Caltech Division of the Humanities and Social Sciences

Convex analysis and profit/cost/support functions

KC Border October 2004 Revised January 2009 v. 2016.05.04::13.40

Let A be a subset of \mathbb{R}^{m} . Convex analysts may give one of two definitions for the **support** function of A as either an infimum or a supremum. Recall that the **supremum** of a set of real numbers is its least upper bound and the **infimum** is its greatest lower bound. If A has no upper bound, then by convention $\sup A = \infty$ and if A has no lower bound, then $\inf A = -\infty$. For the empty set, $\sup A = -\infty$ and $\inf A = \infty$; otherwise $\inf A \leq \sup A$. (This makes a kind of sense: Every real number λ is an upper bound for the empty set, since there is no member of the empty set that is greater than λ . Thus the least upper bound must be $-\infty$. Similarly, every real number is also a lower bound, so the infimum is ∞ .) Thus support functions (as infima or suprema) may assume the values ∞ and $-\infty$.

By convention, $0 \cdot \infty = 0$; if $\lambda > 0$ is a real number, then $\lambda \cdot \infty = \infty$ and $\lambda \cdot (-\infty) = -\infty$; and if $\lambda < 0$ is a real number, then $\lambda \cdot \infty = -\infty$ and $\lambda \cdot (-\infty) = \infty$. These conventions are used to simplify statements involving positive homogeneity.

Rather than choose one definition, I shall give the two definitions different names based on their economic interpretation.

Profit maximization

The **profit function** π_A of A is defined by

$$\pi_A(p) = \sup_{y \in A} p \cdot y.$$

Clearly,

$$\pi_A(p) = -c_A(-p).$$

Proposition π_A is convex, lower semicontinuous, and positively homogeneous of degree 1.

Cost minimization

The cost function c_A of A is defined by

$$c_A(p) = \inf_{y \in A} p \cdot y.$$

Clearly

$$c_A(p) = -\pi_A(-p).$$

Proposition c_A is concave, upper semicontinuous, and positively homogeneous of degree 1. Positive homogeneity of π_A is obvious given the conventions on multiplication of infinities. To see that it is convex, let g_x be the linear (hence convex) function defined by $g_x(p) = x \cdot p$. Then $\pi_A(p) = \sup_{x \in A} g_x(p)$. Since the pointwise supremum of a family of convex functions is convex, π_A is convex. Also each g_x is continuous, hence lower semicontinuous, and the supremum of a family of lower semicontinuous functions is lower semicontinuous. See my notes on maximization.

Proposition The set

$$\{p \in \mathbf{R}^{\mathrm{m}} : \pi_A(p) < \infty\}$$

is a closed convex cone, called the effective domain of π_A , and denoted dom π_A .

The effective domain will always include the point 0 provided A is nonempty. By convention $\pi_{\emptyset}(p) = -\infty$ for all p, and we say that π_{\emptyset} is **improper**. If $A = \mathbf{R}^{\mathrm{m}}$, then 0 is the only point in the effective domain of π_A .

It is easy to see that the effective domain dom π_A of π_A is a cone, that is, if $p \in \text{dom } \pi_A$, then $\lambda p \in \text{dom } \pi_A$ for every $\lambda \ge 0$. (Note that $\{0\}$ is a (degenerate) cone.)

It is also straightforward to show that dom π_A is convex. For if $\pi_A(p) < \infty$ and $\pi_A(q) < \infty$, for $0 \leq \lambda \leq 1$, by convexity of π_A , we have

$$\pi_A(\lambda x + (1-\lambda)y) \leq \lambda \pi_A(p) + (1-\lambda)\pi_A(q)$$

< \infty.

The closedness of dom π_A is more difficult.

Positive homogeneity of c_A is obvious given the conventions on multiplication of infinities. To see that it is concave, let g_x be the linear (hence concave) function defined by $g_x(p) = x \cdot p$. Then $c_A(p) = \inf_{x \in A} g_x(p)$. Since the pointwise infimum of a family of concave functions is concave, c_A is concave. Also each g_x is continuous, hence upper semicontinuous, and the infimum of a family of upper semicontinuous functions is upper semicontinuous. See my notes on maximization.

Proposition The set

$$\{p \in \mathbf{R}^{\mathrm{m}} : c_A(p) > -\infty\}$$

is a closed convex cone, called the effective domain of c_A , and denoted dom c_A .

