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Foreword
These notes have accreted piecemeal from courses in econometrics, statistics, and microeco-
nomics I have taught over the last forty-something years, so the notation, hyphenation, and
terminology may vary from section to section. I originally compiled them to be my personal
centralized reference for finite-dimensional real vector spaces, but over the years I have added
more expository material. While the notes concentrate on finite-dimensional real vector spaces,
I occasionally mention complex or infinite-dimensional spaces. If you too find them useful, so
much the better. There is a sketchy index, which I think is better than none.

For a thorough course on linear algebra I now recommend Axler [7]. My favorite reference for
infinite-dimensional vector spaces is the Hitchhiker’s Guide [2], but it needn’t be your favorite.
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1 Scalar fields
A field is a set of mathematical entities that we shall call scalars. There are two binary
operations defined on scalars, addition and multiplication. We denote the sum of α and β
by α + β, and the product simply by αβ, or by occasionally α · β. These operations satisfy
the following familiar properties:

F.1 (Commutativity of Addition and Multiplication) α + β = β + α, αβ = βα.

F.2 (Associativity of Addition and Multiplication) (αβ) + γ = α + (β + γ), (αβ)γ = α(βγ).

F.3 (Distributive Law) α(β + γ) = (αβ) + (αγ).

F.4 (Existence of Additive and Multiplicative Identities) There are two distinct scalars, zero,
0, and 1, such that for every scalar α, we have α + 0 = α and 1α = α.

F.5 (Existence of Additive Inverse) For each scalar α there exists a scalar −α such that α +
(−α) = 0. We usually write α − β for α + (−β).

F.5 (Existence of Multiplicative Inverse) For each nonzero scalar α there exists a scalar α−1

such that αα−1 = 1. We often write α/β for αβ−1.

There are many elementary theorems that point out many things that you probably take
for granted. For instance,

• −α and α−1 are unique. This justifies the notation, by the way.

• −α = (−1) · α. (Here −1 is the scalar β that satisfies 1 + β = 0.)

• α + γ = β + γ ⇐⇒ α = β.

• 0 · α = 0.

• αβ = 0 =⇒ [α = 0 or β = 0 or both ].

There are many more. See, for instance, Apostol [5, p. 18].
The most important scalar fields are the real numbers R, the rational numbers Q, and

the field of complex numbers C. Computer scientists, e.g., Klein [15], are fond of the {0, 1}
field sometimes known as GF(2) or the Boolean field.

These notes are mostly concerned with the field of real numbers. This is not because the
other fields are unimportant—it’s because I myself have limited use for the others, which is
probably a personal shortcoming.

2 Vector spaces
Let K be a field of scalars—usually either the real numbers R or the complex numbers C, or
occasionally the rationals Q.

v. 2020.03.29::12.55
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1 Definition A vector space over K is a nonempty set V of vectors equipped with two
operations, vector addition (x, y) 7→ x + y, and scalar multiplication (α, x) 7→ αx, where
x, y ∈ V and α ∈ K. The operations satisfy:

V.1 (Commutativity of Vector Addition) x + y = y + x

V.2 (Associativity of Vector Addition) (x + y) + z = x + (y + z)

V.3 (Existence of Zero Vector) There is a vector 0V , often denoted simply 0, satisfying x+0 =
x for every vector x.

V.4 (Additive Inverse) x + (−1)x = 0

V.5 (Associativity of Scalar Multiplication) α(βx) = (αβ)x

V.6 (Scalar Multiplication by 1) 1x = x

V.7 (Distributive Law) α(x + y) = (αx) + (αy)

V.8 (Distributive Law) (α + β)x = (αx) + (βx)

The term real vector space refers to a vector space over the field of real numbers, and a
complex vector space is a vector space over the field of complex numbers. The term linear
space is a synonym for vector space.

2.1 The vector space Rm

By far the most important example of a vector space, and indeed the mother of all vector
spaces, is the space Rm of ordered lists of m real numbers. Given ordered lists x = (ξ1, . . . , ξm)
and y = (η1, . . . , ηm) the vector sum x + y is the ordered list (ξ1 + η1, . . . , ξm + ηm). The scalar
product is given by the ordered list αx = (αξ1, . . . , αξm). The zero of this vector space is the
ordered list 0 = (0, . . . , 0). It is a trivial matter to verify that the axioms above are satisfied
by these operations. As a special case, the set of real numbers R is a real vector space.

In Rm we identify several special vectors, the unit coordinate vectors. These are the
ordered lists ei that consist of zeroes except for a single 1 in the ith position. We use the
notation ei to denote this vector regardless of the dimension of the list.

2.2 Other examples of vector spaces
The following are also vector spaces. The definition of the vector operations is usually obvious.

• {0} is a vector space, called the trivial vector space. A nontrivial vector space contains
at least one nonzero vector.

• The field K is a vector space over itself.

• The set L1(I) of integrable real-valued functions on an interval I of the real line,

{f : I → R :∈ tI |f(x)| dx < ∞}

is a real vector space under the pointwise operations: (f + g)(x) = f(x) + g(x) and
(αf)(x) = αf(x) for all x ∈ I.

v. 2020.03.29::12.55
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Attempted notational conventions
As of the Great Social Distancing, in order to make these notes more compatible with other
course notes, I have edited them to try to adhere to the following notational conventions.
My guess is that it will take several iterations before they are really consistent.

Scalars will traditionally be denoted by lower case Greek letters. But there are certain
notations, such as integrals, where ∈ t1

0f(x) dx seems much more readable than ∈ t1
0f(ξ) dξ.

Vectors are typically denoted by bold lower case Latin letters, such as x. When I need to
refer to a coordinate of x I may simply write xi. Note the awkward difference between a
vector of coordinates x = (x1, . . . , xm) and a finite sequence x1, . . . , xm of vectors. I hope
this is not too confusing. When I frequently need to refer to the coordinates of a vector
in Rm, I will try to make them explicit, and use Greek letters corresponding to the Latin
letter of the vector. For instance, x = (ξ1, . . . , ξm), y = (η1, . . . , ηm), z = (ζ1, . . . , ζm).a
But it is awkward to be consistent when referring to the coordinate vectors with respect
to different bases.

Since many of my econometrics and statistics texts use bold upper case Latin letters to
denote matrices, I will try to do likewise. Their entries will be denoted by the corresponding
lower case Greek letters. But I (for now) am using non-bold upper case Latin Letters to
denote linear transformations.

That said, these notes come from many different courses, and I may not have standardized
everything. I’m sorry.

aThe correspondence between Greek and Latin letters is somewhat arbitrary. For instance, one could
make the case that Latin y corresponds to Greek υ, and not to Greek η. I should write out a guide.

• The set L2(P ) of square-integrable random variables,

E X2 < ∞

on the probability space (S,E, P ) is a real vector space.

• The set of solutions to a homogeneous linear differential equation, e.g., f ′′ +αf ′ +βf = 0,
is a real vector space.

• The sequence spaces ℓp,

ℓp =
{

x = (x1, x2, . . . ) ∈ RN :
∞∑

n=1
|xn|p < ∞

}
, 0 < p < ∞

ℓ∞ =
{

x = (x1, x2, . . . ) : sup
n

|xn| < ∞
}

are real vector spaces.1
1This is another example of where it seems inappropriate to use Greek letters for scalars.

v. 2020.03.29::12.55
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• The set M(m, n) of m × n real matrices is a real vector space.

• The set of linear transformations from one vector space into another is a linear space. See
Proposition 12 below.

• We can even consider the set R of real numbers as an (infinite-dimensional, see below)
vector space over the field Q of rational numbers. This leads to some very interesting
(counter-)examples.

3 Some elementary consequences
Here are some simple consequences of the axioms that we shall use repeatedly without further
comment.

1. 0 is unique.
02 =︸︷︷︸

by V.3

02 + 01 =︸︷︷︸
by V.1

01 + 02 =︸︷︷︸
by V.3

01

2. −x = (−1)x is the unique vector z satisfying x + z = 0. Suppose

x + y = 0
−x + x︸ ︷︷ ︸+y = −x

0 + y = −x

y = −x.

3. 0Kx = 0V :
0V = 0Kx + (−1)(0Kx) = (0K − 0K)x = 0Kx.

4. x + · · · + x︸ ︷︷ ︸
n

= nx:

x + x = 1x + 1x = (1 + 1)x = 2x

x + x + x = (x + x) + x = 2x + x = 2x + 1x = (2 + 1)x = 3x

etc.

3.1 Linear combinations and subspaces
A linear combination of the vectors x1, . . . , xm is any sum of scalar multiples of vectors of
the form α1x1 + · · · + αmxm, αi ∈ K, xi ∈ V . A linear subspace M of V is a nonempty
subset of V that is closed under linear combinations. A linear subspace of a vector space is a
vector space in its own right. A linear subspace may also be called a vector subspace.

Let E ⊂ V . The span of E, denoted span E, is the set of all linear combinations from E.
That is,

span E =
{ m∑

i=1
αixi : αi ∈ K, xi ∈ E, m ∈ N

}
.

v. 2020.03.29::12.55
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2 Exercise Prove the following.
1. {0} is a linear subspace.

2. If M is a linear subspace, then 0 ∈ M .

3. The intersection of a family of linear subspaces is a linear subspace.

4. The set span E is the smallest (with respect to inclusion) linear subspace that includes E.
□

3.2 Linear independence
3 Definition A set E of vectors is linearly dependent if there are distinct vectors x1, . . . , xm

belonging to E, and nonzero scalars α1, . . . , αm, such that α1x1 + · · · + αmxm = 0. A set of
vectors is linearly independent if it is not dependent. That is, E is independent if for every
set x1, . . . , xm of distinct vectors in E, ∑m

i=1 αixi = 0 implies α1 = · · · = αm = 0. We also
say that the vectors x1, . . . , xm are independent instead of saying that the set {x1, . . . , xm} is
independent.

4 Exercise Prove the following.
1. The empty set is independent.

2. If E is independent and A ⊂ E, then A is independent.

3. If 0 ∈ E, then E is dependent.
□

5 Proposition (Uniqueness of linear combinations) If E is a linearly independent set
of vectors and z belongs to span E, then z is a unique linear combination of elements of E.

Proof : If z is zero, the conclusion follows by definition of independence. If z is nonzero, suppose

z =
m∑

i=1
αixi =

n∑
j=1

βjyj ,

where the xi’s are distinct elements of E, the yj ’s are distinct are distinct elements of E (but
may overlap with the xi’s), and αi, βj 6= 0 for i = 1, . . . , m and j = 1, . . . , n. Enumerate
A = {xi : i = 1, . . . , m} ∪ {yj : j = 1, . . . , n} as A = {zk : k = 1, . . . , p}. (If xi = yj for some i

and j, then p is strictly less than m + n.) Then we can rewrite z =
∑p

k=1 α̂kzk =
∑p

k=1 β̂kzk,
where

α̂k =
{

αi if zk = xi

0 otherwise
and β̂k =

{
βj if zk = yj

0 otherwise.
Then

0 = z − z =
p∑

k=1
(α̂k − β̂k)zk =⇒ α̂k − β̂k = 0, k = 1, . . . , p

since E is independent. Therefore α̂k = β̂k, k = 1, . . . , p, which in turn implies m = n = p and
{xi : i = 1, . . . , m} = {yj : j = 1, . . . , n}, and the proposition is proved.

v. 2020.03.29::12.55
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The coefficients of this linear combination are called the coordinates of x with respect
to the set E.

3.3 Bases and dimension
6 Definition A Hamel basis, or more succinctly, a basis for the linear space V is a linearly
independent set B such that span B = V . The plural of basis is bases.

The next result is immediate from Proposition 5.

7 Proposition Every element of the vector space V is a unique linear combination of basis
vectors.

8 Example (The standard basis for Rm) The set of unit coordinate vectors e1, . . . , em in
Rm is a basis for Rm, called the standard basis.

Observe that the vector x = (ξ1, . . . , ξm) can be written uniquely as ∑m
j=1 ξjej . □

The fundamental facts about bases are these. For a proof of the first assertion, see the
Hitchhiker’s Guide [2, Theorem 1.8, p. 15].

9 Fact Every nontrivial vector space has a basis. Any two bases have the same cardinality,
called the dimension of V . Prove the second half

for finite-dimensional
case.Mostly these notes deal with finite-dimensional vector spaces. The next result summarizes

Theorems 1.5, 1.6, and 1.7 in Apostol [6, pp. 10–12]]

10 Theorem In an n-dimensional space, every set of more than n vectors is dependent. Con-
sequently, any independent set of n vectors is a basis.

3.4 Linear transformations
11 Definition Let V, W be vector spaces. A function T : V → W is a linear transformation
or linear operator or homomorphism if

T (αx + βy) = αT (x) + βT (y).

The set of linear transformations from the vector space V into the vector space W is denoted

L(V, W ).

If T is a linear transformation from a vector space into the reals R, then it is customary to
call T a linear functional.

The set L(V, R) of linear functionals on V is called the dual space of V , and is denoted
V ′. When there is a notion of continuity, we shall let V ∗ denote the vector space of continuous
linear functionals on V .

The set V ′ is often called the algebraic dual of V and V ∗ is the topological dual of V .

v. 2020.03.29::12.55
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Note that if T is linear, then T0V = 0W . We shall use this fact without any special mention.
It is traditional to write a linear transformation without parentheses, that is, to write Tx rather
than T (x).

12 Proposition L(V, W ) is itself a vector space under the usual pointwise addition and scalar
multiplication of functions.

