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These notes are (I hope) a gentle introduction to the topological concepts used in eco-
nomic theory. If the term “metric space” disturbs you, just mentally replace it by “Euclidean
space.” You won’t go too far wrong by doing that. I provide almost no proofs here, and it
is a good exercise to try to prove these statements. Proofs of these facts can be found in
any good introduction to analysis. I personally like Walter Rudin’s blue book [4].1 I am
also fond of The Hitchhiker’s Guide [1].
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1 Metrics
A metric on a nonempty set X is a function d : X × X → R satisfying the following four
properties that are designed to capture intuitive properties of distance in the real world.

1. Positivity: The distance between two points is a nonnegative real number, and the distance
from a point to itself is zero. Formally, for all x, y ∈ X

d(x, y) ⩾ 0 and d(x, x) = 0.

2. Discrimination: The distance between two distinct points is strictly positive. Formally,

d(x, y) = 0 =⇒ x = y.

3. Symmetry: The distance from point x to point y is the same as the distance from point
y to point x. Formally, for all x, y ∈ X,

d(x, y) = d(y, x).

4. Triangle Inequality: The shortest distance from point x to point y is less than or equal to
the distance from point x to point y stopping by point z along the way. (See Figure 1.)
Or given a triangle xyz, the length of any side is less than or equal to the sum of the
lengths of the remaining sides. Formally, for all x, y, z ∈ X,

d(x, y) ⩽ d(x, z) + d(z, y).
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Figure 1. The triangle inequality: d(x, y) ⩽ d(x, z) + d(z, y).

If d is a metric on a set X, then the pair (X, d) is called a metric space.

1 Example (Examples of metric spaces)

• The natural metric on R is
d(x, y) = |x − y|.

• There are several natural metrics on Rm. The Euclidean metric is defined by

d(x, y) =
( m∑

i=1
|xi − yi|2

) 1
2
.

The ℓ1 metric is defined by

d(x, y) =
m∑

i=1
|xi − yi|.

The sup metric or uniform metric is defined by

d(x, y) = max
i=1,...,m

|xi − yi|.

• These definitions can be extended to spaces of infinite sequences, by replacing the finite
sum with an infinite series. The infinite dimensional spaces of sequences where every
point has a finite distance from zero under these metrics (that is, when the infinite series
is absolutely convergent) are called ℓ2, ℓ1, and ℓ∞, respectively. (Although for the metric
on ℓ∞, the maximum must replaced by a supremum: d(x, y) = supn |xn −yn|.) In general,
for p ⩾ 1,

ℓp =
{

(x1, x2, . . .) ∈ RN :
∞∑

n=1
|xn|p < ∞

}
.

And the ℓp metric is

dp(x, y) =
( ∞∑

n=1
|xn − yn|p

)1/p
.

It can be shown that limp→∞ dp(x, y) = supn |xn − yn|, hence the term ℓ∞.
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• The same ideas apply to spaces of functions. Let C[a, b] be the vector space of all con-
tinuous real-valued functions on the interval [a, b]. Then we can define metrics on C[a, b]
by

dp(f, g) =
(∫ b

a

∣∣f(x) − g(x)
∣∣p dx

)1/p
0 < p < ∞

and
d∞(f, g) = max

{∣∣f(x) − g(x)
∣∣ : a ⩽ x ⩽ b

}
.

• In general, a norm ∥ · ∥ on a vector space defines a metric by

d(x, y) = ∥x − y∥.

• A peculiar metric is the discrete metric on a set, defined by d(x, y) = 1 whenever x ̸= y.

• The Baire space is NN, the space of sequences of natural numbers. A useful metric on
this space is the tree metric,

d(x, y) = 1
min{n : xn ̸= yn}

.

Incredibly, this metric makes the Baire space “look” just like the space of irrational
numbers in the unit interval [1, Theorem 3.68, p. 106].

□

2 Open balls and neighborhoods
Let (X, d) be a metric space. The open ε-ball centered at a point ∈ X is

Bε(x) = {y ∈ X : d(y, x) < ε},

A point x is an interior point of a subset A of X if there is some ε > 0 such that Bε(x) is
included in A. In this case we also say that A is a neighborhood of x.