The effective domain will always include the point 0 provided A is nonempty. By convention $c_{\emptyset}(p) = \infty$ for all p, and we say that c_{\emptyset} is **improper**. If $A = \mathbf{R}^{\mathrm{m}}$, then 0 is the only point in the effective domain of c_A .

It is easy to see that the effective domain dom c_A of c_A is a cone, that is, if $p \in \text{dom } c_A$, then $\lambda p \in \text{dom } c_A$ for every $\lambda \ge 0$. (Note that $\{0\}$ is a (degenerate) cone.)

It is also straightforward to show that dom c_A is convex. For if $c_A(p) > -\infty$ and $c_A(q) > -\infty$, for $0 \leq \lambda \leq 1$, by concavity of c_A , we have

$$c_A(\lambda x + (1-\lambda)y) \ge \lambda c_A(p) + (1-\lambda)c_A(q)$$

> $-\infty$.

The closedness of dom c_A is more difficult.

Recoverability

Separating Hyperplane Theorem If A is a closed convex set, and x does not belong to A, then there is a nonzero p satisfying

$$p \cdot x > \pi_A(p).$$

Separating Hyperplane Theorem If A is a closed convex set, and x does not belong to A, then there is a nonzero p satisfying

$$p \cdot x < c_A(p).$$

For a proof see my notes. Note that given our conventions, A may be empty. From this theo-

Proposition The closed convex hull $\overline{\operatorname{co}} A$ of satisfies

rem we easily get the next proposition.

$$\overline{\operatorname{co}} A = \left\{ y \in \mathbf{R}^{\mathrm{m}} : \left(\forall p \in \mathbf{R}^{\mathrm{m}} \right) \left[p \cdot y \leqslant \pi_{A}(p) \right] \right\}$$

Now let f be a continuous real-valued function defined on a closed convex cone D. We can extend f to all of \mathbb{R}^{m} by setting it to ∞ outside of D if f is convex or $-\infty$ if f is concave.

Proposition If f is convex and positively homogeneous of degree 1, define

$$A = \{ y \in \mathbf{R}^{\mathrm{m}} : (\forall p \in \mathbf{R}^{\mathrm{m}}) [p \cdot y \leq f(p)] \}.$$

Then A is closed and convex and

$$f = \pi_A$$

For a proof see my notes. Note that given our conventions, A may be empty. From this theorem we easily get the next proposition.

Proposition The closed convex hull $\overline{\operatorname{co}} A$ of satisfies

$$\overline{\operatorname{co}} A = \{ y \in \mathbf{R}^{\mathrm{m}} : (\forall p \in \mathbf{R}^{\mathrm{m}}) \ [p \cdot y \geqslant c_A(p)] \}.$$

vely **Proposition** If f is concave and positively

homogeneous of degree 1, define

$$A = \{ y \in \mathbf{R}^{\mathrm{m}} : (\forall p \in \mathbf{R}^{\mathrm{m}}) \ [p \cdot y \ge f(p)] \}.$$

Then A is closed and convex and

$$f = c_A$$
.

Extremizers are subgradients

Proposition If $\tilde{y}(p)$ maximizes p over A, that is, if $\tilde{y}(p)$ belongs to A and $p \cdot \tilde{y}(p) \ge p \cdot y$ for all $y \in A$, then $\tilde{y}(p)$ is a subgradient of π_A at p. That is,

$$\pi_A(p) + \tilde{y}(p) \cdot (q-p) \leqslant \pi_A(q) \qquad (*)$$

for all $q \in \mathbf{R}^{\mathrm{m}}$.

To see this, note that for any $q \in \mathbf{R}^{m}$, by definition we have

$$q \cdot \tilde{y}(p) \leqslant \pi_A(q).$$

Now add $\pi_A(p) - p \cdot \tilde{y}(p) = 0$ to the left hand side to get the subgradient inequality.

Note that $\pi_A(p)$ may be finite for a closed convex set A, and yet there may be no maximizer. For instance, let

$$A = \{ (x, y) \in \mathbf{R}^2 : x < 0, \ y < 0, \ xy \ge 1 \}.$$

Then for p = (1,0), we have $\pi_A(p) = 0$ as $(1,0) \cdot (-1/n, -n) = -1/n$, but $(1,0) \cdot (x,y) = x < 0$ for each $(x,y) \in A$. Thus there is no maximizer in A.