3.5 The coordinate mapping
In an m-dimensional space V , if we fix a basis in some particular order, we have an ordered
basis or frame. Given this ordered basis the coordinates of a vector comprise an ordered list,
and so correspond to an element in Rm. This mapping from vectors to their coordinates is
called the coordinate mapping for the ordered basis. The coordinate mapping preserves all
the vector operations. The mathematicians’ term for this is isomorphism. If two vector spaces
are isomorphic, then for many purposes we can think of them as being the same space, the only
difference being that the names of the points have been changed.

13 Definition An isomorphism between vector spaces is a bijective linear transformation.
That is, a function φ : V → W between vector spaces is an isomorphism if φ is one-to-one and
onto, and

φ(x + y) = φ(x) + φ(y) and φ(αx) = αφ(x).

In this case we say that V and W are isomorphic.

We have just argued the following.

14 Proposition Given an ordered basis x1, . . . , xm for an m-dimensional vector space V , the
coordinate mapping is an isomorphism from V to Rm.

If any n-dimensional vector space is isomorphic to Rm, is there any reason to consider n-
dimensional vector spaces other than Rm? The answer, I believe, is yes. Sometimes there is no
“natural” ordered basis for a vector space, so there is no “natural” way to treat it as Rm. For
instance, let V be the set of vectors x = (x1, . . . , x3) in R3, such that x1 + x2 + x3 = 0. This
is a 2-dimensional vector space, and there are infinitely many isomorphisms of V onto R2, but
I assert that there is no unique obvious, natural way to identify points in V with points in R2.

4 Metrics and Norms
A metric on a vector space can be used to define convergence, open, and closed sets. That is,
it turns the vector space into a topological vector space.

15 Definition A metric d on a set V is a nonnegative real function on V × V that satisfies:

M.1 d(x, y) ⩾ 0.

M.2 d(x, y) = 0 =⇒ x = y.

M.3 d(x, y) = d(y, x).

v. 2020.03.29::12.55
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M.4 (Triangle inequality) d(x, y) ⩽ d(x, z) + d(z, y).

On vector spaces, a metric is usually defined in terms of a norm, which can be interpreted
as the length of a vector.

16 Definition A norm ‖x‖ is a nonnegative real function on a vector space that satisfies:

N.1 ‖0‖ = 0.

N.2 ‖x‖ > 0 if x 6= 0.

N.3 ‖αx‖ = |α| ‖x‖.

N.4 ‖x + y‖ ⩽ ‖x‖ + ‖y‖ with equality if and only if x = 0 or y = 0 or y = αx, α > 0.

17 Proposition If ‖·‖ is a norm, then

d(x, y) = ‖x − y‖

is a metric.

There are several commonly used norms on Rm.

18 Definition The function defined by

‖x‖p =
( m∑

i=1
|xi|p

) 1
p

is a norm on Rm called the p-norm. The function

‖x‖∞ = max
i

|xi|

is a norm on Rm called the ∞-norm.

This definition also includes elements of a lemma, since it asserts that the functions so
defined are norms. The 2-norm ‖·‖2 is the usual Euclidean norm. The 1-norm is sometimes
called the “taxicab” norm, since taxis are confined to rectangular street grids. The ∞-norm is
also called the max-norm or the sup-norm.

5 Inner product
An inner product is related to angles between vectors, see Section 5.3.

19 Definition A real linear space V has an inner product if for each pair of vectors x and y
there is a real number, traditionally denoted (x, y), satisfying the following properties.

IP.1 (x, y) = (y, x).

IP.2 (x, y + z) = (x, y) + (x, z).

v. 2020.03.29::12.55
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IP.3 α(x, y) = (αx, y) = (x, αy).

IP.4 (x, x) > 0 if x 6= 0.

A vector space V equipped with an inner product is called an inner product space.
For a complex vector space, the inner product is complex-valued, and property (1) is replaced

by (x, y) = (y, x), where the bar denotes complex conjugation, and (3) is replaced by α(x, y) =
(αx, y) = (x, αy).

The next results are straightforward and will be used without any explicit mention.

20 Lemma For any x, we have (x, x) ⩾ 0, and (0, x) = (x, 0) = 0. Consequently, (x, y) = 0
for all y if and only if x = 0.

21 Proposition In a real inner product space, the inner product is bilinear. That is,

(αx + βy, z) = α(x, z) + β(y, z) and (z, αx + βy) = α(z, x) + β(z, y)

22 Lemma If (x, z) = (y, z) for all z, then x = y.

Proof : Bilinearity implies
(
(x − y), z

)
= 0 for all z, Lemma 20 x − y = 0.

Another simple consequence for real inner product spaces is the following identity that we
shall use often.

(x + y, x + y) = (x, x) + 2(x, y) + (y, y)

For complex inner product spaces, this becomes

(x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) = (x, x) + (x, y) + (x, y) + (y, y)

23 Example The dot product of two vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) in Rm

is defined by

x · y =
m∑

i=1
xiyi.

The dot product is an inner product, and Euclidean m-space is Rm equipped with this inner
product. The dot product of two vectors is zero if they meet at a right angle. □

24 Cauchy–Schwartz Inequality In a real inner product space,

(x, y)2 ⩽ (x, x)(y, y) (1)

with = if and only if x and y are dependent.

Proof : (Cf. MacLane and Birkhoff [17, p. 353] or van der Waerden [22, p. 161]) If x or y is
zero, then we have equality, so assume x, y are nonzero. Define the quadratic Q : R → R by

Q(λ) = (λx + y, λx + y) = (x, x)λ2 + 2(x, y)λ + (y, y).

v. 2020.03.29::12.55
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By Property IP.4 of inner products (Definition 19), Q(λ) ⩾ 0 for each λ ∈ R. Therefore the
discriminant of Q is nonpositive, 2 that is, 4(x, y)2−4(x, x)(y, y) ⩽ 0, or (x, y)2 ⩽ (x, x)(y, y).
Equality in (1) can occur only if the discriminant is zero, in which case Q has a real root. That
is, there is some λ for which Q(λ) = (λx + y, λx + y) = 0. But this implies that λx + y = 0,
which means the vectors x and y are linearly dependent.

25 Proposition If (·, ·) is an inner product, then ‖x‖ = (x, x)
1
2 is a norm.

Proof : The only nontrivial part is showing Property N.4: ‖x + y‖ ⩽ ‖x‖ + ‖y‖ with equality
if and only if x = 0 or y = 0 or y = αx, α > 0.

So observe that the Cauchy–Schwartz Inequality 24, (x, y)2 ⩽ (x, x)(y, y), is equivalent to

(x, y) ⩽
√

(x, x)(y, y).

Multiply by 2 and add (x, x) + (y, y) to both sides to get

(x, x) + 2(x, y) + (y, y)︸ ︷︷ ︸
=(x+y,x+y)=‖x+y‖2

⩽ (x, x) + 2
√

(x, x)(y, y) + (y, y)︸ ︷︷ ︸
=
(

‖x‖ + ‖y‖
)2

Taking square roots of both sides gives

‖x + y‖ ⩽ ‖x‖ + ‖y‖ .

Now equality holds in Cauchy–Schwartz if and only x and y are linearly dependent. So to finish
the proof of N.4, we still have to show that if y and x are both nonzero, y = αx and we have
equality above if and only if α > 0. But equality reduces to |1 + α| = 1 + |α|, which reduces to
α ⩾ 0, and the case α = 0 is ruled out by y 6= 0.

If the norm induced by the inner product gives rise to a complete metric space,3 then the
inner product space is called a Hilbert space or complete inner product space.

5.1 The Parallelogram Law
The next result asserts that in an inner product space, the sum of the

0
y

x

x + y

squares of the lengths of the diagonals of a parallelogram is equal to the sum
of the squares of the lengths of the sides. Consider the parallelogram with
vertices 0, x, y, x + y. Its diagonals are the segments [0, x + y] and [x, y], and
their lengths are ‖x + y‖ and ‖x − y‖. It has two sides of length ‖x‖ and two
of length ‖y‖. So the claim is:

2In case you have forgotten how you derived the quadratic formula in Algebra I, rewrite the polynomial as

f(z) = αz2 + βz + γ = 1
α

(
αz + β

2

)2 − (β2 − 4αγ)/4α,

and note that the only way to guarantee that f(z) ⩾ 0 for all z is to have α > 0 and β2 − 4αγ ⩽ 0.
3A metric space is complete if every Cauchy sequence has a limit point in the space. A sequence x1, x2, . . .

is a Cauchy sequence if lim ‖xm − xn‖ = 0 as n, m → ∞.
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26 The Parallelogram Law In an inner product space,

‖x + y‖2 + ‖x − y‖2 = 2 ‖x‖2 +2 ‖y‖2 .

Proof : Note that (
(x + y), (x + y)

)
= (x, x) + 2(x, y) + (y, y)(

(x − y), (x − y)
)

= (x, x) − 2(x, y) + (y, y).

Add these two to get(
(x + y), (x + y)

)
+
(
(x − y), (x − y)

)
= 2(x, x) + 2(y, y),

and the desired result is restated in terms of norms.

On a related note, we have the following.

27 Proposition In an inner product space.

‖x + y‖2 − ‖x − y‖2 = 4(x, y).

Proof : In the proof above, instead of adding the two equations, subtract them.

‖x + y‖2 − ‖x − y‖2 =
(
(x + y), (x + y)

)
−
(
(x − y), (x − y)

)
= (x, x) + 2(x, y) + (y, y) −

(
(x, x) − 2(x, y) + (y, y)

)
= 4(x, y).

As an aside, a norm on a vector space is induced by an inner product if and only if it satisfies
the Parallelogram Law; see for instance [3, Problem 32.10, p. 303].

5.2 Orthogonality
28 Definition Vectors x and y are orthogonal if (x, y) = 0, written

x ⊥ y.

A set of vectors E ⊂ V is orthogonal if it is pairwise orthogonal. That is, for all x, y ∈ E
with x 6= y we have (x, y) = 0. A set E is orthonormal if E is orthogonal and (x, x) = 1 for
all x ∈ E.

29 Lemma If a set of nonzero vectors is pairwise orthogonal, then the set is independent.

Proof : Suppose ∑m
i=1 αixi = 0, where the xi’s are pairwise orthogonal. Then for each k,

0 = (xk, 0) =
(
xk,

m∑
i=1

αixi

)
=

m∑
i=1

αi(xk, xi) = αk(xk, xk).

But xk 6= 0, so (xk, xk) > 0, so αk = 0. That is, the vectors xi are linearly independent.
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5.3 The Pythagorean Theorem and the geometry of the Euclidean inner
product

The Pythagorean Theorem is usually stated in terms of right triangles in the plane. Two vectors
meet at a right angle if they are orthogonal in the Euclidean inner product. See Figure 1. The
theorem has a generalization to arbitrary inner product spaces.

0 x

y x + y

Figure 1. Pythagorean Theorem: x ⊥ y if and only the triangle with vertices 0, x, and
y + x is a right triangle with hypotenuse x + y, in which case, ‖x + y‖2 = ‖x‖2 + ‖y‖2.

30 Pythagorean Theorem In an inner product space

‖x + y‖2 = ‖x‖2 + ‖y‖2 if and only if x ⊥ y.

Proof : Bilinearity implies

‖x + y‖2 = (x + y, x + y) = (x, x) + 2(x,y) + (y, y) = ‖x‖2 + ‖y‖2 +2(x, y),

and the conclusion follows.

The triangle with vertices 0, x, and z is a right triangle with hypotenuse z if x ⊥ y = z−x.
But even if x and z − x are not orthogonal, as long as x and z are not collinear and nonzero,
then there is a scalar multiple of x that will make a right triangle. To see this, write z = αx+y
and find α to make y = z − αx satisfy y · x = 0. In other words we want the following lemma.

31 Lemma In an inner product space,

(z − αx) ⊥ x, where α = (x, z)
(x, x)

.

Proof : We have (
(z − αx), x

)
= (z, x) − (αx, x) = 0 =⇒ α = (x, z)

(x, x)
.

This leads to the following geometric interpretation of the Euclidean inner product.
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32 Proposition For nonzero vectors x and z in a Euclidean space,

x · z = ‖x‖ ‖z‖ cos θ,

where θ is the angle between x and z.

Proof : Let α = (x,z)
(x,x) . Referring to Figure 2 we see that

cos θ = α
‖x‖
‖y‖

= x · y

‖x‖ ‖y‖
,

This works even when α < 0, which means θ is an obtuse angle.

xαx

y

z

θ

Figure 2. Dot product and angles: cos θ = α ‖x‖
‖z‖

= x · z

‖x‖ ‖z‖
.

33 Definition In a real inner product space, the angle ∠xy between two nonzero vectors x
and y is defined to be

∠xy = arccos (x, y)√
(x, x) (y, y)

.

5.4 Orthogonal projection and orthogonal complements
34 Definition The orthogonal complement of M in V is the set{

x ∈ V : ( ∀y ∈ M ) [ x ⊥ y ]
}
,

denoted M⊥.

35 Lemma If x ⊥ y and x + y = 0, then x = y = 0.

Proof : Now (x + y, x + y) = (x, x) + 2(x, y) + (y, y), so (x, y) = 0 implies (x, x) + (y, y) = 0.
Since (x, x) ⩾ 0 and (y, y) ⩾ 0 we have x = y = 0.

The next lemma is left as an exercise.

36 Lemma For any set M , the set M⊥ is a linear subspace. If M is a subspace, then

M ∩ M⊥ = {0}.
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The fact that M⊥ is a subspace is not by itself very useful. It might be the trivial subspace
{0}. We shall see below in Corollary 41 that for finite dimensional spaces, the dimensions of
M and M⊥ add up to the dimension of the entire space.