The set of interior points is called the interior of X, denoted int X or sometimes X◦.

3 Open sets
A set G is open if every point in G is an interior point, that is, G = int G. The letter G is
often used to denote an open set, perhaps in reference to the German word geöffnet. The most
important class of open sets are the open balls:

• Every open ε-ball Bε(x) is an open set.
To see this, assume d(x, y) = α < ε. Then by the triangle inequality, Bε−α(y) ⊂ Bε(x).

As a result of this,

v. 2018.10.15::15.30
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• The interior of a set is open. Indeed it is the largest (in the sense of inclusion) open
subset.

These simple facts about open sets are important to remember.

• The union of an arbitrary family of open sets is open.

• The intersection of a finite family of open sets is open.

• The empty set and X are each open.

2 Definition Let A be set in a metric space (X, d). The ε-neighborhood Nε(A) of A is
defined by

Nε(A) =
∪

x∈A

Bε(x).

Note that as a union of open balls Bε(x), the set Nε(A) is open. If X is also a vector space
with translation-invariant metric d, then we also have Nε(A) = A + Bε(0).

4 Topology
The collection of open sets in a metric space is called the topology of the metric space. Two
metrics generating the same topology are equivalent. The Euclidean, ℓ1, and sup metrics on
Rm are equivalent metrics for the topology of Rm. A property of a metric space that can be
expressed in terms of open sets without mentioning a specific metric is called a topological
property. It is possible to take the notion of open set as a primitive, and define “topological
spaces” that may not arise from any metric.2 These general topological spaces have their crucial
uses, but I won’t go into that here.

5 Relative topology
Let A be a nonempty subset of the metric space (X, d). The metric d restricted to A is a
metric on A. The topology it defines is the relative topology on A with respect to X, or the
topology on A relative to X. The ε-ball centered at x in A is just

Bε(x) = {y ∈ A : d(x, y) < ε} = A
∩

{y ∈ X : d(x, y) < ε}.

Now let E ⊂ A. A point x is a relative interior point of E with respect to A if there is
some ε > 0 such that Bε(x) ∩ A = {y ∈ A : d(y, x) < ε} is included in E. The set of relative
interior points is called the relative interior of E. A set E is relatively open in A if every
point in E is a relative interior point. Note that A is always relatively open in A itself, but not
necessarily open in X.

2A topological space is a nonempty set X together with a topology, where a topology is any family τ of sets
satisfying the following properties: (i) ∅, X ∈ τ , (ii) τ is closed under finite intersections, and (iii) τ is closed
under arbitrary unions. Members of the topology τ , which are thus subsets of X, are by definition open.
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For example, let X be the real line with its usual metric and let A = [0, 1], which is not an
open subset of X as neither 0 nor 1 is an interior point. But both 0 and 1 are interior points
of [0, 1] relative to itself. Thus the interval (1/2, 1] is relatively open in [0, 1].

The following fact shows how to define the relative topology of A in terms of the topology
of X without resorting to the metric. That is, it shows that the relative topology of A (with
respect to X) is a topological property.

• If A ⊂ X, then G is relatively open in A if and only if there is an open subset Ĝ of X
such that G = Ĝ

∩
A.

6 Closed sets
A set is closed if its complement is open. Thus:

• The intersection of any family of closed sets is closed.

• The union of a finite family of closed sets is closed.

• The empty set and X are both closed.

The letter F is often used to stand for a closed set, after the French fermé.

7 Closure of a set
The smallest closed set including a set A is called the closure of A, denoted A or cl A. It is
the intersection of all closed sets that include A. Clearly A ⊂ A, and A = A if and only if A is
closed.

• If F is closed, then F = F , consequently A = A for any set A.

• If A ⊂ B, then A ⊂ B.

• A point x does not belong to A if and only if there is some ε > 0 such that Bε(x)
∩

A = ∅.
(This is because the complement of Bε(x) is a closed set.)

• A point x belongs to A if and only if for every ε > 0, we have Bε(x)
∩

A ̸= ∅.

• Bε(x) = {y : d(y, x) < ε} ⊂ {y : d(y, x) ⩽ ε}, and in a general metric space the inclusion
may be proper. (To see why the inclusion may be proper, think about the open ball of
radius 1 in a discrete metric space X: B1(x) = {x} and {y ∈ X : d(y, x) ⩽ 1} = X.)

