearly,
πA(p) = −cA(−p).

Clearly
cA(p) = −πA(−p).

Proposition πA is convex, lower semicon-
tinuous, and positively homogeneous of degree
1.

Proposition cA is concave, upper semicon-
tinuous, and positively homogeneous of degree
1.
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Positive homogeneity of πA is obvious given
the conventions on multiplication of infinities.
To see that it is convex, let gx be the linear
(hence convex) function defined by gx(p) = x·p.
Then πA(p) = supx∈A gx(p). Since the point-
wise supremum of a family of convex functions
is convex, πA is convex. Also each gx is con-
tinuous, hence lower semicontinuous, and the
supremum of a family of lower semicontinuous
functions is lower semicontinuous. See my notes
on maximization.

Positive homogeneity of cA is obvious given the
conventions on multiplication of infinities. To
see that it is concave, let gx be the linear (hence
concave) function defined by gx(p) = x·p. Then
cA(p) = infx∈A gx(p). Since the pointwise infi-
mum of a family of concave functions is con-
cave, cA is concave. Also each gx is continuous,
hence upper semicontinuous, and the infimum
of a family of upper semicontinuous functions is
upper semicontinuous. See my notes on maxi-
mization.

Proposition The set

{p ∈ Rm : πA(p) < ∞}

is a closed convex cone, called the effective do-
main of πA, and denoted dom πA.

The effective domain will always include the
point 0 provided A is nonempty. By conven-
tion π∅(p) = −∞ for all p, and we say that π∅
is improper. If A = Rm, then 0 is the only
point in the effective domain of πA.

Proposition The set

{p ∈ Rm : cA(p) > −∞}

is a closed convex cone, called the effective do-
main of cA, and denoted dom cA.

The effective domain will always include the
point 0 provided A is nonempty. By conven-
tion c∅(p) = ∞ for all p, and we say that c∅ is
improper. If A = Rm, then 0 is the only point
in the effective domain of cA.

It is easy to see that the effective domain
dom πA of πA is a cone, that is, if p ∈ dom πA,
then λp ∈ dom πA for every λ ⩾ 0. (Note that
{0} is a (degenerate) cone.)

It is also straightforward to show that dom πA

is convex. For if πA(p) < ∞ and πA(q) < ∞,
for 0 ⩽ λ ⩽ 1, by convexity of πA, we have

πA

(
λx + (1 − λ)y

)
⩽ λπA(p) + (1 − λ)πA(q)
< ∞.

It is easy to see that the effective domain dom cA

of cA is a cone, that is, if p ∈ dom cA, then
λp ∈ dom cA for every λ ⩾ 0. (Note that {0} is
a (degenerate) cone.)

It is also straightforward to show that dom cA

is convex. For if cA(p) > −∞ and cA(q) > −∞,
for 0 ⩽ λ ⩽ 1, by concavity of cA, we have

cA

(
λx + (1 − λ)y

)
⩾ λcA(p) + (1 − λ)cA(q)
> −∞.

The closedness of dom πA is more difficult. The closedness of dom cA is more difficult.

Recoverability

Separating Hyperplane Theorem If A is
a closed convex set, and x does not belong to A,
then there is a nonzero p satisfying

p · x > πA(p).

Separating Hyperplane Theorem If A is
a closed convex set, and x does not belong to A,
then there is a nonzero p satisfying

p · x < cA(p).
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For a proof see my notes. Note that given our
conventions, A may be empty. From this theo-
rem we easily get the next proposition.

For a proof see my notes. Note that given our
conventions, A may be empty. From this theo-
rem we easily get the next proposition.

Proposition The closed convex hull co A of
satisfies

co A =
{
y ∈ Rm :

(
∀p ∈ Rm ) [

p · y ⩽ πA(p)
]}

.

Proposition The closed convex hull co A of
satisfies

co A =
{
y ∈ Rm :

(
∀p ∈ Rm ) [

p · y ⩾ cA(p)
]}

.