The next result may be found, for instance, in Apostol [6, Theorem 1.14, p. 24], and the
proof is known as the Gram–Schmidt procedure. It can be viewed as a generalization of
Lemma 31.

37 Proposition Let x1, x2, . . . be a sequence (finite or infinite) of vectors in an inner product
space. Then there exists a sequence y1, y2, . . . such that for each m, the span of y1, . . . , ym is
the same as the span of x1, . . . , xm, and the yi’s are orthogonal.

Proof : Set y1 = x1. For m > 1 recursively define

ym = xm −
(xm, ym−1)

(ym−1, ym−1)
ym−1 −

(xm, ym−2)
(ym−2, ym−2)

ym−2 − · · · − (xm, y1)
(y1, y1)

y1.

Use induction on m to prove that the vectors y1, . . . , ym are orthogonal and span the same
space as the xi’s. Observe that y2 is orthogonal to y1 = x1:

(y2, y1) = (y2, x1) = (x2, x1) − (x2, x1)
(x1, x1)

(x2, x1) = 0.

Furthermore any linear combination of x1 and x2 can be replicated with y1 and y2.
For m > 2, let y1, . . . , ym−1 be orthogonal and span the same space as x1, . . . , xm−1. Now

compute (ym, yk) for k ⩽ m:

(ym, yk) = (xm, yk) −
m−1∑
i=1

((xm, yi)
(yi, yi)

yi, yk

)

= (xm, yk) −
m−1∑
i=1

(xm, yi)
(yi, yi)

(yi, yk)

= (xm, yk) − (xm, yk)
(yk, yk)

(yk, yk)

= 0,

so ym is orthogonal to each y1, . . . , ym−1. As an exercise verify that the span of y1, . . . , ym is
the same as the span of x1, . . . , xm.

38 Corollary Every nontrivial finite-dimensional subspace of an inner product space has an
orthonormal basis.

Proof : Apply the Gram–Schmidt procedure to a basis. To obtain an orthonormal basis, simply
normalize each yk by dividing it by its norm (yk, yk)1/2.

39 Orthogonal Projection Theorem Let M be a linear subspace of the finite-dimensional
real inner product space V . For each x ∈ V we can write x in a unique way as x = xM + x⊥,
where xM ∈ M and x⊥ ∈ M⊥.
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Proof : Let y1, . . . , ym be an orthonormal basis for M . Put zi = (x, yi)yi for i = 1, . . . , m. Put
xM =

∑m
i=1 zi, and x⊥ = x − xM . Let y ∈ M , y =

∑m
i=1 αiyi. Then

(y, x⊥) =
( m∑

i=1
αiyi, x −

m∑
j=1

(x, yj)yj

)

=
m∑

i=1
αi
(
yi, x −

m∑
j=1

(x, yj)yj

)
=

m∑
i=1

αi

{
(yi, x) −

(
yi,

m∑
j=1

(x, yj)yj

)}

=
m∑

i=1
αi

{
(yi, x) −

m∑
j=1

(x, yj)(yi, yj)
}

=
m∑

i=1
αi
{
(yi, x) − (x, yi)

}
= 0.

Uniqueness: Let x = xM + x⊥ = zM + z⊥. Then 0 = (xM − zM )︸ ︷︷ ︸
∈M

+ (x⊥ − z⊥)︸ ︷︷ ︸
∈M⊥

. Rewriting

this yields xM − zM = 0 − (x⊥ − z⊥), so xM − zM also lies in M⊥. Similarly x⊥ − z⊥ also lies
in M . Thus xM − zM ∈ M ∩ M⊥ = {0} and x⊥ − z⊥ ∈ M ∩ M⊥ = {0}.

40 Definition The vector xM given by the theorem above is called the orthogonal projec-
tion of x onto M .

41 Corollary For a finite-dimensional space V and any subspace M of V , dim M +dim M⊥ =
dim V .

There is another important characterization of orthogonal projection.

42 Proposition (Orthogonal projection minimizes the norm of the “residual”) Let
M be a linear subspace of the real inner product space V . Let x ∈ V . Then

‖x − xM ‖ ⩽ ‖x − z‖ for all z ∈ M.

Proof : This is really just the Pythagorean Theorem: Note that if z ∈ M , then the points x,
xM , and z are the vertexes of a right triangle, where the sides zxM and xM x meet at a right
angle, and xz is the hypotenuse. See Figure 3. (To prove that zxM and xM x meet at a right
angle, note that z − xM also belongs to M , so it is orthogonal to x⊥ = x − xM .) So by
Pythagoras

‖x − z‖2 = ‖x − xM ‖2 + ‖z − xM ‖2

⩾ ‖x − xM ‖2 .

That is, z = xM minimizes ‖x − z‖ over M .
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0

b1

b2

x

xM

‖x − xM ‖

z

‖x − z‖

Figure 3. Orthogonal projection onto M = span{b1, b2} minimizes ‖x − z‖ for z ∈ M .

43 Proposition (Linearity of Projection) Orthogonal projection satisfies

(x + z)M = xM + zM and (αx)M = αxM .

Proof : Let b1, . . . , bk be an orthonormal basis for M . Use xM =
∑k

j=1(x, bj)bj and zM =∑k
j=1(z, bj)bj . Then

(x + z)M =
k∑

j=1
(x + z, bj)bj .

Use linearity of (·, ·).

5.5 Orthogonality and alternatives
We now present a lemma about linear functions that is true in quite general linear spaces,
see the Hitchhiker’s Guide [2, Theorem 5.91, p. 212], but we will prove it using some of the
special properties of inner products.

44 Lemma Let V be an inner product space. Then y is a linear combination of x1, . . . , xm if
and only if

m⋂
i=1

{xi}⊥ ⊂ {y}⊥. (2)

Proof : If y is a linear combination of x1, . . . , xm, say y =
∑m

i=1 αixi, then

(z, y) =
m∑

i=1
αi(z, xi),

so (2) holds.
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For the converse, suppose (2) holds. Let M = span{x1, . . . , xm} and orthogonally project
y onto M to get y = yM + y⊥, where yM ∈ M and y⊥ ⊥ M . In particular, (xi, y⊥) = 0,
i = 1, . . . , m. Consequently, by hypothesis, (y, y⊥) = 0 too. But

0 = (y, y⊥) = (yM , y⊥) + (y⊥, y⊥) = 0 + (y⊥, y⊥).

Thus y⊥ = 0, so y = yM ∈ M . That is, y is a linear combination of x1, . . . , xm.

We can rephrase the above result as an alternative.

45 Corollary (Fredholm alternative) Either there exist real numbers α1, . . . , αm such
that

y =
m∑

i=1
αixi

or else there exists a vector z satisfying

(z, xi) = 0, i = 1, . . . , m and (z, y) = 1.

6 The dual of an inner product space
Recall that the topological dual V ∗ of a vector space V is the vector subspace of L(V, R) = V ′

consisting of continuous real linear functionals on V . When V is an inner product space, V ∗ has
a particularly nice structure. It is clear from the bilinearity of the inner product (Proposition 21)
that for every y in the real inner product space V , the function ℓ on V defined by

ℓ(x) = (y, x)

is linear. Moreover, it is continuous with respect to the norm induced by the inner product.

46 Proposition The inner product is jointly norm-continuous. That is, if ‖yn − y‖ → 0 and
‖xn − x‖ → 0, then (yn, xn) → (y, x).

Proof : By bilinearity and the Cauchy–Schwartz Inequality 24,

|(yn, xn) − (y, x)| = |(yn −y + y︸ ︷︷ ︸, xn −x + x︸ ︷︷ ︸) − (y, x)|

= |(yn − y, xn − x) + (yn − y, x) + (y, xn − x) + (y, x) − (y, x)|

⩽
√

‖yn − y‖ ‖xn − x‖ +
√

‖yn − y‖ ‖x‖ +
√

‖y‖ ‖xn − x‖

−−−→
n→∞

0.
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The converse is true if the inner product space is complete as a metric space, that is, if
it is a Hilbert space. Every continuous linear functional on a real Hilbert space has the form
of an inner product with some vector. The question is, which vector? If ℓ(x) = (y, x), then
Section 5.3 suggests that ℓ is maximized on the unit sphere when the angle between x and y
maximizes the cosine. The maximum value of the cosine is one, which occurs when the angle
is zero, that is, when x is a positive multiple of y. Thus to find y given ℓ, we need to find the
maximizer of ℓ on the unit ball. But first we need to know that such a maximizer exists.

47 Theorem Let V be a Hilbert space, and let U be its unit ball:

U = {x ∈ V : (x, x) ⩽ 1}.

Let ℓ be a continuous linear functional on V . Then ℓ has a maximizer in U . If ℓ is nonzero, the
maximizer is unique and has norm 1.

Note that if V is finite dimensional, then U is compact, and the result follows from the
Weierstrass Theorem. When V is infinite dimensional, the unit ball is not compact, so another
technique is needed.

Proof : (Cf. Murray [19, pp. 12–13]) The case where ℓ is the zero functional is obvious, so restrict
attention to the case where ℓ is not identically zero.

First observe that if ℓ is continuous, then it is bounded on U . To see this, consider the
standard ε-δ definition of continuity at 0, where ε = 1. Then there is some δ > 0 such that if
‖x‖ = ‖x − 0‖ < δ, then |ℓ(x)| = |ℓ(x) − ℓ(0)| < 1. Thus ℓ is bounded by |1/δ| on U .

So let µ = supx∈U ℓ(x), and note that 0 < µ < ∞. Since x ∈ U implies −x ∈ U we also
have that −µ =∈ fx∈U ℓ(x). The scalar µ is called the operator norm of ℓ. It has the property
that for any x ∈ V ,

|ℓ(x)| ⩽ µ ‖x‖ . (3)

To see this for nonzero x, observe that x/ ‖x‖ ∈ U so |ℓ(x/ ‖x‖)| ⩽ µ, and the result follows
by multiplying by both sides by ‖x‖.

Pick a sequence xn in U with ℓ(xn) approaching the supremum µ that satisfies

ℓ(xn) ⩾ n−1
n µ. (4)

We shall show that the sequence xn is a Cauchy sequence, and so has a limit. This limit is
the maximizer. To see that we have a Cauchy sequence, we use the Parallelogram Law 26 to
write

‖xn − xm‖2 = 2 ‖xn‖2 +2 ‖xm‖2 − ‖xn + xm‖2 . (5)

Now observe that by (3) and (4),

µ ‖xn‖ ⩾ |ℓ(xn)| = ℓ(xn) ⩾ n−1
n µ.

Dividing by µ > 0 and recalling that 1 ⩾ ‖xn‖ we see that ‖xn‖ → 1 as n → ∞. (This makes
sense. If a nonzero linear functional is going to achieve a maximum over the unit ball, it should
happen on the boundary.)
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Similarly we have

µ ‖xn + xm‖ ⩾ |ℓ(xn + xm)| = ℓ(xn) + ℓ(xm) ⩾
(

n−1
n + m−1

m

)
µ.

Dividing by µ > 0 gives
‖xn + xm‖ ⩾ n−1

n + m−1
m .

Square both sides and substitute in (5) to get

‖xn − xm‖2 ⩽ 2 ‖xn‖2 +2 ‖xm‖2 −
(

n−1
n + m−1

m

)2
.

Since ‖xn‖, ‖xm‖ → 1, the right-hand side tends to 2 + 2 − (1 + 1)2 = 0 as n, m → ∞, so the
sequence is indeed a Cauchy sequence.

Thus there is a limit point x ∈ U , with ‖x‖ = 1, and which by continuity satisfies

ℓ(x) = µ = max
x∈U

ℓ(x).

To see that the maximizer is unique, suppose ℓ(x) = ℓ(y) = µ > 0. (Note that this rules
out y = −x.) Then by the Cauchy–Schwartz Inequality ‖(x + y)/2‖ < 1 (unless y and x are
dependent, which in this case means y = x), so ℓ

(
(x + y)/ ‖(x + y)‖

)
> µ, a contradiction.

48 Theorem Let V be a Hilbert space. For every continuous linear functional ℓ on V , there
is a vector y in V such that for every x ∈ V ,

ℓ(x) = (y, x).

The correspondence ℓ ↔ y is a homomorphism between V ∗ and V .

Proof : (Cf. Murray [19, p. 13]) If ℓ is the zero functional, let y = 0. Otherwise, let ŷ be the
unique maximizer of ℓ over the unit ball (so ‖ŷ‖ = 1), and let µ = ℓ(ŷ). Set

y = µŷ.

Then
(y, ŷ) = (µŷ, ŷ) = µ(ŷ, ŷ) = µ = ℓ(ŷ),

so we are off to a good start. We need to show that for every x, we have (y, x) = ℓ(x).
We start by showing that if ℓ(x) = 0, then (y, x) = 0. So assume that ℓ(x) = 0. Then

ℓ(ŷ ± λx) = ℓ(ŷ) = µ for every λ. But by (3) above,

µ = ℓ(ŷ ± λx) ⩽ µ ‖ŷ ± λx‖,

so
‖ŷ ± λx‖ ⩾ 1 = ‖ŷ‖ .

Squaring both sides gives
‖ŷ‖2 ±2λ(ŷ, x) + λ2 ‖x‖2 ⩾ ‖ŷ‖2

or
λ ‖x‖2 ⩾ ∓2(ŷ, x)
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for all λ > 0. Letting λ → 0 implies (ŷ, x) = 0, so (y, x) = 0.
For an arbitrary x, let

x′ = x − ℓ(x)(ŷ/µ).