• However, in Rn, we do have Bε(x) = {y : d(y, x) ⩽ ε}.

v. 2018.10.15::15.30
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8 Boundary of a set
The boundary of a set A, denoted ∂A or bdy A, is defined by

∂A = A
∩

(X \ A).

In other words,

• x ∈ ∂A if and only if for every ε > 0,

Bε(x)
∩

A ̸= ∅ and Bε(x)
∩

Ac ̸= ∅.

For example, in R2, let D be the unit disc,

D = {(x, y) ∈ R2 : x2 + y2 ⩽ 1}.

Then its boundary is the unit circle,

∂D = {(x, y) ∈ R2 : x2 + y2 = 1}.

Also, the boundary of X is the empty set. If E ⊂ A ⊂ X, then it is not surprising that the
boundary of E relative to A, which is E

∩
(A \ E), need not be the same as the boundary of E

relative to X, which is E
∩

(X \ E).

9 Dense sets
A subset D of a set A is dense in A if the closure of D includes A. That is, any closed set
that includes D also includes A.

• A set D is dense in A if and only if for every x ∈ A and every ε > 0,

Bε(x)
∩

D ̸= ∅.

Another way to say this is that every point in A can be “approximated” arbitrarily well
by a point in D.

A metric space (X, d) is separable if there is a dense subset of X that is countable. The
following fact is not trivial.

• Every subset of a separable metric space is separable (with its relative topology).

10 Compactness
A set G of sets is a cover of a set A (or covers A) if A is included in the union of G,

A ⊂
∪
G =

∪
E∈G

E.

v. 2018.10.15::15.30
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If G is a cover of A, the set E of sets is a subcover of A if every set that belongs to E also
belongs to G and E covers A.3 If every set belonging to G is open, then G is called an open
cover of A.

For example, the set G = {(n − 2, n + 2) : n ∈ N} of intervals is an open cover of R, and
E = {(n − 2, n + 2) : n ∈ N, n even} is an open subcover of R.

An important topological property is compactness. A set K is compact if every collection
G of open sets satisfying K ⊂

∪
G∈G G includes a finite subcollection G1, . . . , Gk satisfying

K ⊂
∪k

i=1 Gi. This is usually phrased as, “every open cover of K has a finite subcover.”
There is an equivalent characterization of compact sets that is perhaps more useful. A

family A of sets has the finite intersection property if every finite subset {A1, . . . , An} of
A has a nonempty intersection, ∩n

i=1 Ai ̸= ∅. For instance, the family {(a, ∞) ⊂ R : a ∈ R} of
intervals has the finite intersection property.

3 Theorem A set K is compact if and only if every family of closed subsets of K having the
finite intersection property has a nonempty intersection.

Hint for proof : If F is a family of closed subsets of K, then the family {K \ F : F ∈ F} of
relatively open complements covers K if and only if

∩
F = ∅.

The following facts about compact sets are easy consequences of the definitions.

• The empty set is compact.

• Any finite subset of a metric space is compact.

• A compact subset of a metric space is closed.

• A closed subset of a compact set is also compact.

• Finite unions of compact sets are compact.

• If K ⊂ A ⊂ X, then K is compact relative to A if and only if K is compact relative to X.
(Note that by taking A = K, we see that compactness in X, unlike openness or closedness
in X, is determined by the relative topology of K.)

The next results are only a little less straightforward.

4 Lemma Let G be an open subset of a metric space (X, d) and let K be a nonempty compact
subset of G. Then there is an ε > 0 such that

K ⊂ Nε(K) ⊂ G.

Hint: For each x ∈ K there is εx > 0 with Bεx(x) ⊂ G. Let Bεx1
(x1), . . . , Bεxn

(xn) be a finite
subcover, and set ε = mini εxi .

3This terminology is a bit unsatisfactory, since E is a subset of G and a cover of A. It would be more precise
to say that E is a subcover of G of A (or should it be E is a subcover of A of G?), but that sounds awkward.

v. 2018.10.15::15.30
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5 Lemma Let K be a compact subset of metric space, and let G be an open cover of K. Then
there exists some δ > 0, called a Lebesgue number of the cover, such that for each y ∈ K we
have Bδ(y) ⊂ G for at least one G ∈ G.