Proposition If $\hat{y}(p)$ minimizes p over A, that is, if $\hat{y}(p)$ belongs to A and $p \cdot \hat{y}(p) \leq p \cdot y$ for all $y \in A$, then $\hat{y}(p)$ is a supergradient of c_A at p. That is,

$$c_A(p) + \hat{y}(p) \cdot (q-p) \ge c_A(q) \qquad (*)$$

for all $q \in \mathbf{R}^{\mathrm{m}}$.

To see this, note that for any $q \in \mathbf{R}^{m}$, by definition we have

$$q \cdot \hat{y}(p) \ge c_A(q).$$

Now add $c_A(p) - p \cdot \hat{y}(p) = 0$ to the left hand side to get the supergradient inequality.

Note that $x_A(p)$ may be finite for a closed convex set A, and yet there may be no minimizer. For instance, let

$$A = \{ (x, y) \in \mathbf{R}^2 : x > 0, \ y > 0, \ xy \ge 1 \}.$$

Then for p = (1,0), we have $\pi_A(p) = 0$ as $(1,0) \cdot (1/n, n) = 1/n$, but $(1,0) \cdot (x,y) = x > 0$ for each $(x,y) \in A$. Thus there is no minimizer in A.

It turns out that if there is no maximizer of p, then π_A has no subgradient at p. In fact, the following is true, but I won't present the proof, which relies on the Separating Hyperplane Theorem. (See my notes for a proof.)

Theorem If A is closed and convex, then x is a subgradient of π_A at p if and only if $x \in A$ and x maximizes p over A.

Proposition Consequently, if A is closed and convex, and $\tilde{y}(p)$ is the unique maximizer of p over A, then π_A is differentiable at p and

$$\tilde{y}(p) = \pi'_A(p). \tag{**}$$

To see that differentiability of π_A implies the profit maximizer is unique, consider q of the form $p \pm \lambda e^i$, where e^i is the i^{th} unit coordinate vector, and $\lambda > 0$.

The subgradient inequality for $q = p + \lambda e^i$ is

$$\tilde{y}(p) \cdot \lambda e^i \leqslant \pi_A(p + \lambda e^i) - \pi_A(p)$$

and for $q = p - \lambda e^i$ is

$$-\tilde{y}(p)\cdot\lambda e^{i}\leqslant\pi_{A}(p-\lambda e^{i})-\pi_{A}(p).$$

Dividing these by λ and $-\lambda$ respectively yields

$$y_i^*(p) \leqslant \frac{\pi_A(p + \lambda e^i) - \pi_A(p)}{\lambda}$$
$$y_i^*(p) \geqslant \frac{\pi_A(p - \lambda e^i) - \pi_A(p)}{\lambda}.$$

 \mathbf{SO}

$$\frac{\pi_A(p-\lambda e^i)-\pi_A(p)}{\lambda} \leqslant y_i^*(p) \leqslant \frac{\pi_A(p+\lambda e^i)-\pi_A(p)}{\lambda}.$$

Letting $\lambda \downarrow 0$ yields $\tilde{y}_i(p) = D_i \pi_A(p)$.

Proposition Thus if π_A is twice differentiable at p, that is, if the maximizer $\tilde{y}(p)$ is differentiable with respect to p, then the ith component satisfies

$$D_j \tilde{y}_i(p) = D_{ij} \pi_A(p). \qquad (***)$$

It turns out that if there is no minimizer of p, then c_A has no supergradient at p. In fact, the following is true, but I won't present the proof, which relies on the Separating Hyperplane Theorem. (See my notes for a proof.)

Theorem If A is closed and convex, then x is a supergradient of c_A at p if and only if $x \in A$ and x minimizes p over A.

Comparative statics

Proposition Consequently, if A is closed and convex, and $\hat{y}(p)$ is the unique minimizer of p over A, then c_A is differentiable at p and

$$\hat{y}(p) = c'_A(p). \tag{**}$$

To see that differentiability of c_A implies the cost minimizer is unique, consider q of the form $p \pm \lambda e^i$, where e^i is the *i*th unit coordinate vector, and $\lambda > 0$.