Then
ℓ(x′) = ℓ(x) − ℓ(x)ℓ(ŷ/µ) = 0.

So (y, x′) = 0. Now observe that

(y, x) =
(
y, x′ + ℓ(x)(ŷ/µ)

)
= (y, x′) + ℓ(x)(y, ŷ/µ)
= 0 + ℓ(x)(µŷ, ŷ/µ)
= ℓ(x).

This completes the proof.

7 ⋆ Linear functionals on infinite dimensional spaces
If ℓ is a linear functional on the finite dimensional vector space Rm, then by Theorem 48, there
is a vector y = (y1, . . . , ym) such that for any x = (x1, . . . , xm) we have

ℓ(x) =
n∑

i=1
yixi,

so that ℓ is a continuous function. However, for infinite dimensional normed spaces there are
always linear functionals that are discontinuous! Lots of them in fact.

49 Proposition Every infinite dimensional normed space has a discontinuous linear functional.

Proof : If X is an infinite dimensional normed space, then it has an infinite Hamel basis B. We
may normalize each basis vector to have norm one. Let S = {x1, x2, . . . } be a countable subset
of the basis B. Define the function ℓ on the basis B by ℓ(xn) = n for xn ∈ S, and ℓ(v) = 0 for
v ∈ B \ S. Every x ∈ X has a unique representation as

x =
∑
v∈B

αvv,

where only finitely many αv are nonzero. Extend ℓ from B to X by

ℓ(x) =
∑
v∈B

αvℓ(v).

Then ℓ is a linear functional, but it is not bounded on the unit ball (as ℓ(xn) = n). The same
argument used in the proof of Theorem 47 shows that in order for ℓ to be continuous, it must
be bounded on the unit ball, so it is not continuous.
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8 Linear transformations
Recall (Definition 11) that a linear transformation is a function T : V → W between vector
spaces satisfying

T (αx + βy) = αTx + βTy.

There are three special classes of linear transformations from a space into itself.

• The first is just a rescaling along various dimensions. The identity function is of this class,
where the scale factor is one in each dimension. These transformations are symmetric,
see Definition 70 and Theorem 78 below.

• Another important class is orthogonal projection onto a linear subspace, see Proposi-
tion 43.

• And another important class is rotation about an axis. Rotations are a kind of orthogonal
transformation, see Definition 67 below.

These classes do not include all the linear transformation, since, for instance, the composition
of two of these kinds of transformations need not belong to any of these groups.

50 Definition For a linear transformation T : V → W , the null space or kernel of T is the
inverse image of 0, that is, {x ∈ V : Tx = 0}.

51 Proposition The null space of T , {x : Tx = 0}, is a linear subspace of V , and the range
of T , {Tx : x ∈ V }, is a linear subspace of W .

52 Proposition A linear transformation T is one-to-one if and only if its null space is {0}. In
other words, T is one-to-one if and only if Tx = 0 implies x = 0.

The dimension of the range of T is called the rank of T . The dimension of the null space
of T is called the nullity of T . The next result may be found in [6, Theorem 2.3, p. 34]. You
can prove it using Corollary 41 applied to the null space of T .

53 Nullity Plus Rank Theorem Let T : V → W , where V and W are finite-dimensional
inner product spaces. Then

rank T + nullity T = dim V.

Proof : Let N denote the null space of T . For x in V , decompose it orthogonally as x = xN +x⊥,
where xN ∈ N and x⊥ ∈ N⊥. Then Tx = Tx⊥, so the range of T is just T (N⊥). Now
let ′x1, . . . ,′ xk be a basis for N⊥. I claim that Tx1, . . . , Txk are independent and therefore
constitute a basis for the range of T . For suppose some linear combination ∑k

i=1 αiTxi is zero.
By linearity of T we have T

(∑k
i=1 αixi

)
= 0. Which implies ∑k

i=1 αixi belongs to the null
space N . But this combination also lies in N⊥, so it must be zero. But since the xi’s are
independent, it follows that α1 = · · · = αk = 0.

54 Corollary Let T : V → W be a linear transformation between m-dimensional spaces. Then
T is one-to-one if and only if T is onto.
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Proof : ( =⇒ ) Assume T is one-to-one. If Tx = 0 = T0, x = 0 by one-to-oneness. In other
words, the null space of T is just {0}. Then by the Nullity Plus Rank Theorem 53 the rank of
T is m, but this mean the image under T of V is all of W .

( ⇐= ) Assume T maps V onto W . Then the rank of T is m, so by the Nullity Plus Rank
Theorem 53 its null space of T contains only 0. Suppose Tx = Ty. Then T (x − y) = 0, so
x − y = 0, which implies T is one-to-one.

8.1 Inverse of a linear transformation
Let T : V → W be a linear transformation between two vector spaces. A left inverse for T
is a function L : range T → V such that for all x ∈ V , we have LTx = x. Observe that this
implies that range L = V . It also implies that T must be one-to-one. For suppose Tx = Ty.
Then x = LTx = LTy = y. A right inverse for T is a function R : range T → V such that
for all y ∈ range T , we have TRy = y.

55 Lemma (Left vs. right inverses) Let T : V → W be a linear transformation. If T has a
left inverse, then it is unique, and also a right inverse.

Proof : (Cf. Apostol [6, Theorem 2.8, pp. 39–40].) Let L and M be left inverses for T . Let
y ∈ range T , say y = Tx. Then

Ly = LTx = x = MTx = My.

That is L = M on range T .
Now we show that L is also a right inverse. Let

y = Tx

belong to range T . Then applying TL to both sides gives

TLy = TLTx = T (LT )x = Tx = y.

That is, L is a right inverse.

Is it the case that if T has a right inverse, then it also has left inverse? The answer is no.
Here is an example.

56 Example (A right inverse need not be a left inverse) Define T : R2 → R2 via

T (x, y) = (x, 0).

(That is, T is the projection onto the x-axis.) Define R : range T → R2 via

R(x, 0) = (x, 0).

Then
TR(x, 0) = T (x, 0) = (x, 0),

so R is a right inverse of T . But it is clear that T has no left inverse since T is not one-to-one.
□
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57 Proposition Let T : V → W be linear, one-to-one, and onto, where V and W are finite-
dimensional vector spaces. Then dim V = dim W , and T −1 is linear.

Proof : First we show that T −1 is linear: Let xi = T −1(ui), i = 1, 2. Now

T (αx1 + βx2) = αTx1 + βTx2 = αu1 + βu2.

So taking T −1 of both sides gives

α T −1(u1)︸ ︷︷ ︸
x1

+β T −1(u2)︸ ︷︷ ︸
x2

= T −1(αu1 + βu2)

Next we show that dim W ⩽ dim V : Let y1, . . . , yn be a basis for V . Then Ty1, . . . , Tyn

span W since T is linear and onto. Therefore dim W ⩽ n = dim V .
On the other hand, Ty1, . . . , Tyn are linearly independent, so dim W ⩾ dim V . To see this,

suppose

0 =
n∑

i=1
αiTyi = T

(
n∑

i=1
αiyi

)
But T is one-to-one and T0 = 0, so ∑n

i=1 αiyi = 0. But this implies α1 = · · · = αn = 0.
This shows that dim V = dim W .

8.2 Adjoint of a transformation
58 Definition Let T : V → W be linear where V and W are Hilbert spaces. The transpose,
or adjoint,4 of T , denoted T ′, is the linear transformation T ′ : W → V such that for every x
in V and every y in W .

(T ′y, x) = (y, Tx). (6)

The first question is, does such a linear transformation T ′ exist?

59 Proposition The adjoint of T exists, and is uniquely determined by (6).

Proof : By bilinearity of the inner product (Proposition 21) on W , for each V W

R

T

ℓyℓT ′y

y ∈ W , the mapping ℓy : z 7→ (y, z) from W to R is linear, so the composition
ℓy ◦ T : V → R is linear. By Theorem 48 on the representation of linear
functionals on Hilbert spaces, there is a unique vector, call it T ′y, in V so that
(y, Tx) = (ℓy ◦ T )(x) = (T ′y, x), holds for each x ∈ V . The correspondence
y 7→ T ′y defines the transformation T ′ : W → V .

Let y and z belong to W . Then again by bilinearity,

ℓαy+βz ◦ T = αℓy ◦ T + βℓz ◦ T.

That is, the mapping T ′ is linear.
Finally, Lemma 22 implies that T ′y is uniquely determined by (6).
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Elaborate this.

60 Proposition Let S, T : V → W and U : W → X. Then

(UT )′ = T ′U ′

(αS + βT )′ = αS′ + βT ′

(T ′)′ = T

61 Theorem Let T : V → W , where V and W are inner product spaces, so T ′ : W → V . Then
T ′y = 0 iffy ⊥ range T . In other words,

null space T ′ = (range T )⊥.

Proof : ( =⇒ ) If T ′y = 0, then (T ′y, x) = (0, x) = 0 for all x in V . But (T ′y, x) = (y, Tx), so
(y, Tx) = 0 for all x in V . That is, y ⊥ range T .

(⇐=) If y ⊥ range T , then (y, Tx) = 0 for all x in V . Therefore (T ′y, x) = 0 for all x in
V , so T ′y = 0.

62 Corollary Let T : V → W , where V and W are inner product spaces. Then range T ′T =
range T ′. Consequently, rank T ′ = rank T ′T .

Proof : Clearly range T ′T ⊂ range T ′.
Let x belong to the range of T ′, so x = T ′y for some y in W . Let M denote the range of

T and consider the orthogonal decomposition y = yM + y⊥. Then T ′y = T ′yM + T ′y⊥, but
T ′y⊥ = 0 by Theorem 61. Now yM = Tz some z ∈ W . Then x = T ′Tz, so x belongs to the
range of T ′T .

63 Corollary Let T : V → W , where V and W are finite-dimensional inner product spaces.
Then rank T ′ = rank T

Proof : By Theorem 61, null space T ′ = (range T )⊥ ⊂ W . Therefore

dim W − rank T ′ = nullity T ′ = dim(range T )⊥ = dim W − rank T,

where the first equality follows from the Nullity Plus Rank Theorem 53, the second from
Theorem 61, and the third from Corollary 41. Therefore, rank T = rank T ′.

64 Corollary Let T : Rn → Rm. Then null space T = null space T ′T .

Proof : Clearly null space T ⊂ null space T ′T , since Tx = 0 =⇒ T ′Tx = T ′0 = 0.
Now suppose T ′Tx = 0. Then (x, T ′Tx) = (x, 0) = 0. But

(x, T ′Tx) = (T ′Tx, x) = (Tx, Tx),

where the first equality is IP.1 and the second is the definition of T ′, so Tx = 0.
4When dealing with complex vector spaces, the definition of the adjoint is modified to (y, T x) = (T ′y, x).
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We can even get a version of the Fredholm Alternative 45 as a corollary. I leave it to you
to unravel why I think this a version of the Fredholm Alternative.

65 Corollary (Fredholm Alternative II) Let T : V → W , where V and W are inner
product spaces, and let z belong to W . Then either

there exists x ∈ V with z = Tx,

or else
there exists y ∈ W with (y, z) 6= 0 & T ′y = 0.

Proof : The first alternative states that z ∈ range T , or equivalently (by Theorem 61), that
z ∈ (null space T ′)⊥. If this is not the case, that is, if z /∈ (null space T ′)⊥, then there must be
some y in null space T ′ that is not orthogonal to z. Such a y satisfies T ′y = 0 and (y, z) 6= 0,
which is the second alternative.

To see that the two alternatives are inconsistent, suppose that x and y satisfy the alter-
natives. Then 0 6= (y, z) = (y, Tx) = (T ′y, x) = (0, x) = 0, a contradiction. (The middle
equality is just the definition of the transpose.)

66 Proposition (Summary) For a linear transformation T between finite-dimensional
spaces, range T ′T = range T ′ and range TT ′ = range T , so

rank T = rank T ′ = rank T ′T = rank TT ′.

8.3 Orthogonal transformations
67 Definition Let V be a real inner product space, and let T : V → V be a linear transfor-
mation of V into itself. We say that T is an orthogonal transformation if its adjoint is its
inverse,

T ′ = T −1.

68 Proposition For a linear transformation T : V → V on an inner product space, the follow-
ing are equivalent.

1. T is orthogonal. That is, T ′ = T −1.

2. T preserves norms. That is, for all x,

(Tx, Tx) = (x, x). (7)

3. T preserves inner products, that is, for every x, y ∈ V ,

(Tx, Ty) = (x, y).

Proof : (1) =⇒ (2) Assume T is orthogonal. Fix x and let y = Tx. By the definition of T ′

we have
(T ′y, x) = (y, Tx),
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so
(x, x) = (T ′Tx, x) = (T ′y, x) = (y, Tx) = (Tx, Tx).

(2) =⇒ (3) Assume T preserves norms. By Proposition 27,

(Tx, Ty) = ‖Tx + Ty‖ − ‖Tx − Ty‖
4

= ‖T (x + y)‖ − ‖T (x − y)‖
4

= ‖x + y‖ − ‖x − y‖
4

= (x, y).

(3) =⇒ (1) Assume T preserves inner products. By the definition of T ′, for all x, y,

(T ′y, x) = (y, Tx).

Taking y = Tz, we have

(T ′Tz, x) = (T ′y, x) = (y, Tx) = (Tz, Tx) = (z, x),

so by Lemma 22, T ′Tz − z = 0 for every z, which is equivalent to T ′ = T −1.