Proof : For each x in K, there is an open set Gx belonging to G with

x ∈ Gx ∈ G.

(If there is more than one such open set just choose one of them.) Since Gx is open, there is
some εx > 0 such that

Bεx(x) ⊂ Gx.

Now consider the new open cover

G′ =
{
Bεx/2(x) : x ∈ K

}
of K. Since K is compact, it has a finite subcover

{Bεxi/2(xi) : i = 1, . . . , n}.

Let
δ = min{εxi/2 : i = 1, . . . , n}.

Now let y belong to K. Since G′ covers K, y belongs to Bεxi/2(xi) for some i. If z ∈ Bδ(y),
then

d(xi, z) ⩽ d(xi, y) + d(y, z) < εxi/2 + δ ⩽ εxi .

That is,
Bδ(y) ⊂ Bεxi

(xi) ⊂ Gxi ∈ G.

This completes the proof.

11 Boundedness and total boundedness
For a nonempty subset A of a metric space (X, d) its diameter is sup

{
d(x, y) : x, y ∈ A

}
. A

nonempty set is bounded if its diameter is finite. A nonempty subset of a metric space is
totally bounded if for every ε > 0, it can be covered by finitely many ε-balls. Boundedness
and total boundedness are not topological properties—they depend on the metric. In fact, if
(X, d) is a metric space, define the new metric d′ by d′(x, y) = max{d(x, y), 1}. Then (X, d′) is
a bounded metric space of diameter 1, but has the same topology (open sets) as (X, d).

6 Heine–Borel–Lebesgue Theorem A nonempty subset of Rm is compact if and only if
it is both closed and bounded in the Euclidean metric.

More generally, any set in a Euclidean space that is bounded in the Euclidean metric is
totally bounded. This result is special. In general, a set may be closed and bounded without
being totally bounded or compact. However, in a metric space, a set is compact if and only if
it is totally bounded and complete (see section 19 for completeness).

v. 2018.10.15::15.30
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12 Product spaces
The Cartesian product of two metric spaces (X, dX) and (Y, dY ) is a metric space under several
natural equivalent metrics, such as:

d1
(
(x, y), (x′, y′)

)
= dX(x, x′) + dY (y, y′), d∞

(
(x, y), (x′, y′)

)
= max{dX(x, x′), dY (y, y′)}.

(Compare these to the ℓp metrics on Rm in section 1.) The product topology on X × Y is
the topology defined by either of the metrics above.

The most important things to know about the product topology are:

• If (x, y) belongs to the interior of a subset G of X×Y , then there exist open neighborhoods
U of x (in X) and V of y (in Y ) such that

(x, y) ∈ U × V ⊂ G.

• If C and K are compact subsets of X and Y , then C × K is a compact subset of X × Y .

These notions generalize in a straightforward way to products of finitely many metric spaces.
(Think of Rm as the product of m copies of R.)

We can even put a metric on a countable product of metric spaces. Let (Xn, dn), n = 1, 2, . . .,
be a sequence of bounded metric spaces of diameter at most 1. (See section 11 to see why the
boundedness assumption is not restrictive.) Let X =

∏∞
n=1 Xn, the infinite product, and define

the metric d on X by

d(x, y) =
∞∑

n=1
dn(xn, yn)/2n,

where
x = (x1, x2, . . .) and y = (y1, y2, . . .).

The metric space (X, d) is also bounded with diameter at most 1, and its topology is called the
product topology.

It is possible to define product topologies for arbitrary products of metric spaces, but unless
the set of factors is countable, the result will not be a metric space. Nonetheless, the notion of
compactness is topological, so the next result makes sense.