The supergradient inequality for $q = p + \lambda e^i$ is

$$\hat{y}(p) \cdot \lambda e^i \ge c_A(p + \lambda e^i) - c_A(p)$$

and for $q = p - \lambda e^i$ is

$$-\hat{y}(p) \cdot \lambda e^i \ge c_A(p - \lambda e^i) - c_A(p).$$

Dividing these by λ and $-\lambda$ respectively yields

$$y_i^*(p) \ge \frac{c_A(p+\lambda e^i) - c_A(p)}{\lambda}$$
$$y_i^*(p) \le \frac{c_A(p-\lambda e^i) - c_A(p)}{\lambda}.$$

 \mathbf{SO}

$$\frac{c_A(p+\lambda e^i)-c_A(p)}{\lambda} \leqslant y_i^*(p) \leqslant \frac{c_A(p-\lambda e^i)-c_A(p)}{\lambda}.$$

Letting $\lambda \downarrow 0$ yields $\hat{y}_i(p) = D_i c_A(p)$.

Proposition Thus if c_A is twice differentiable at p, that is, if the minimizer $\hat{y}(p)$ is differentiable with respect to p, then the i^{th} component satisfies

$$D_j \hat{y}_i(p) = D_{ij} c_A(p).$$
 (***)

Consequently, the matrix

$$\left[D_j \tilde{y}_i(p)\right]$$

is positive semidefinite.

In particular,

$$D_i \tilde{y}_i \ge 0.$$

Even without twice differentiability, from the subgradient inequality, we have

$$\pi_A(p) + \tilde{y}(p) \cdot (q-p) \leqslant \pi_A(q)$$

$$\pi_A(q) + \tilde{y}(q) \cdot (p-q) \leqslant \pi_A(p)$$

so adding the two inequalities, we get

$$(\tilde{y}(p) - \tilde{y}(q)) \cdot (p - q) \ge 0$$

Proposition Thus if q differs from p only in its ith component, say $q_i = p_i + \Delta p_i$, then we have

$$\Delta \tilde{y}_i \Delta p_i \ge 0.$$

Dividing by the positive quantity $(\triangle p_i)^2$ does not change this inequality, so

$$\frac{\Delta \tilde{y}_i}{\Delta p_i} \ge 0.$$

Cyclical monotonicity and empirical restrictions

A real function $g \colon X \subset \mathbf{R} \to \mathbf{R}$ is **increasing** if

$$x \geqslant y \implies g(x) \geqslant g(y).$$

That is, g(x) - g(y) and x - y have the same sign. An equivalent way to say this is

$$(g(x) - g(y))(x - y) \ge 0 \qquad \text{for all } x, y,$$

which can be rewritten as

$$g(x)(y-x) + g(y)(x-y) \leq 0$$
 for all x, y

Consequently, the matrix

$$\left[D_j\hat{y}_i(p)\right]$$

is negative semidefinite.

In particular,

$$D_i \hat{y}_i \leqslant 0.$$

Even without twice differentiability, from the supergradient inequality, we have

$$c_A(p) + \hat{y}(p) \cdot (q-p) \ge c_A(q)$$

$$c_A(q) + \hat{y}(q) \cdot (p-q) \ge c_A(p)$$

so adding the two inequalities, we get

$$\left(\hat{y}(p) - \hat{y}(q)\right) \cdot (p - q) \leqslant 0.$$

Proposition Thus if q differs from p only in its ith component, say $q_i = p_i + \Delta p_i$, then we have

$$\triangle \hat{y}_i \triangle p_i \leqslant 0.$$

Dividing by the positive quantity $(\triangle p_i)^2$ does not change this inequality, so

$$\frac{\triangle \hat{y}_i}{\triangle p_i} \leqslant 0.$$

A real function $g \colon X \subset \mathbf{R} \to \mathbf{R}$ is decreasing if

$$x \geqslant y \implies g(x) \leqslant g(y).$$

That is, g(x) - g(y) and x - y have the opposite sign. An equivalent way to say this is

$$(g(x) - g(y))(x - y) \leq 0$$
 for all x, y ,

which can be rewritten as

$$g(x)(y-x) + g(y)(x-y) \ge 0$$
 for all x, y .

We can generalize this to a function g from \mathbf{R}^{m} into \mathbf{R}^{m} like this:

Definition A function $g: X \subset \mathbb{R}^m \to \mathbb{R}^m$ is monotone (increasing) if

$$g(x) \cdot (y - x) + g(y) \cdot (x - y) \leqslant 0$$

for all $x, y \in X$.