Now let f be a continuous real-valued function defined on a closed convex cone D. We can
extend f to all of Rm by setting it to ∞ outside of D if f is convex or −∞ if f is concave.

Proposition If f is convex and positively
homogeneous of degree 1, define

A =
{
y ∈ Rm :

(
∀p ∈ Rm ) [

p · y ⩽ f(p)
]}

.

Then A is closed and convex and

f = πA.

Proposition If f is concave and positively
homogeneous of degree 1, define

A =
{
y ∈ Rm :

(
∀p ∈ Rm ) [

p · y ⩾ f(p)
]}

.

Then A is closed and convex and

f = cA.

Extremizers are subgradients

Proposition If ỹ(p) maximizes p over A, that
is, if ỹ(p) belongs to A and p · ỹ(p) ⩾ p · y for
all y ∈ A, then ỹ(p) is a subgradient of πA at p.
That is,

πA(p) + ỹ(p) · (q − p) ⩽ πA(q) (∗)

for all q ∈ Rm.

Proposition If ŷ(p) minimizes p over A, that
is, if ŷ(p) belongs to A and p · ŷ(p) ⩽ p · y for
all y ∈ A, then ŷ(p) is a supergradient of cA at
p. That is,

cA(p) + ŷ(p) · (q − p) ⩾ cA(q) (∗)

for all q ∈ Rm.

To see this, note that for any q ∈ Rm, by defi-
nition we have

q · ỹ(p) ⩽ πA(q).

Now add πA(p) − p · ỹ(p) = 0 to the left hand
side to get the subgradient inequality.

To see this, note that for any q ∈ Rm, by defi-
nition we have

q · ŷ(p) ⩾ cA(q).

Now add cA(p) − p · ŷ(p) = 0 to the left hand
side to get the supergradient inequality.

Note that πA(p) may be finite for a closed con-
vex set A, and yet there may be no maximizer.
For instance, let

A = {(x, y) ∈ R2 : x < 0, y < 0, xy ⩾ 1}.

Then for p = (1, 0), we have πA(p) = 0 as (1, 0) ·
(−1/n, −n) = −1/n, but (1, 0) · (x, y) = x < 0
for each (x, y) ∈ A. Thus there is no maximizer
in A.

Note that xA(p) may be finite for a closed con-
vex set A, and yet there may be no minimizer.
For instance, let

A = {(x, y) ∈ R2 : x > 0, y > 0, xy ⩾ 1}.

Then for p = (1, 0), we have πA(p) = 0 as (1, 0) ·
(1/n, n) = 1/n, but (1, 0) · (x, y) = x > 0 for
each (x, y) ∈ A. Thus there is no minimizer in
A.
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It turns out that if there is no maximizer of p,
then πA has no subgradient at p. In fact, the
following is true, but I won’t present the proof,
which relies on the Separating Hyperplane The-
orem. (See my notes for a proof.)

It turns out that if there is no minimizer of p,
then cA has no supergradient at p. In fact, the
following is true, but I won’t present the proof,
which relies on the Separating Hyperplane The-
orem. (See my notes for a proof.)

Theorem If A is closed and convex, then x
is a subgradient of πA at p if and only if x ∈ A
and x maximizes p over A.

Theorem If A is closed and convex, then x is
a supergradient of cA at p if and only if x ∈ A
and x minimizes p over A.

Comparative statics

Proposition Consequently, if A is closed and
convex, and ỹ(p) is the unique maximizer of p
over A, then πA is differentiable at p and

ỹ(p) = π′
A(p). (∗∗)

Proposition Consequently, if A is closed and
convex, and ŷ(p) is the unique minimizer of p
over A, then cA is differentiable at p and

ŷ(p) = c′
A(p). (∗∗)

To see that differentiability of πA implies the
profit maximizer is unique, consider q of the
form p ± λei, where ei is the ith unit coordinate
vector, and λ > 0.