7 Tychonoff Product Theorem The Cartesian product of an arbitrary family of compact
sets is compact.

13 Sequences and subsequences
Formally, a sequence in a set A is a function from the natural numbers N into A. Traditionally,
sequences are denoted using lower case Latin letter near the end of the alphabet, such as x
or y. Also traditionally, instead of writing x(n) for the value of the function, we write xn.
Occasionally, we may write something like (x1, x2, . . .) or x = (x1, x2, . . .) to denote a sequence,
particularly if we wish to treat it as a point in a vector space. We may also refer to a sequence
with the notation x1, x2, . . ., or (rather unfortunately) {x1, x2, . . .}.

v. 2018.10.15::15.30
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A strictly increasing function φ from N into N defines a subsequence of a sequence as
follows. Let x be a sequence in A, that is, x : N → A. Define the sequence y : N → A by
y(k) = x

(
φ(k)

)
. Then y is a subsequence of x. But it is traditional to write the value of y at k

as xnk
.

A finite sequence is a function on {1, . . . , n} for some n ∈ N. We may occasionally use
the pleonasm “infinite sequence” to distinguish a sequence from a finite sequence.

The n-tail of the sequence x is the subsequence defined by the increasing function k 7→
k + n − 1, and is traditionally denoted something like (xn, xn+1, . . . , ).

14 Convergence
Let (X, d) be a metric space. A sequence x1, x2, . . . in X converges to a point x in X, written

xn −−−→
n→∞

x

or simply xn → x, if d(xn, x) → 0 as a sequence of real numbers. In other words, if

( ∀ε > 0 ) ( ∃N ) ( ∀n ⩾ N ) [ d(xn, x) < ε ].

Or in yet other words, if the sequence eventually lies in any neighborhood of x. We often say
“P for n large enough” as a shorthand for the expression “ ( ∃N ) ( ∀n ⩾ N ) [ P ].”

• Limits are unique. That is, if xn → y and xn → z, then y = z.

• The closure of a set A in a metric space consists of all points that are limits of sequences
in A.

15 Sequential Compactness
A topological space X is sequentially compact if every sequence in X has a subsequence that
converges to a point in X. One reason for the terminology is the following result.

8 Theorem A set K in a metric space is compact if and only if is sequentially compact.

Here is a sketch of the proof of half the theorem. Assume that K is compact and nonempty,
and let x1, x2, . . . be a sequence in K. (If K is empty, the theorem is vacuously true.) Define
Fn = {xn, xn+1, . . .}, the closure of the se of values of the n-tail of x. Then {Fn : n ∈ N} is a
family of closed subsets of K having the finite intersection property. (Why?) Since K is compact
∞∩

n=1
Fn ̸= ∅ (Theorem 3). Now let y belong to this intersection. That is, y ∈ {xn, xn+1, . . .} ⊂ K

for every n. Construct the strictly increasing function k 7→ nk from N into N inductively
as follows. Let n1 = 1. Given n1 < · · · < nk, pick nk+1 to satisfy nk+1 ⩾ nk + 1 and
d(xnk+1 , y) < 1/(k + 1). Since y ∈ Fnk+1, there is always such an xnk+1 in {xnk+1, xnk+2, . . .}.
Then xnk

−−−→
k→∞

y is the desired subsequence.
The converse is harder.

v. 2018.10.15::15.30
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16 Continuity
Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y is continuous if inverse images
of open sets are open. That is,

U is an open subset of Y =⇒ f−1(U) is an open subset of X.

Equivalently, f is continuous if and only if

xn → x =⇒ f(xn) → f(x).

Or equivalently, there is the “ε-δ” definition,

( ∀x ∈ X ) ( ∀ε > 0 ) ( ∃δ > 0 ) ( ∀z ∈ X )
[
d(x, z) < δ =⇒ ρ

(
f(x), f(z)

)
< ε

]
.

We may also have occasion to talk about continuity at a point. We say that f is continuous
at the point x if any of the following equivalent conditions holds.

U is a neighborhood of f(x) =⇒ f−1(U) is a neighborhood of x.

xn → x =⇒ f(xn) → f(x).

( ∀ε > 0 ) ( ∃δ > 0 ) ( ∀z ∈ X )
[
d(x, z) < δ =⇒ ρ

(
f(x), f(z)

)
< ε

]
.

9 Proposition A function is continuous if and only if it is continuous at every point in its
domain.

17 Semicontinuity
A real function f : X → R is upper semicontinuous if for each α ∈ R, the superlevel set
{f ⩾ α} is closed. It is lower semicontinuous if every sublevel set {f ⩽ α} is closed.