A norm preserving mapping is also called an isometry. Since the composition of norm-
preserving mappings preserves norms we have the following.

69 Corollary The composition of orthogonal transformations is an orthogonal transformation.

An orthogonal transformation preserves angles (since it preserves inner products) and dis-
tances between vectors. Reflection and rotation are the basic orthogonal transformations in a
finite-dimensional Euclidean space.

8.4 Symmetric transformations
70 Definition A transformation T : V → V is symmetric or self-adjoint if T ′ = T . A
transformation T is skew-symmetric if T ′ = −T .

71 Proposition Let πM : V → V be the orthogonal projection onto the linear subspace M .
Then πM is symmetric.

Proof : To show (x, πM z) = (πM x, z). Observe that

(x, zM ) = (xM + x⊥, zM ) = (xM , zM ) + (x⊥, zM ) = (xM , zM ) + 0.

Similarly,

(xM , z) = (xM , zM + z⊥) = (xM , zM ) + (xM , z⊥) = (xM , zM ) + 0.

Therefore (x, zM ) = (xM , z) = (xM , zM ).
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In light of the following exercise, a linear transformation is an orthogonal projection if and
only if it is symmetric and idempotent. A transformation T is idempotent if T 2x = TTx = Tx
for all x.

72 Exercise Let V be an inner product space, and let P : V → V be a linear transformation
satisfying

P ′ = P and P 2x = Px for all x ∈ Rm.

That is, P is idempotent and symmetric. Set M = I − P (where I is the identity on V ). Prove
the following.

1. For any x, x = Mx + Px.

2. M2x = Mx for all x and M ′ = M .

3. null space P = (range P )⊥ = range M and null space M = (range M)⊥ = range P

4. P is the orthogonal projection onto its range. Likewise for M .

□

9 Eigenvalues and eigenvectors
73 Definition Let V be a real vector space, and let T be a linear transformation of V into
itself, T : V → V . A real number λ is an eigenvalue of T if there is a nonzero vector x in V
such that Tx = λx. The vector x is called an eigenvector of T associated with λ. Note that
the vector 0 is by definition not an eigenvector of T .5

If T has an eigenvalue λ with eigenvector x, the transformation “stretches” the space by a
factor λ in the direction x.

While the vector 0 is never an eigenvector, the scalar 0 may be an eigenvalue. Indeed 0 is
the eigenvalue associated with any nonzero vector in the null space of T .

There are linear transformations with no (real) eigenvalues. For instance, consider the
rotation of R2 by ninety degrees. This is given by the transformation (x, y) 7→ (−y, x). In
order to satisfy Tx = λx we must have λx = −y and λy = x. This cannot happen for any
nonzero real vector (x, y) and real λ.

On the other hand, the identity transformation has an eigenvalue 1, associated with every
nonzero vector.

Observe that there is a unique eigenvalue associated with each eigenvector: If Tx = λx and
Tx = αx, then αx = λx, so α = λ, since by definition x is nonzero.

On the other hand, one eigenvalue must be associated with many eigenvectors, for if x is an
eigenvector associated with λ, so is any nonzero scalar multiple of x. More generally, a linear
combination of eigenvectors corresponding to an eigenvalue is also an eigenvector corresponding
to the same eigenvalue (provided the linear combination does not equal the zero vector). The
span of the set of eigenvectors associated with the eigenvalue λ is called the eigenspace of T

5For a linear transformation of a complex vector space, eigenvalues may be complex, but I shall only deal
with real vector spaces here.
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corresponding to λ. Every nonzero vector in the eigenspace is an eigenvector associated with λ.
The dimension of the eigenspace is called the multiplicity of λ.

74 Proposition If T : V → V is idempotent, then each of its eigenvalues is either 0 or 1.

Proof : Suppose Tx = λx with x 6= 0. Since T is idempotent, we have λx = Tx = T 2x = λ2x.
Since x 6= 0, this implies λ = λ2, so λ = 0 or λ = 1.

For distinct eigenvalues we have the following, taken from [6, Theorem 4.1, p. 100].

75 Theorem Let x1, . . . , xn be eigenvectors associated with distinct eigenvalues λ1, . . . , λn.
Then the vectors x1, . . . , xn are independent.

Proof : The proof is by induction n. The case n = 1 is trivial, since by definition eigenvectors
are nonzero. Now consider n > 1 and suppose that the result is true for n − 1. Now let

n∑
i=1

αixi = 0. (8)

Applying the transformation T to both sides gives
n∑

i=1
αiλixi = 0. (9)

Let us eliminate xn from (9) by multiplying (8) by λn and subtracting to get

n∑
i=1

αi(λi − λn)xi =
n−1∑
i=1

αi(λi − λn)xi = 0.

But x1, . . . , xn−1 are linearly independent, so by the induction hypothesis αi(λi − λn) = 0 for
each i = 1, . . . , n−1. Since the eigenvalues are distinct, this implies each αi = 0, i = 1, . . . , n−1.
So (8) reduces to αnxn = 0, which implies αn = 0. Thus x1, . . . , xn are independent.

76 Corollary A linear transformation on an n-dimensional space has at most n distinct eigen-
values. If it has n, then the space has a basis made up of eigenvectors.

When T is a symmetric transformation of an inner product space into itself, not only are
eigenvectors associated with distinct eigenvalues independent, they are orthogonal.

77 Proposition Let V be a real inner product space, and let T be a symmetric linear trans-
formation of V into itself. Let x and y be eigenvectors of T corresponding to eigenvalues α and
λ with α 6= λ. Then x ⊥ y.

Proof : We are given Tx = αx and Ty = λy. Thus (Tx, y) = (λx, y) = λ(x, y) and (x, Ty) =
(x, αy) = α(x, y). Since T is symmetric, (Tx, y) = (x, Ty), so α(x, y) = λ(x, y). Since λ 6= α
we must then have (x, y) = 0.

Also if T is symmetric, we are guaranteed that it has plenty of eigenvectors.

v. 2020.03.29::12.55



KC Border Quick Review of Matrix and Real Linear Algebra 29

78 Theorem Let T : V → V be symmetric, where V is an n-dimensional inner product space.
Then V has an orthonormal basis consisting of eigenvectors of T .

Proof : This proof uses some well known results from topology and calculus that are beyond�
the scope of these notes. Cf. Anderson [4, pp. 273–275], Carathéodory [10, § 195], Franklin [12,
Section 6.2, pp. 141–145], Rao [20, 1f.2.iii, p. 62].

Let S = {x ∈ V : (x, x) = 1} denote the unit sphere in V . Set M0 = {0} and define
S0 = S ∩ M0⊥. Define the quadratic form Q : V → R by

Q(x) = (x, Tx).

It is easy to see that Q is continuous, so it has a maximizer on S0, which is compact. (This
maximizer cannot be unique, since Q(−x) = Q(x), and indeed if T is the identity, then Q is
constant on S.) Fix a maximizer x1 of Q over S0.

Proceed recursively for k = 1, . . . , n − 1. Let Mk denote the span of x1, . . . , xk, and set
Sk = S ∩ Mk⊥. Let xk+1 maximize Q over Sk. By construction, xk+1 ∈ Mk⊥, so the xk’s are
orthogonal, indeed orthonormal.

Since x1 maximizes Q on S = S0, it maximizes Q subject to the constraint 1 − (x, x) = 0.
Now Q(x) = (x, Tx) is continuously differentiable and Q′(x) = 2Tx, and the gradient of
the constraint function is −2x, which is clearly nonzero (hence linearly independent) on S.
It is a nuisance to have these 2s popping up, so let us agree to maximize 1

2(x, Tx) subject
1
2
(
1 − (x, x)

)
= 0 instead. Therefore by the well known Lagrange Multiplier Theorem, there

exists λ1 satisfying
Tx1 − λ1x1 = 0.

This obviously implies that the Lagrange multiplier λ1 is an eigenvalue of T and x1 is a corre-
sponding eigenvector. Further, it is the value of the maximum:

Q(x1) = (x1, Tx1) = (x1, λ1x1) = λ1,

since (x1, x1) = 1.
Let x1, . . . , xn be defined as above and assume that for i = 1, . . . , k < n, each xi is an

eigenvector of T and that λi = Q(xi) is its corresponding eigenvalue. We wish to show that
xk+1 is an eigenvector of T and λk+1 = Q(xk+1) is its corresponding eigenvalue.

By construction, xk+1 maximizes 1
2Q(x) subject to the k + 1 constraints

1
2
(
1 − (x, x)

)
= 0, (x, x1) = 0, . . . (x, xk) = 0.

The gradients of these constraint functions are −x and x1, . . . , xk respectively. By construction,
x1, . . . , xk+1 are orthonormal, so at x = xk+1 the gradients of the constraint are linearly
independent. Therefore there exist Lagrange multipliers λk+1 and µ1, . . . , µk satisfying

Txk+1 − λk+1xk+1 + µ1x1 + · · · + µkxk = 0. (10)

Therefore

Q(xk+1) = (xk+1, Txk+1) = λk+1(xk+1, xk+1) − µ1(xk+1, x1) − · · · − µk(xk+1, xk) = λk+1,
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since x1, . . . , xk+1 are orthonormal. That is, the multiplier λk+1 is the maximum value of Q
over Sk.

By hypothesis, Txi = λixi for i = 1, . . . , k. Then since T is symmetric,

(xi, Txk+1) = (xk+1, Txi) = (xk+1, λixi) = 0, i = 1, . . . , k.

That is, Txk+1 ∈ Mk⊥, so Txk+1 − λk+1xk+1 ∈ Mk⊥, so by Lemma 35 equation (10) implies

Txk+1 − λk+1xk+1︸ ︷︷ ︸
∈Mk⊥

= 0 and µ1x1 + · · · + µkxk︸ ︷︷ ︸
∈Mk

= 0.

We conclude therefore that Txk+1 = λk+1xk+1, so that xk+1 is an eigenvector of T and λk+1
is the corresponding eigenvalue.

Since V is n-dimensional, x1, . . . , xn is an orthonormal basis of eigenvectors.

10 Matrices
A matrix is merely a rectangular array of numbers, or equivalently, a doubly indexed ordered
list of real numbers. An m × n matrix has m rows and n columns. The entries in a matrix
are doubly indexed, with the first index denoting its row and the second its column. Here is a
generic matrix:

A =

α1,1 . . . α1,n
...

...
αm,1 . . . αm,n


The plural of matrix is matrices. Matrices are of interest for two separate but hopelessly
intertwined reasons. One is their relation to systems of linear equations and inequalities, and
the other is their connection to linear transformations between finite-dimensional vector spaces.

The set of m × n matrices is denoted

M(m, n).

Given a matrix A, let Ai denote the ith row of A and let Aj denote the jth column. The
ith row and jth column entry is generally denoted by a lower case Greek letter, e.g., αi,j . We
can identify the rows or columns of a matrix with singly indexed lists of real numbers, that is,
elements of some Rk. If A is m × n, the column space of A is the subset of Rm spanned by
the n columns of A. Its row space is the subspace of Rn spanned by its m rows.

10.1 Matrix operations
If both A and B are m × n matrices, the sum A + B is the m × n matrix C defined by

γi,j = αi,j + βi,j .

The scalar multiple αA of a matrix A by a scalar α is the matrix M defined by mi,j = ααi,j .
Under these operations the set of m × n matrices becomes an mn-dimensional vector space.
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79 Proposition The set M(m, n) is a vector space under the operations of matrix addition
and scalar multiplication. It has dimension mn.

If A is m × p and B is p × n, the product of A and B is the m × n matrix whose ith row,
jth column entry is the dot product Ai · Bj of the ith row of A with the jth column of B.

(AB)i,j = Ai · Bj

The reason for this peculiar definition is explained in the next section.
Vectors in Rm may also be considered to be one-dimensional matrices. Let x′ be an m-

vector (a 1×m row matrix), y be an n-vector (an n×1 column matrix), and let A be an m×n
matrix. Then the matrix product x′A considered as a vector in Rn belongs to the row space
of A, and Ay as a vector in Rm belongs to the column space of A.

x′A =
m∑

i=1
xiAi and Ay =

n∑
j=1

yjAj

Note that the ith row of AB is given by

(AB)i = (Ai)B

and the jth column of AB is given by

(AB)j = A(Bj).

The main diagonal of a square matrix A = [αi,j ] is the set of αi,j with i = j. A matrix is
called a diagonal matrix if it is square and all its nonzero entries are on the main diagonal.
A square matrix is upper triangular if the only nonzero elements are on or above the main
diagonal, that is, if i > j implies αi,j = 0. A square matrix is lower triangular if i < j implies
αi,j = 0.

The n × n diagonal matrix I whose diagonal entries are all 1 and off-diagonal entries are all
0 has the property that

AI = IA = A

for any n×n matrix A. The matrix I is called the n × n identity matrix. The zero matrix
0 has all its entries zero, and satisfies A + 0 = A.

80 Fact (Summary) Direct computation reveals the following facts.

(AB)C = A(BC)
AB 6= BA (in general)

A(B + C) = (AB) + (AC)
(A + B)C = AC + BC

81 Exercise Verify the following.

1. The product of upper triangular matrices is upper triangular.

2. The product of lower triangular matrices is lower triangular.
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3. The product of diagonal matrices is diagonal.

4. The inverse of an upper triangular matrix is upper triangular (if it exists).

5. The inverse of a lower triangular matrix is lower triangular (if it exists).

6. The inverse of a diagonal matrix is diagonal (if it exists).

□

10.2 Systems of linear equations
One of the main uses of matrices is the simplification of representing a system of linear equations.
For instance, consider the following system of equations.