The subgradient inequality for q = p + λei is

ỹ(p) · λei ⩽ πA(p + λei) − πA(p)

and for q = p − λei is

−ỹ(p) · λei ⩽ πA(p − λei) − πA(p).

Dividing these by λ and −λ respectively yields

y∗
i (p) ⩽ πA(p + λei) − πA(p)

λ

y∗
i (p) ⩾ πA(p − λei) − πA(p)

λ
.

so
πA(p−λei)−πA(p)

λ ⩽ y∗
i (p) ⩽ πA(p+λei)−πA(p)

λ .

Letting λ ↓ 0 yields ỹi(p) = DiπA(p).

To see that differentiability of cA implies the
cost minimizer is unique, consider q of the
form p ± λei, where ei is the ith unit coordinate
vector, and λ > 0.

The supergradient inequality for q = p + λei is

ŷ(p) · λei ⩾ cA(p + λei) − cA(p)

and for q = p − λei is

−ŷ(p) · λei ⩾ cA(p − λei) − cA(p).

Dividing these by λ and −λ respectively yields

y∗
i (p) ⩾ cA(p + λei) − cA(p)

λ

y∗
i (p) ⩽ cA(p − λei) − cA(p)

λ
.

so
cA(p+λei)−cA(p)

λ ⩽ y∗
i (p) ⩽ cA(p−λei)−cA(p)

λ .

Letting λ ↓ 0 yields ŷi(p) = DicA(p).

Proposition Thus if πA is twice differentiable
at p, that is, if the maximizer ỹ(p) is differen-
tiable with respect to p, then the ith component
satisfies

Dj ỹi(p) = DijπA(p). (∗∗∗)

Proposition Thus if cA is twice differentiable
at p, that is, if the minimizer ŷ(p) is differen-
tiable with respect to p, then the ith component
satisfies

Dj ŷi(p) = DijcA(p). (∗∗∗)
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Consequently, the matrix[
Dj ỹi(p)

]
is positive semidefinite.

Consequently, the matrix[
Dj ŷi(p)

]
is negative semidefinite.

In particular,
Diỹi ⩾ 0.

In particular,
Diŷi ⩽ 0.

Even without twice differentiability, from the
subgradient inequality, we have

πA(p) + ỹ(p) · (q − p) ⩽ πA(q)
πA(q) + ỹ(q) · (p − q) ⩽ πA(p)

so adding the two inequalities, we get(
ỹ(p) − ỹ(q)

)
· (p − q) ⩾ 0.

Even without twice differentiability, from the
supergradient inequality, we have

cA(p) + ŷ(p) · (q − p) ⩾ cA(q)
cA(q) + ŷ(q) · (p − q) ⩾ cA(p)

so adding the two inequalities, we get(
ŷ(p) − ŷ(q)

)
· (p − q) ⩽ 0.

Proposition Thus if q differs from p only in
its ith component, say qi = pi + △pi, then we
have

△ỹi△pi ⩾ 0.

Dividing by the positive quantity (△pi)2 does not
change this inequality, so

△ỹi

△pi
⩾ 0.

Proposition Thus if q differs from p only in
its ith component, say qi = pi + △pi, then we
have

△ŷi△pi ⩽ 0.

Dividing by the positive quantity (△pi)2 does not
change this inequality, so

△ŷi

△pi
⩽ 0.

Cyclical monotonicity and empirical restrictions

A real function g : X ⊂ R → R is increasing
if

x ⩾ y =⇒ g(x) ⩾ g(y).

That is, g(x) − g(y) and x − y have the same
sign. An equivalent way to say this is(

g(x) − g(y)
)(

x − y) ⩾ 0 for all x, y,

which can be rewritten as

g(x)(y − x) + g(y)(x − y) ⩽ 0 for all x, y.

A real function g : X ⊂ R → R is decreasing
if

x ⩾ y =⇒ g(x) ⩽ g(y).