The epigraph of a real-valued function f is defined by

epi f = {(x, α) ∈ X × R : f(x) ⩽ α}

and its hypograph is defined by

hypo f = {(x, α) ∈ X × R : f(x) ⩾ α}

Note that
(x, α) ∈ epi f ⇐⇒ x ∈ {f ⩽ α} .

Likewise (x, α) ∈ hypo f ⇐⇒ x ∈ {f ⩾ α}.

10 Proposition The real-valued function f : X → R is lower semicontinuous if and only its
epigraph is a closed subset of X × R. Similarly, f is upper semicontinuous if and only if its
hypograph is a closed subset of X × R.

v. 2018.10.15::15.30
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Proof : Assume epi f is closed and let xn be a sequence in the sublevel set {f ⩽ α} with xn → x.
Then (xn, α) is a sequence in epi f converging to (x, α). Since epi f is closed, (x, α) belongs to
epi f , so x ∈ {f ⩽ α}. Thus {f ⩽ α} is closed.

Conversely, assume that each sublevel set is closed, and let (xn, αn) be a sequence in epi f
converging to (x, α). Let ε > 0. Then for large enough n, αn < α + ε, so for large n,
(xn, αn) ∈ {f ⩽ α + ε}, which is closed. Thus (x, α) ∈ [f ⩽ α + ε]. Since this must be true for
every ε > 0, we have (x, α) ∈ {f ⩽ α}, so (x, α) ∈ epi f . Thus epi f is closed.

Note that f is upper semicontinuous if and only if −f is lower semicontinuous.

We can also talk about semicontinuity at a point. The real-valued function f is upper
semicontinuous at the point x if

( ∀ε > 0 ) ( ∃δ > 0 ) [ d(y, x) < δ =⇒ f(y) < f(x) + ε ].

Similarly, f is lower semicontinuous at the point x if

( ∀ε > 0 ) ( ∃δ > 0 ) [ d(y, x) < δ =⇒ f(y) > f(x) − ε ].

Equivalently, f is upper semicontinuous at x if

f(x) ⩾ lim sup
y→x

f(y) = inf
ε>0

sup
0<d(y,x)<ε

f(y).

Similarly, f is lower semicontinuous at x if

f(x) ⩽ lim inf
y→x

f(y) = sup
ε>0

inf
0<d(y,x)<ε

f(y).

11 Proposition A real valued function is continuous at x if and only if is both upper and
lower semicontinuous at x.

12 Proposition A function is lower semicontinuous if and only if it is lower semicontinuous
at every point. Likewise, a function is upper semicontinuous if and only if it is upper semicon-
tinuous at every point.

13 Proposition Let {fi : i ∈ I} be a family of lower semicontinuous functions. Then g defined
by pointwise by

g(x) = sup
i

fi(x)

is lower semicontinuous.
Similarly, if {fi : i ∈ I} is a family of upper semicontinuous functions, then g defined by

pointwise by g(x) = inf i fi(x) is upper semicontinuous.

Proof : For the lower semicontinuous case this follows from the fact that epi g =
∩
i

epi fi.
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18 Weierstrass’s Theorem
14 Theorem The continuous image of a compact set is compact.

More pedantically, the above theorem asserts that if X and Y are topological spaces, and
if f : X → Y is continuous, and if K is a compact subset of X, then f(K) is a compact subset
of Y .

15 Weierstrass’s Theorem If K is a nonempty compact set and f : K → R is continuous,
then f has both a maximizer and a minimizer in K.

16 Theorem If K is a nonempty compact set and f : K → R is upper semicontinuous, then
f has a maximizer in K.

If K is a nonempty compact set and f : K → R is lower semicontinuous, then f has a
minimizer in K.

Outline of proof : Assume K is a nonempty compact set and f : K → R is upper semicontinu-
ous. Then F = {{f ⩾ α} : α ∈ range f} is a family of closed sets having the finite intersection
property. The set of maximizers is the nonempty set

∩
F.

19 Completeness
A sequence (x1, x2, . . .) in a metric space is a Cauchy sequence if

lim
n→∞

diam{xn, xn+1, . . .} = 0.