3x1 + 2x2 = 8
2x1 + 3x2 = 7

It has align unique solution x1 = 2 and x2 = 1. One way to solve this is to take the second
equation and solve for x1 = 7

2 − 3
2x2 and substitute this into the first equation to get 3(7

2 −
3
2x2) + 2x2 = 8, so x2 = 1 and x1 = 7

2 − 3
2 = 2. However, there is a computationally efficient

way to attack these problems using elementary row operations. The first step is to write
down the so-called augmented coefficient matrix of the system, which is the 2×3 matrix of just
the numbers above: [

3 2 8
2 3 7

]
.

There are three elementary row operations, and they correspond to steps used to solve a system
of equations. One of these operations is to interchange two rows. We won’t use that here.
Another is to multiply a row by a nonzero scalar. This does not change the solution. The third
operation is to add one row to another. These last two operations can be combined, and we
can think of adding a scalar multiple of one row to another as an elementary row operation.
We apply these operations until we get a matrix of the form[

1 0 a
0 1 b

]

which is the augmented matrix of the system

x1 = a

x2 = b

and the system is solved. There is a simple algorithm for deciding which elementary row
operations to apply, namely, the Gaussian elimination algorithm. In a section below, we
shall go into this algorithm in detail, but let me just give you a hint here. First we multiply
the first row by 1

3 , to get a leading 1: [
1 2

3
8
3

2 3 7

]
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We want to eliminate x1 from the second equation, so we add an appropriate multiple of the
first row to the second. In this case the multiple is −2, the result is:[

1 2
3

8
3

2 − 2 · 1 3 − 2 · 2
3 7 − 2 · 8

3

]
=
[

1 2
3

8
3

0 5
3

5
3

]
.

Now multiply the second row by 3
5 to get[

1 2
3

8
3

0 1 1

]
.

Finally to eliminate x2 from the first row we add −2
3 times the second row to the first and get[

1 − 2
3 · 0 2

3 − 2
3 · 1 8

3 − 2
3 · 1

0 1 1

]
=
[

1 0 2
0 1 1

]
,

which accords with our earlier result.

10.3 Matrix representation of a linear transformation
Let T be a linear transformation from the n-dimensional space V into the m-dimensional space
W . Let x1, . . . , xn be an ordered basis for V and y1, . . . , ym be an ordered basis for W . Then
there are scalars τi,j , i = 1, . . . , m, j = 1, . . . , n satisfying

Tx1 =
m∑

i=1
τi,1yi

Tx2 =
m∑

i=1
τi,2yi

...

Txn =
m∑

i=1
τi,nyi.

The m × n array of numbers

M(T ) =

 τ1,1 . . . τ1,n
...

...
τm,1 . . . αm,n


is the matrix representation of T with respect to the ordered bases (xj), (yi). Note

that the jth column of this matrix is the coordinate vector of Txj with respect to the ordered
basis y1, . . . , ym.

This representation provides an isomorphism between matrices and linear transformations.
The proof is left as an exercise.
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82 Proposition Let V be an n-dimensional vector space, and let W be an m-dimensional
vector space. Fix an ordered basis for each, and let M(T ) =

[
τi,j

]
be the matrix representation

a linear transformation T : V → W . Then the mapping

T → M(T )

is a linear isomorphism from L(V, W ) to M(m, n).

Let x1, . . . , xn be an ordered basis for V and let y1, . . . , ym be an ordered basis for W . Let
z belong to V and let ζ1, . . . , ζn be the coordinates of z with respect to the basis x1, . . . , xn,.
That is,

z =
n∑

i=1
ζixi.

We can use matrix multiplication to compute the coordinates of Tz with respect to the basis
y1, . . . , ym. We have

Tz =
n∑

j=1
ζjTxj

=
n∑

j=1
ζj

m∑
i=1

τi,jyi

=
m∑

i=1

 n∑
j=1

τi,jζj

yi

The coordinates of Tz with respect to y1, . . . , ym are given by Need better notation.

(Tz)i =
n∑

j=1
τi,jζj .

That is, the coordinate vector of Tz is M(T ) times the column vector ζ = [ζ1, . . . , ζn] of
coordinates of z.

The matrix representation can be thought of in the following terms. Let X denote the
coordinate mapping of V onto Rn with respect to the ordered basis x1, . . . , xn. Similarly Y
denotes the coordinate mapping from W onto Rm. In order to compute the coordinates of
Tz, we first find the coordinate vector of Xz, and then multiply by the matrix M(T ), as the
following “commutative diagram” shows.

Rn Rm

V W

X Y

M(T )

T
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83 Example (The matrix of the coordinate mapping) Consider the case V = Rn. That
is, elements of V are already thought of as ordered lists of real numbers. Let x1, . . . , xn be an
ordered basis, and let X denote the coordinate mapping from Rn with this basis to Rn with
the standard basis. Then M(X) is simply the matrix whose jth column is xj . □

84 Example (Matrices as linear transformations from Rn to Rm) Let A = [αi,j ] be
an m × n matrix and

x =

x1
...

xn

 ∈ Rn,

an n × 1 matrix. The matrix product Ax is an m × 1 matrix whose ith row is
n∑

j=1
αi,jxj i = 1, . . . , m.

Then T : x 7→ Ax defines a linear transformation from Rn to Rm. The matrix M(T ) of this
transformation with respect to the standard ordered bases (the bases of unit coordinate vectors)
is just A. □

85 Definition The rank of a matrix is the largest number of linearly independent columns.

It follows from Proposition 57 that:

86 Proposition An m × m matrix has an inverse if and only if it has rank m.

87 Example (The identity matrix) What is the matrix representation for the identity
mapping I : Rm → Rm?

M(I) =

1 0
. . .

0 1


is the m × m identity matrix I. If the transformation T is invertible, so that TT −1 = I, then
M(T )M(T −1) = I. The matrix M(T −1) is naturally referred to as the inverse of the matrix
M(T ). In general, if A defines an invertible transformation from Rm onto Rm, the matrix
A−1 satisfies

AA−1 = A−1A = I.

□

88 Example (The zero matrix) The matrix for the zero transformation 0 : Rn → Rm, is0 · · · 0
...

...
0 · · · 0

 ,

the m × n zero matrix. □
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The transpose of a matrix is the matrix formed by interchanging rows and columns. The
transpose of a matrix is also sometimes called the adjoint matrix. This definition is justified
by the following lemma.

89 Lemma M(T )i,j = M(T ′)j,i.

Proof :
M(T )i,j = (ei, Tej) = (T ′ei, ej) = (ej , T ′ei) = M(T ′)j,i

10.4 Gershgorin’s Theorem
For a diagonal matrix, the diagonal elements of the matrix are the eigenvalues of the corre-
sponding linear transformation. Even if the matrix is not diagonal, its eigenvalues are “close”
to the diagonal elements.

90 Gershgorin’s Theorem Let A =
[
αi,j

]
be an m × m real matrix. If λ is an eigenvalue

of A, that is, if Ax = λx for some nonzero x, then for some i,

|λ − αi,i| ⩽
∑

j:j 6=i

|αi,j | .

Proof : (Cf. Franklin [12, p. 162].) Let x = (ξ1, . . . , ξm) be an eigenvector of A belonging to the
eigenvalue λ. Choose the index i so that

|ξi| = max{|ξ1|, . . . , |ξm|},

and note that since x 6= 0, we have |ξi| > 0. Then by the definition of eigenvalue and eigenvector,

(λI − A)x = 0.

Now the ith component of the vector (λI − A)x is just (λ − αi,i)ξi −
∑

j:j 6=i αi,jξj = 0, so

(λ − αi,i)ξi =
∑

j:j 6=i

αi,jξj

so taking absolute values,

|λ − αi,i| |ξi| = |
∑

j:j 6=i

αi,jξj |

⩽
∑

j:j 6=i

|αi,j | |ξj |

so dividing by |ξi| > 0,

|λ − αi,i| ⩽
∑

j:j 6=i

|αi,j | |ξj |
|ξi|

⩽
∑

j:j 6=i

|αi,j | .
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A square matrix A has a dominant diagonal if for each i,
|ai,i| >

∑
j:j 6=i

|αi,j | .

Note that any diagonal matrix with nonzero diagonal elements has a dominant diagonal. This
leads to the following corollary of Gershgorin’s Theorem.

91 Corollary If A is a nonnegative square matrix with a dominant diagonal, then every
eigenvalue of A is strictly positive.

Proof : Since A is nonnegative, if λ is an eigenvalue, then Gershgorin’s theorem implies that
for some i,

αi,i − λ ⩽ |λ − αi,i| ⩽
∑

j:j 6=i

αi,j ,

so
0 < αi,i −

∑
j:j 6=i

αi,j ⩽ λ,

where the first inequality is the dominant diagonal property.

For applications of this corollary and related results, see McKenzie [18].

10.5 Matrix representation of a composition
Let S take Rp → Rn be linear with matrix M(S) = [βj,k]k=1,...,p

j=1,...,n. Let T take Rn → Rm be
linear with matrix M(T ) = [αi,j ]j=1,...,n

i=1,...,m. Then T ◦ S : Rp → Rm is linear. What is M(TS)?

Let x =

x1
...

xp

. Then

Sx =
n∑

j=1

( p∑
k=1

βj,kxk

)
ej .

T (Sx) =
m∑

i=1

 n∑
j=1

αi,j

( p∑
k=1

βj,kxk

) ei.

Set
γi,k =

n∑
j=1

αi,jβj,k.

Then
T (Sx) =

m∑
i=1

( p∑
k=1

γi,kxk

)
ei.

Thus M(TS) = [γi,k]k=1,...,p
i=1,...,m. This proves the following theorem.

92 Theorem M(TS) = M(T )M(S).

Thus multiplication of matrices corresponds to composition of linear transformations.
Let S, T : Rn → Rm be linear transformations with matrices A, B. Then S + T is linear.

The matrix for S + T is A + B where (A + B)i,j = αi,j + βi,j .
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10.6 Change of basis
A linear transformation may have different matrix representations for different bases. Is there
some way to tell if two matrices represent the same transformation?

We shall answer this question for the important case where T maps an m-dimensional vector
space V into itself, and we use the same basis for V as both the domain and the range. Let
A = [αi,j ] represent T with respect to the ordered basis x1, . . . , xm, and let B = [βi,j ] represent
T with respect to the ordered basis y1, . . . , ym.

That is,

Txi =
m∑

k=1
αk,ixk and Tyi =

m∑
k=1

βk,iyk.

Let X be the coordinate map from V into Rm with respect to the ordered basis x1, . . . , xm,
and let Y be the coordinate map for the ordered basis y1, . . . , ym. Then X and Y have full
rank and so have inverses.

Consider the following commutative diagram.

Rm Rm

V V

Rm Rm

X X

Y Y

A

T

B

The mapping XY −1 from Rm onto Rm followed by A from Rm into Rm, which maps the
upper left Rm into the lower right Rm, is the same as B followed by XY −1. Let C be the
matrix representation of XY −1 with respect to the standard ordered basis of unit coordinate
vectors. Then

A = CBC−1 and B = C−1AC. (⋆)

93 Definition Two m × m matrices A and B are called similar if there is some nonsingular
matrix C such that (⋆) holds.

So we have already proved half of the following. The second half is left for you. (See
Apostol [6, Theorem 4.7, p. 110] if you get stuck.)

94 Theorem Two matrices are similar if and only if they represent the same linear transfor-
mation.

The following are corollaries, but have simple direct proofs.
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95 Proposition If A, B are similar with A = CBC−1, then λ is an eigenvalue of A if it is
an eigenvalue of B. If x is an eigenvector of A, C−1x is an eigenvector of B.

Proof : Suppose x is an eigenvector of A, Ax = λx. Let y = C−1x. Since A = CBC−1,

λx = Ax = CBC−1x = CBy.

Premultiplying by C−1,
λy = λC−1x = C−1CBy = By.

96 Proposition If A and B are similar, then rank A = rank B.

Proof : We prove rank B ⩾ rank A. Symmetry completes the argument. Let z1, . . . , zk be
a basis for range A, and let yi satisfy zi = Ayi. Put wi = C−1yi. Then the Bwi’s are
independent. To see this suppose

0 =
k∑

i=1
αi(Bwi) =

k∑
i=1

αiC
−1ACC−1yi =

k∑
i=1

αiC
−1zi = C−1

( k∑
i=1

αizi

)
.

Since C−1 is nonsingular, this implies ∑k
i=1 αizi = 0, which in turn implies αi = 0, i = 1, . . . , k.

10.7 The Principal Axis Theorem
The next result describes the diagonalization of a symmetric matrix.

97 Definition A square matrix X is orthogonal if X ′X = I, or equivalently X ′ = X−1.

98 Principal Axis Theorem Let A : Rm → Rm be a symmetric matrix. Let x1, . . . , xm

be an orthonormal basis for Rm made up of eigenvectors of A, with corresponding eigenvalues
λ1, . . . , λm. Set

Λ =

λ1 0
. . .

0 λm

 ,

and set X = [x1, . . . , xm].
Then

A = XΛX−1,

Λ = X−1AX,

and X is orthogonal, that is,
X−1 = X ′.
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Proof : Now X ′X = I by orthonormality, so X−1 = X ′. Pick any z and set y = X−1z, so
z = Xy =

∑m
j=1 yjxj . Then

Az =
m∑

j=1
yjAxi =

m∑
j=1

yj(λjxj)

= XΛy

= XΛX−1z.