That is, g(x)−g(y) and x−y have the opposite
sign. An equivalent way to say this is(

g(x) − g(y)
)(

x − y) ⩽ 0 for all x, y,

which can be rewritten as

g(x)(y − x) + g(y)(x − y) ⩾ 0 for all x, y.
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We can generalize this to a function g from Rm

into Rm like this:

Definition A function g : X ⊂ Rm → Rm is
monotone (increasing) if

g(x) · (y − x) + g(y) · (x − y) ⩽ 0

for all x, y ∈ X.

We have already seen that the (sub)gradient of
πA is monotone (increasing).

We can generalize this to a function g from Rm

into Rm like this:

Definition A function g : X ⊂ Rm → Rm is
monotone (decreasing) if

g(x) · (y − x) + g(y) · (x − y) ⩾ 0

for all x, y ∈ X.

We have already seen that the (super)gradient
of cA is monotone (decreasing).

More is true.

Definition A mapping g : X ⊂ Rm → Rm

is cyclically monotone (increasing) if for
every cycle x0, x1, . . . , xn, xn+1 = x0 in X, we
have

g(x0) · (x1 − x0) + · · · + g(xn) · (xn+1 − xn) ⩽ 0.

More is true.

Definition A mapping g : X ⊂ Rm → Rm

is cyclically monotone (decreasing) if for
every cycle x0, x1, . . . , xn, xn+1 = x0 in X, we
have

g(x0) · (x1 − x0) + · · · + g(xn) · (xn+1 − xn) ⩾ 0.

Proposition If f : X ⊂ Rm → R is convex,
and g : X ⊂ Rm → Rm is a selection from the
subdifferential of f , that is, if g(x) is a subgra-
dient of f at x for every x, then g is cyclically
monotone (increasing).

Proposition If f : X ⊂ Rm → R is concave,
and g : X ⊂ Rm → Rm is a selection from the
superdifferential of f , that is, if g(x) is a super-
gradient of f at x for every x, then g is cyclically
monotone (decreasing).

Proof : Let x0, x1, . . . , xn, xn+1 = x0 be a cycle
in X. From the subgradient inequality at xi, we
have

f(xi) + g(xi) · (xi+1 − xi) ⩽ f(xi+1)

or

g(xi) · (xi+1 − xi) ⩽ f(xi+1) − f(xi)

for each i = 0, . . . , n. Summing gives
n∑

i=0
g(xi) · (xi+1 − xi) ⩽ 0,

where the right-hand side takes into account
f(xn+1) = f(x0).

Proof : Let x0, x1, . . . , xn, xn+1 = x0 be a cycle
in X. From the supergradient inequality at xi,
we have

f(xi) + g(xi) · (xi+1 − xi) ⩾ f(xi+1)

or

g(xi) · (xi+1 − xi) ⩾ f(xi+1) − f(xi)

for each i = 0, . . . , n. Summing gives
n∑

i=0
g(xi) · (xi+1 − xi) ⩾ 0,

where the right-hand side takes into account
f(xn+1) = f(x0).
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Corollary The profit maximizing points cor-
respondence ŷ is cyclically monotonic (increas-
ing).

Corollary The cost minimizing points cor-
respondence ŷ is cyclically monotonic (decreas-
ing).

Remarkably the converse is true.

Theorem (Rockafellar) Let X be a convex
set in Rm and let φ : X ↠ Rm be a cyclically
monotone (increasing) correspondence (that is,
if every selection from φ is a cyclically mono-
tone (increasing) function). Then there is a
lower semicontinuous convex function f : X →
R such that

φ(x) ⊂ ∂f(x)

for every x.

Remarkably the converse is true.

Theorem (Rockafellar) Let X be a convex
set in Rm and let φ : X ↠ Rm be a cyclically
monotone (decreasing) correspondence (that is,
if every selection from φ is a cyclically mono-
tone (decreasing) function). Then there is an
upper semicontinuous concave function f : X →
R such that

φ(x) ⊂ ∂f(x)

for every x.
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