Any convergent sequence is a Cauchy sequence. A metric space is complete if every Cauchy
sequences is convergent (to some point in the space). Every Euclidean space is complete. Every
closed subset of a complete metric space is complete. Completeness is not a topological property.

17 Cantor Intersection Lemma Let F1 ⊃ F2 ⊃ · · · be a nested decreasing sequence of
nonempty closed subsets of a complete metric space. If limn→∞ diam Fn = 0, then

∞∩
n=1

Fn

contains exactly one point.

This conclusion of this lemma may fail if the hypothesis that limn→∞ diam Fn = 0 is not
satisfied. Try to think of a simple example. Hint: Use the complete metric space of natural
numbers with the usual metric, d(n, m) = |n − m|.

20 Distance functions
The distance from a point x to a nonempty set A in a metric space is defined by

d(x, A) = inf{d(x, z) : z ∈ A}.
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• Given a nonempty set A, the distance function is continuous. In fact, this stronger
condition is true: ∣∣d(x, A) − d(y, A)

∣∣ ⩽ d(x, y).
This is easy to see: If you want to go from x to A, you can always go to y first, and then go to A,
and vice versa,

d(x, A) ⩽ d(x, y) + d(y, A) and d(y, A) ⩽ d(x, y) + d(x, A),

so
d(x, A) − d(y, A) ⩽ d(x, y) and d(y, A) − d(x, A) ⩽ d(x, y).

That is, ∣∣d(x, A) − d(y, A)
∣∣ ⩽ d(x, y).

• A = {x ∈ X : d(x, A) = 0}.

• Nε(A) = {x ∈ X : d(x, A) < ε}

21 Convergence of sequences of functions
Let f1, f2, . . . be a sequence of functions from a set X into a metric space (Y, d). The sequence
converges pointwise to a function f if for each point x ∈ X the sequence fn(x) → f(x) in Y .
In other words,

( ∀x ∈ X ) ( ∀ε > 0 ) ( ∃N ) ( ∀n ⩾ N )
[
d

(
fn(x), f(x)

)
< ε

]
.

In particular N may be chose to depend on x as well as ε. The sequence converges uniformly
to f if N can be chosen independently of x. In other words,

( ∀ε > 0 ) ( ∃N ) ( ∀x ∈ X ) ( ∀n ⩾ N )
[
d

(
fn(x), f(x)

)
< ε

]
.

Note the subtle difference in the order of the quantifiers.
Define the metric ρ for functions by

ρ(f, g) = sup
x

d
(
f(x), g(x)

)
.

(Technically this is not a metric since the supremum may be infinite. We can fix that by setting
ρ(f, g) = supx min

{
d

(
f(x), g(x)

)
, 1

}
.) Then fn → f uniformly if and only if ρ(fn, f) → 0.

Pointwise convergence cannot described by a metric unless X is countable.
Clearly uniform convergence implies pointwise convergence. The converse is false.

18 Example (Pointwise vs. uniform convergence) Let fn : [0, 1] → [0, 1] be defined by

fn(x) =

1 if x ∈ [1/2n, 1/n]

0 otherwise.

Then fn → 0 pointwise, but not uniformly. □
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22 Lipschitz continuity
A function f from the metric space (X, d) into the metric space (Y, δ) is Lipschitz continuous
with Lipschitz modulus α if for every x, x′ in X,

δ
(
f(x), f(x′)

)
⩽ αd(x, x′).

We sometimes simply say that f is a Lipschitz function or Lipschitzian. We have already
seen that distance functions are Lipschitz functions with modulus 1.

19 Rademacher’s Theorem Let G be an open subset of Rm and let f : G → R be Lipschitz
continuous. Then f is (Fréchet-)differentiable almost everywhere in G.

This result is not so elementary and may be found, for instance, in Clarke, et. al. [2,
Corollary 4.19, p. 148].

The second fundamental theorem of calculus is usually stated for continuously differentiable
functions, but it is also true for Lipschitz continuous functions.

20 Theorem Let f : [a, b] → R be Lipschitz continuous. Then

f(b) = f(a) +
∫ b

a
f ′(x) dx.