Since z is arbitrary A = XΛX−1.

This result is called the principal axis theorem because in the case where A is positive
definite (see Definition 109 below), the columns of X are the principal axes of the ellipsoid
{x : x′Ax = 1}. See Franklin [12, § 4.6, pp. 80–83].

10.8 Simultaneous diagonalization
99 Theorem (Simultaneous Diagonalization) Let A, B be symmetric m × m matrices.

Then AB = BA if and only if there exists an orthonormal basis consisting of vectors that
are eigenvectors of both A and B. Then letting X be the orthogonal matrix whose columns
are the basis we have

A = XΛAX−1

B = XΛBX−1,

where ΛA and ΛB are diagonal matrices of eigenvalues of A and B respectively.

Partial proof : (⇐=)

AB = XΛAX−1XΛBX−1 = XΛAΛBX−1 = XΛBΛAX−1 = XΛBX−1XΛAX = BA,

since diagonal matrices commute.
( =⇒ ) We shall prove the result for the special case where A has distinct eigenvalues. In this

case, the eigenvectors associated with any eigenvalue are distinct up to scalar multiplication.
Let x be an eigenvector of A corresponding to eigenvalue λ. Suppose A and B commute.

Then
A(Bx) = BAx = B(λx) = λ(Bx).

This means that Bx too is an eigenvector of A corresponding to λ, provided Bx 6= 0. But as
remarked above, this implies that Bx is a scalar multiple of x, so x is an eigenvector of B too.
So let X be a matrix whose columns are a basis of orthonormal eigenvectors for both A and
B. Then it follows that A = XΛAX−1, where ΛA is the diagonal matrix of eigenvalues, and
similarly B = XΛBX−1.

We now present a sketch of the proof for the general case. The crux of the proof is that
in general, the eigenspace M associated with λ may be more than one-dimensional, so it is
harder to conclude that the eigenvectors of A and B are the same. To get around this problem
observe that B2A = BBA = BAB = ABB = AB2, and in general, BnA = ABn, so that
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if Ax = λx, then A(Bnx) = BnAx = Bnλx = λ(Bnx). That is, for every n, the vector
Bnx is also an eigenvector of A corresponding to λ. Since the eigenspace M associated with λ
is finite-dimensional, for some minimal k, the vectors x, Bx, . . . , Bkx are dependent. That is,
there are α0, . . . , αk, not all zero, with

α0x + α1Bx + α2B2x + · · · + αkBkx = 0.

Let µ1, . . . , µk be the roots of the polynomial α0 + α1y + α2y2 + · · · + αkyk. Then[
(B − µ1I)(B − µ2I) · · · (B − µkI)

]
x = 0.

Set z = [(B − µ2I)(B − µ3I) · · · (B − µkI)]x
If k is minimal, then z 6= 0. (Even if coefficients are complex. Independence over the real

field implies independence over complex field. Just look at real and imaginary parts.) Therefore
(B − µ1I)z = 0

Claim: µ1 and z are real.

Proof of claim: Let µ1 = α + iβ and z = x + iy

B(x + iy) = (α + iβ)(x + iy)

Therefore Bx = αx − βy and By = βx + αy (equate real and imaginary parts). Thus
y′Bx = αy′x − βy′y and by symmetry y′Bx = x′By = βx′x + αx′y.

Now,
α(y′x) − β(y′y) = β(x′x) + α(x′y),

so β = 0 or z = 0, i.e., x = 0 and y = 0. But z 6= 0, so β = 0 and µ1 is real. Similarly each µi

is real. □

Therefore z is a real linear combination of Bnx (all eigenvectors of A) satisfying (B −
µ1I)z = 0. In other words, Bz = µ1z, so z is an eigenvector of both B and A!

We now consider the orthogonal complement of z in the eigenspace M to recursively con-
struct a basis for M composed of eigenvectors for both A and B.

We must do this for each eigenvalue λ of A. More details are in Rao [20, Result (iii),
pp. 41–42].

10.9 Trace
100 Definition Let A be an m × m matrix. The trace of A, denoted tr A, is defined by

tr A =
m∑

i=1
αii.

The trace is a linear functional on the set of m × m matrices.

101 Lemma Let A and B be m × m matrices. Then

tr(αA + βB) = α tr A + β tr B (11)
tr(AB) = tr(BA). (12)
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Proof : The proof of linearity (11) is straightforward. For the proof of (12), observe that

tr AB =
m∑

i=1

 m∑
j=1

αi,jβj,i

 =
m∑

j=1

(
m∑

i=1
βj,iαi,j

)
= tr BA.

Equation (11) says that the trace is a linear functional on the vector space M(m, m) of
m × m matrices. The next result says that up to a scale multiple it is the only linear functional
to satisfy (12).

102 Proposition If ℓ is a linear functional on M(m, m) satisfying

ℓ(AB) = ℓ(BA) for all A, B ∈ M(m, m),

then there is a constant α such that for all A ∈ M(m, m),

ℓ(A) = α tr A.

Proof : To show uniqueness, let ℓ : M(m, m) → R be a linear functional satisfying

ℓ(AB) = ℓ(BA) for all A, B ∈ M(m, m).

Now ℓ belongs to the space L(M(m, m), R). The ordered basis on V induces a matrix repre-
sentation for ℓ as an mm × 1 matrix, call it L so that

ℓ(A) =
m∑

i=1

m∑
j=1

LijAij .

We also know that ℓ(AB − BA) = 0 for every A, B ∈ M(m, m). That is,
m∑

i=1

m∑
j=1

Lij
(
AB − BA

)
ij

=
m∑

i=1

m∑
j=1

m∑
k=1

Lij {AikBkj − BikAkj} = 0. (13)

Now consider the matrix A with all its entries zero except for the ith row, which is all ones,
and B, which has all its entries zero, except for the jth column, which is all ones. If i 6= j, then
the i, j entry of AB is m and the rest are zero, whereas all the entries of BA are zero. In this
case, (13) implies Lij = 0.

Next consider the matrices A and B where the nonzero entries of A are rows i and j,
which consist of ones; and the nonzero entries of B are column i, which consists of ones,
and column j, which is column of minus ones. Then BA = 0 and AB is zero except for
(AB)ij = (AB)ji = m and (AB)ij = (AB)jj = −m. Since Lij = 0 whenever i 6= j,
equation (13) reduces to Liim + Ljj(−m) = 0, which implies Lii = Ljj .

Let α be the common value of the elements of the diagonal matrix L. We have just shown
that ℓ(A) = α tr A.

Add: The trace is also
equal to the sum of
the characteristic
roots (eigenvalues).
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103 Proposition The trace of a matrix depends only on the linear transformation of Rm into
Rm that it represents. In other words, if A and B are similar matrices, that is, if B = C−1AC,
then tr B = tr A.

Proof : Theorem 94 asserts that two matrices represent the same transformation if and only if
they are similar. By Lemma 101, equation (12),

tr B = tr C−1AC = tr ACC−1 = tr A.

104 Corollary Let V be an m-dimensional inner product space. There is a unique linear
functional tr on L(V, V ) satisfying

tr ST = tr TS for all S, T ∈ L(V, V ),

and
tr I = m.

105 Theorem If A is symmetric and idempotent, then tr A = rank A.

Proof : Since A is symmetric, A = XBX−1 where X = [x1, . . . , xm] is an orthogonal matrix
whose columns are eigenvectors of A, and B is a diagonal matrix whose diagonal elements the
eigenvalues of A, which are either are 0 or 1.

Thus tr B is the number of nonzero eigenvalues of A. Also rank B is the number of nonzero
diagonal elements. Thus tr B = rank B, but since A and B are similar, tr A = tr B = rank B =
rank A.

It also follows that on the space of symmetric matrices, the trace can be used to define an
inner product.

106 Proposition The function of two matrices

(A, B) = tr AB

is an inner product on the linear space of symmetric m × m real matrices.

Proof : Lemma 101, equation (12) shows that (A, B) = (B, A) so IP.1 is satisfied. Moreover
equation (11) implies

(A, B + C) = tr A(B + C) = tr(AB + AC) = tr AB + tr AC = (A, B) + (A, C),
(αA, B) = tr αAB = α tr AB = α(A, B)
(A, αB) = tr AαB = α tr AB = α(A, B)

so IP.2 and IP.3 are satisfied.
To see that IP.4 is satisfied, observe that if A is a symmetric matrix, then (AA)ii is just

the inner product of the the ith row of A with itself, which is ⩾ 0 and equals zero only if the
row is zero. Thus (A, A) = tr AA =

∑
i(AA)ii ⩾ 0 and = 0 only if every row of A is zero,

that is, if A itself is zero.

107 Exercise What does it mean for symmetric matrices A and B to be orthogonal under
this inner product? □
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10.10 Matrices and orthogonal projection
Section 5.4 discussed orthogonal projection as a linear transformation. In this section we discuss
matrix representations for orthogonal projection.

Let M be a k-dimensional subspace of Rm, and let b1, . . . , bk be a basis for M . Given a
vector y, the orthogonal projection yM of y is the vector in M that minimizes the distance to
y (Proposition 42). The difference y⊥ = y − yM is orthogonal to M (Theorem 39).

The next result is crucial to the statistical analysis of linear regression models.

108 Least squares regression Let B the m × k matrix with columns b1, . . . , bk, which
constitute a basis for the k-dimensional subspace M . Given a vector y in Rm, the orthogonal
projection yM of y onto M satisfies

yM = B(B′B)−1B′y.

Proof : The first thing to note is that since {b1, . . . , bk} is a basis for M , the matrix B has
rank k, so by Corollary 62, the k × k matrix B′B has rank k, so by Proposition 86 it is
invertible.

Next note that the m × 1 column vector B(B′B)−1B′y belongs to M . In fact, setting

a = (B′B)−1B′y

(a is a k × 1 column matrix), we see that it is the linear combination

Ba =
k∑

j=1
αjbj

of basis vectors. Thus by the Orthogonal Projection Theorem 39, to show that yM = Ba, it
suffices to show that y − Ba is orthogonal to M . This in turn is equivalent to y − Ba being
orthogonal to each basis vector bj . Now for any x, the k × 1 column matrix B′x has as its jth

(row) entry the dot product bj · x. Thus all we need do is show that B′(y − Ba) = 0. To this
end, compute

B′(y − Ba) = B′y − B′B(B′B)−1B′y = B′y − B′y = 0.

A perhaps more familiar way to restate this result is that the vector a of coefficients that
minimizes the sum of squared residuals, (y − Ba) · (y − Ba), is given by a = (B′B)−1B′y.

11 Quadratic forms
We introduced quadratic forms in the proof of Theorem 78. We go a little deeper here. If you
want to know even more, I recommend my on-line notes [9].

Let A be an n × n symmetric matrix, and let x be an n-vector. Then x · Ax is a scalar,
and

x · Ax =
n∑

i=1

n∑
j=1

αijxixj . (14)
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(We may also write this as x′Ax in matrix notation.)
The mapping Q : x 7→ x · Ax is the quadratic form defined by A.6

109 Definition A symmetric matrix A (or its associated quadratic form) is called

• positive definite if x′Ax > 0 for all nonzero x.

• negative definite if x′Ax < 0 for all nonzero x.

• positive semidefinite if x′Ax ⩾ 0 for all x.

• negative semidefinite if x′Ax ⩽ 0 for all x.

We want all our (semi)definite matrices to be symmetric so that their eigenvectors generate
an orthonormal basis for Rn. (If A is not symmetric, then A+A′

2 is symmetric and x′Ax =
x′(A+A′

2 )x for any x.) Some authors use the term quasi-(semi)definite when they do not
wish to impose symmetry.

11.1 Diagonalization of quadratic forms
By the Principal Axis Theorem 98 we may write

A = XΛX ′,

where X is an orthogonal matrix with columns that are eigenvectors of A, and Λ is a diagonal
matrix of eigenvalues of A. Then the quadratic form can be written in terms of the diagonal
matrix Λ:

x · Ax = x′Ax = x′XΛX ′x = y′Λy =
n∑

i=1
λiy

2
i ,

where
y = X ′x.

110 Proposition (Eigenvalues and definiteness) The symmetric matrix A is

1. positive definite if and only if all its eigenvalues are strictly positive.

2. negative definite if and only if all its eigenvalues are strictly negative.

3. positive semidefinite if and only if all its eigenvalues are nonnegative.

4. negative semidefinite if and only if all its eigenvalues are nonpositive.
6For decades I was baffled by the term form. I once asked Tom Apostol at a faculty cocktail party what it

meant. He professed not to know (it was a cocktail party, so that is excusable), but suggested that I should
ask John Todd. He hypothesized that mathematicians don’t know the difference between form and function, a
clever reference to modern architectural philosophy. I was too intimidated by Todd to ask, but I subsequently
learned (where, I can’t recall) that form refers to a polynomial function in several variables where each term in
the polynomial has the same degree. (The degree of the term is the sum of the exponents. For example, in the
expression xyz + x2y + xz + z, the first two terms have degree three, the third term has degree two and the last
one has degree one. It is thus not a form.) This is most often encountered in the phrases linear form (each term
has degree one) or quadratic form (each term has degree two).
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Proof : As above, let y = X ′x and write

x′Ax =
n∑

i=1
λiy

2
i .

where the λi’s are the eigenvalues of A. All the statements above follow from this equation and
the fact that y2

i ⩾ 0 for all k.

111 Proposition (Definiteness of the inverse) If A is positive definite (negative definite),
then A−1 exists and is also positive definite (negative definite).