We have already seen that the (sub)gradient of π_A is monotone (increasing).

More is true.

Definition A mapping $g: X \subset \mathbb{R}^m \to \mathbb{R}^m$ is cyclically monotone (increasing) if for every cycle $x_0, x_1, \ldots, x_n, x_{n+1} = x_0$ in X, we have

$$g(x_0) \cdot (x_1 - x_0) + \dots + g(x_n) \cdot (x_{n+1} - x_n) \leq 0.$$

Proposition If $f: X \subset \mathbb{R}^m \to \mathbb{R}$ is convex, and $g: X \subset \mathbb{R}^m \to \mathbb{R}^m$ is a selection from the subdifferential of f, that is, if g(x) is a subgradient of f at x for every x, then g is cyclically monotone (increasing).

Proof: Let $x_0, x_1, \ldots, x_n, x_{n+1} = x_0$ be a cycle in X. From the subgradient inequality at x_i , we have

$$f(x_i) + g(x_i) \cdot (x_{i+1} - x_i) \leqslant f(x_{i+1})$$

or

$$g(x_i) \cdot (x_{i+1} - x_i) \leqslant f(x_{i+1}) - f(x_i)$$

for each $i = 0, \ldots, n$. Summing gives

$$\sum_{i=0}^{n} g(x_i) \cdot (x_{i+1} - x_i) \leqslant 0,$$

where the right-hand side takes into account $f(x_{n+1}) = f(x_0)$.

We can generalize this to a function g from \mathbf{R}^{m} into \mathbf{R}^{m} like this:

Definition A function $g: X \subset \mathbb{R}^m \to \mathbb{R}^m$ is monotone (decreasing) if

$$g(x) \cdot (y - x) + g(y) \cdot (x - y) \ge 0$$

for all $x, y \in X$.

We have already seen that the (super)gradient of c_A is monotone (decreasing).

More is true.

Definition A mapping $g: X \subset \mathbb{R}^m \to \mathbb{R}^m$ is cyclically monotone (decreasing) if for every cycle $x_0, x_1, \ldots, x_n, x_{n+1} = x_0$ in X, we have

$$g(x_0) \cdot (x_1 - x_0) + \dots + g(x_n) \cdot (x_{n+1} - x_n) \ge 0.$$

Proposition If $f: X \subset \mathbb{R}^m \to \mathbb{R}$ is concave, and $g: X \subset \mathbb{R}^m \to \mathbb{R}^m$ is a selection from the superdifferential of f, that is, if g(x) is a supergradient of f at x for every x, then g is cyclically monotone (decreasing).

Proof: Let $x_0, x_1, \ldots, x_n, x_{n+1} = x_0$ be a cycle in X. From the supergradient inequality at x_i , we have

$$f(x_i) + g(x_i) \cdot (x_{i+1} - x_i) \ge f(x_{i+1})$$

or

$$g(x_i) \cdot (x_{i+1} - x_i) \ge f(x_{i+1}) - f(x_i)$$

for each $i = 0, \ldots, n$. Summing gives

$$\sum_{i=0}^{n} g(x_i) \cdot (x_{i+1} - x_i) \ge 0,$$

where the right-hand side takes into account $f(x_{n+1}) = f(x_0)$.

Corollary The profit maximizing points correspondence \hat{y} is cyclically monotonic (increasing).

Remarkably the converse is true.

Theorem (Rockafellar) Let X be a convex set in \mathbb{R}^m and let $\varphi: X \to \mathbb{R}^m$ be a cyclically monotone (increasing) correspondence (that is, if every selection from φ is a cyclically monotone (increasing) function). Then there is a lower semicontinuous convex function $f: X \to \mathbb{R}$ such that

$$\varphi(x) \subset \partial f(x)$$

for every x.

Corollary The cost minimizing points correspondence \hat{y} is cyclically monotonic (decreasing).

Remarkably the converse is true.

Theorem (Rockafellar) Let X be a convex set in \mathbb{R}^m and let $\varphi: X \to \mathbb{R}^m$ be a cyclically monotone (decreasing) correspondence (that is, if every selection from φ is a cyclically monotone (decreasing) function). Then there is an upper semicontinuous concave function $f: X \to \mathbb{R}$ such that

$$\varphi(x)\subset \partial f(x)$$

for every x.