A word about the theorem above: Note that f ′ may not exist everywhere, but the set
of points at which it does not exist has measure zero, and so cannot affect the value of the
Lebesgue integral of f ′. This theorem is a special case of a more general result on absolutely
continuous functions, see for instance H. L. Royden [3, Corollary 15, p. 110].

If the Lipschitz modulus of a Lipschitz function is strictly less than 1, then it is a contrac-
tion. For a function f mapping a set into itself, a point x is a fixed point of f if f(x) = x.
The following theorem plays a key rôle in the theory and practice of dynamic programming.

21 Contraction Fixed Point Theorem Let (X, d) be a complete metric space and let
f : X → X be a contraction. Then f has a unique fixed point x̄.

Moreover, for any x0, the sequence defined recursively by xn+1 = f(xn) satisfies xn → x̄.

23 Bases for topologies
A collection B of open sets is a base for the topology on the metric space X if every open
subset X is a union of sets from B. For instance, the collection of open balls

{Bε(x) : x ∈ X, ε > 0}

is a base for the topology on X. So is the following collection of open balls:

{B1/n(x) : x ∈ X, n ∈ N}.

In Rm, a base for the topology is given by

{B1/n(x) : x ∈ Qm, n ∈ N}.
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This base is countable, that is, it can be put into one-to-one correspondence with the natural
numbers N.

A metric space that has a countable base is called a second countable metric space. Recall
that a metric space is separable if it has a countable dense subset. The next theorem is not
obvious. See, e.g., [1, Lemma 3.4, p. 73].

22 Theorem A metric space is second countable if and only if it is separable.

24 Separation properties
Every metric space has the Hausdorff property: For every pair x, y of distinct points, there
are disjoint neighborhoods U of x and V of y. (For instance, take open balls of radius d(x, y)/2
centered at each point.)

A stronger property is true, namely every metric space is regular. That is, if F is closed
and x /∈ F , there are disjoint open sets G and U with F ⊂ G and x ∈ U . (Let α = d(x, F )/2.
Since F is closed, and x /∈ F , we must have α > 0. Set G =

∪
{Bα(y) : y ∈ F} and U = Bα(x).)

The strongest separation property possessed by metric spaces is this [1, Lemma 3.20, p. 81]:

23 Theorem Let (X, d) be a metric space and let E and F be nonempty disjoint closed subsets
of X. Then there is a continuous function f : X → [0, 1] satisfying

f−1[E] = {0} and f−1[F ] = {1}.

In fact,
f(x) = d(x, E)

d(x, E) + d(x, F )
has this property.

25 Semimetric spaces
A semimetric on a set X is a function d : X × X → R satisfying all the properties of a metric
except discrimination. That is, it is possible for distinct points x and y to satisfy d(x, y) = 0.
Semimetrics arise naturally in spaces of functions. Let f be an integrable (Riemann integrable
or Lebesgue integrable, it doesn’t matter) function on the interval [a, b], and let g differ from f
at only finitely many points. Then

d(f, g) =
∫ b

a

∣∣f(x) − g(x)
∣∣ dx = 0,

so the metric described in section 1 on the space of continuous functions is only a semimetric
on the space of integrable functions. (Note that if f and g are continuous and disagree at single
point, then they disagree on an open interval about that point.)

Many of the results presented here are true for semimetrics, others need to be modified. In
particular, in a semimetric space, limits no longer need be unique.
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A common method for dealing with semimetric spaces is to convert them to metric spaces
as follows. Given a semimetric space (X, d) define the binary relation ∼ by

x ∼ y if d(x, y) = 0.

Then you can show that ∼ is reflexive, symmetric, and transitive, in other words an equiva-
lence relation. The equivalence class of x, usually denoted [x], is defined by

[x] = {y ∈ X : x ∼ y} = {y ∈ X : d(x, y) = 0}.

The set of equivalence classes, denoted X/∼, is called the quotient of X modulo ∼, and is
a partition of X. We can define a true metric on X/∼, abusively denoted d, by

d
(
[x], [y]

)
= d(x, y).

We sometimes say that we identify x and y if x ∼ y, and we may also casually refer to X/∼
simply as X. This is especially true dealing with spaces of functions using f to denote both f
and [f ].
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