Proof : First off, how do we know the inverse of A exists? Suppose Ax = 0. Then x · Ax =
x · 0 = 0. Since A is positive definite, we see that x = 0. Therefore A is invertible. Here are
two proofs of the proposition.

First proof. Since (Ax = λx) =⇒ (x = λA−1x) =⇒ (A−1x = 1
λx), the eigenvalues of A

and A−1 are reciprocals, so they must have the same sign. Apply Proposition 110.
Second proof.

x′A−1x = y′Ay where y = A−1x.

12 Determinants
The main quick references here are Apostol [6, Chapter 3] and Dieudonné [11, Appendix A.6].
The main things to remember are:

• The determinant assigns a number to each square matrix A, denoted either det A or
∣∣∣A∣∣∣.

A matrix is singular if its determinant is zero, otherwise it is nonsingular. For an n×n
identity matrix, det I = 1.

• det (AB) = det A · det B.

• A square matrix has an inverse if and only if its determinant is nonzero.

• Multiplying a row or a column by a scalar multiplies the determinant by the same amount.
Consequently for an n × n matrix A,

det (−A) = (−1)n det A.

• Also consequently, the determinant of a diagonal matrix is the product of its diagonal
elements.

• Adding a multiple of one row to another does not change the determinant.

• Consequently, the determinant of an upper (or lower) triangular matrix is the product of
its diagonal.
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• Moreover if a square matrix A is block upper triangular, that is, of the form

A =
[
B C
0 D

]
,

where B and D are square, then det A = det B ·det D. Likewise for block lower triangular
matrices.

• det A = det A′.

• The determinant can be defined recursively in terms of minors (determinants of subma-
trices).

• The inverse of a matrix can be computed in terms of these minors. The inverse of A is
the transpose of its cofactor matrix divided by det A.

• Cramer’s Rule: If Ax = b for a nonsingular matrix A, then

xi =

∣∣∣A1, . . . , Ai−1, b, Ai+1, . . . , An
∣∣∣∣∣∣A∣∣∣ .

• The determinant is the “oriented volume” of the n-dimensional “cube” formed by its
columns.

• The determinant det (λI − A), where A and I are n × n, is an nth degree polynomial in
λ, called the characteristic polynomial of A.

• A root (real or complex) of the characteristic polynomial of A is called a characteristic
root of A. Characteristic roots that are real are also eigenvalues. If nonzero x belongs
to the null space of λI − A, then it is an eigenvector corresponding to the eigenvalue λ.

• The determinant of A is the product of its characteristic roots.

• If A is symmetric, then det A is the product of its eigenvalues.

• If A has rank k then every minor of size greater than k has zero determinant and there
is at least one minor of order k with nonzero determinant.

• The determinant of an orthogonal matrix is ±1.

12.1 Determinants as multilinear forms
There are several ways to think about determinants. Perhaps the most useful is as an alternating
multilinear n-form:

A function φ : Rn × · · · × Rn︸ ︷︷ ︸
n copies

→ R is multilinear if it is linear in each variable separately.

That is, for each i = 1, . . . , n,

φ(x1, . . . , xi−1, αxi + βyi, xi+1, . . . , xn)
= αφ(x1, . . . , xi−1, xi, xi+1, . . . , xn) + βφ(x1, . . . , xi−1, yi, xi+1, . . . , xn).
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A consequence of this is that if any xi is the zero vector, then so is φ. That is,

φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0.

The multilinear function φ is alternating if xi = xj = z for distinct i and j, then

φ(x1, . . . , z, . . . , z, . . . , xn) = 0.

The reason for this terminology is the following lemma.

112 Lemma The multilinear function φ is alternating if and only if interchanging xi and xj

changes the sign of φ, that is,

φ(x1, . . . , xi, . . . , xj , . . . , xn) = −φ(x1, . . . , xj , . . . , xi, . . . , xn).

Proof : Suppose first that φ is alternating. Then

0 = φ(x1, . . . , xi + xj , . . . , xj + xi, . . . , xn)
= φ(x1, . . . , xi, . . . , xj + xi, . . . , xn) + φ(x1, . . . , xj , . . . , xj + xi, . . . , xn)
= φ(x1, . . . , xi, . . . , xj , . . . , xn) + φ(x1, . . . , xi, . . . , xi, . . . , xn)︸ ︷︷ ︸

=0

+ φ(x1, . . . , xj , . . . , xj , . . . , xn)︸ ︷︷ ︸
=0

+ φ(x1, . . . , xj , . . . , xi, . . . , xn)

= φ(x1, . . . , xi, . . . , xj , . . . , xn) + φ(x1, . . . , xj , . . . , xi, . . . , xn).

So φ(x1, . . . , xi, . . . , xj , . . . , xn) = −φ(x1, . . . , xj , . . . , xi, . . . , xn).
Now suppose interchanging xi and xj changes the sign of φ. Then if xi = xj = z,

φ(x1, . . . , z, . . . , z, . . . , xn) = −φ(x1, . . . , z, . . . , z, . . . , xn),

which implies φ(x1, . . . , z, . . . , z, . . . , xn) = 0, so φ is alternating.

There is an obvious identification of n×n square matrices with the elements of Rn×· · ·×Rn.
Namely A ↔ (A1, . . . , An), where you will recall Aj denotes the jth column of A interpreted
as a vector in Rn. (We could have used rows just as well.) Henceforth, for a multilinear form
φ and n × n matrix A, we write φ(A) for φ(A1, . . . , An). The next fact is rather remarkable,
so pay close attention.

113 Proposition For every n × n matrix A, there is a number det A with the property that
for any alternating multilinear n-form φ,

φ(A) = det A · φ(I). (⋆)

Proof : Before we demonstrate the proposition in general, let us start with a special case, n = 2.
Let

A =
[
α1,1 α1,2
α2,1 α2,2

]
.
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Then

φ(A) = φ(A1, A2)
= φ(α1,1e1 + α2,1e2, α1,2e1 + α2,2e2)
= α1,1φ(e1, α1,2e1 + α2,2e2) + α2,1φ(e2, α1,2e1 + α2,2e2)
= α1,1α1,2φ(e1, e1) + α1,1α2,2φ(e1, e2) + α2,1α1,2φ(e2, e1) + α2,1α2,2φ(e2, e2)
= 0 + α1,1α2,2φ(e1, e2) + α2,1α1,2φ(e2, e1) + 0
= α1,1α2,2φ(e1, e2) − α2,1α1,2φ(e1, e2)
= (α1,1α2,2 − α2,1α1,2)φ(I),

so we see that det A = α1,1α2,2 − α2,1α1,2. Thus the whole of φ is determined by the single
number φ(I).

This is true more generally. Write

φ(A) = φ

 n∑
i1=1

αi1,1ei1 ,
n∑

i2=1
αi2,2ei2 , . . . ,

n∑
ij=1

αij ,jeij , . . . ,
n∑

in=1
αin,nein

 .

Now expand this using linearity in the first component:

φ(A) =
n∑

i1=1
αi1,1φ

ei1 ,
n∑

i2=1
αi2,2ei2 , . . . ,

n∑
ij=1

αij ,jeij , . . . ,
n∑

in=1
αin,nein

 .

Repeating this for the other components leads to

φ(A) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1
αi1,1αi2,2 · · · αin,nφ(ei1 , ei2 , . . . , ein).

Now consider φ(ei1 , ei2 , . . . , ein). Since φ is alternating, this term is zero unless i1, i2, . . . , in are
distinct. When these are distinct, then by switching pairs we get to ±φ(e1, e2, . . . , en) where
the sign on whether we need an odd or an even number of switches. It now pays to introduce
some new terminology and notation. A permutation i is an ordered list i = (i1, . . . , in) of
the numbers 1, . . . , n. The signature sgn(i) of i is 1 if i can be put in numerical order by
switching terms an even number of times and is −1 if it requires an odd number. It follows How do we know that

sgn(i) is well defined?then that defining
det A =

∑
i

sgn(i) · αi1,1αi2,2 · · · αin,n, (15)

where the sum runs over all permutations i, satisfies the conclusion of the proposition.

This result still leaves the following question: Are there any alternating multilinear n-forms
at all? The reason the result above does not settle this is that it would be vacuously true if
there were none. Fortunately, it is not hard to verify that det itself is such an n-form.

114 Proposition The function A 7→ det A as defined in (15) is an alternating multilinear
n-form.
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Proof : Observe that in each product sgn(i) · αi1,1αi2,2 · · · αin,n in the sum in (15) there is
exactly one element from each row and each column of A. This makes it obvious that
det(A1, . . . , αAj , . . . , An) = α det A, and it is straightforward to verify that

det(A1, . . . , x + y, . . . , An) = det(A1, . . . , x, . . . , An) + det(A1, . . . , y, . . . , An).

To see that det is alternating, suppose Ai = Aj with i 6= j. Then for any permutation i,
ij 6= ik, and there is exactly one permutation i′ satisfying ip = i′

p for p /∈ {i, j} and i′
j = ik and

i′
k = ij . Now observe that sgn(i) = − sgn(i′) as it requires an odd number of interchanges to

swap two elements in a list (why?). Thus we can rewrite (15) as

det A =
∑

i:sgn(i)=1
αi1,1αi2,2 · · · αin,n − αi′

1,1αi′
2,2 · · · αi′

n,n,

but each αi1,1αi2,2 · · · αin,n − αi′
1,1αi′

2,2 · · · αi′
n,n = 0. (Why?) Therefore det A = 0, so det is

alternating.

To sum things up we have:

115 Corollary An alternating multilinear n-form is identically zero if and only if φ(I) = 0.
The determinant is the unique alternating multilinear n-form φ that satisfies φ(I) = 1. Any
other alternating multilinear n-form φ is of the form φ = φ(I) · det.

12.2 Some simple consequences
116 Proposition If A′ is the transpose of A, then det A = det A′.

Write out a proof.

117 Proposition Adding a scalar multiple of one column of A to a different column leaves
the determinant unchanged. Likewise for rows.

Proof : By multilinearity,

det(A1, . . . , Aj + αAk, . . . , Ak, . . . , An) =
det(A1, . . . , Aj , . . . , Ak, . . . , An) + α det(A1, . . . , Ak, . . . , Ak, . . . , An),

but
det(A1, . . . , Ak, . . . , Ak, . . . , An) = 0

since det is alternating. The conclusion for rows follows from that for columns and Proposi-
tion 116 on transposes.

118 Proposition The determinant of an upper triangular matrix is the product of the diagonal
entries.

Proof : Recall that an upper triangular matrix is one for which i > j implies αi,j = 0. (Diagonal
matrices are also upper triangular.) Now examine equation (15). The only summand that is
nonzero comes from the permutation (1, 2, 3, . . . , n), since for any other permutation there is
some j satisfying ij > j. (Why?)
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By the way, the result also holds for lower triangular matrices.

119 Lemma If A is n×n and φ is an alternating multilinear n-form, so is the form φA defined
by

φA(x1, . . . , xn) = φ(Ax1, . . . , Axn).

Furthermore
φA(I) = φ(A) = det A · φ(I). (16)

Proof : That φA is an alternating multilinear n-form is straightforward. Therefore φA is pro-
portional to φ. To see that the coefficient of proportionality is det A, consider φA(I). Direct
computation shows that φA(I) = φ(A).

As an aside, I mention that we could have defined the determinant directly for linear transformations
as follows. For a linear transformation T : Rn → Rn it follows that φT defined by φT (x1, . . . , xn) =
φ(Tx1, . . . , Txn) is an alternating n-form whenever φ is. It also follows that we could use (16) to define
det T to be the scalar satisfying φT (x1, . . . , xn) = det T · φ(x1, . . . , xn). This is precisely Dieudonné’s
approach. It has the drawback that minors and cofactors are awkward to describe in his framework.

120 Theorem Let A and B be n × n matrices. Then

det AB = det A · det B.

Proof : Let φ be an alternating multilinear n-form. Applying (16) and (⋆), we see

φAB(I) = φ(AB) = det AB · φ(I).

On the other hand

φAB(I) = φA(B) = det B · φA(I) = det B · det A · φ(I).

Therefore det AB = det A · det B.

121 Corollary If det A = 0, then A has no inverse.

Proof : Observe that if A has an inverse, then

1 = det I = det A · det A−1

so det A 6= 0.

122 Corollary The determinant of an orthogonal matrix is ±1.

Proof : Recall that the matrix A is orthogonal if A′A = I (Definition 97). So by Theorem 120,
det(A′) det(A) = 1, but by Proposition 116, det(A′) = det A, so (det A)2 = 1.
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12.3 Minors and cofactors
Different authors assign different meanings to the term minor. Given a square n × n matrix

A =

α1,1 . . . α1,n
...

...
αn,1 . . . αn,n


Apostol [6, p. 87] defines the i, j minor of A to be the (n−1)×(n−1) submatrix obtained from
A by deleting the ith row and jth column, and denotes it Ai,j . Gantmacher [13, p. 2] defines a
minor of a (not necessarily square) matrix A to be the determinant of a square submatrix of
A, and uses the following notation for minors in terms of the remaining rows and columns:

A
(i1,...,ip

j1,...,jp

)
=

∣∣∣∣∣∣∣
αi1,j1 . . . αi1,jp

...
...

αin,j1 . . . αip,jp

∣∣∣∣∣∣∣ .
Here we require that 1 ⩽ i1 < i2 < · · · < ip ⩽ n and 1 ⩽ j1 < j2 < · · · < jp ⩽ n. If the

deleted (and hence remaining) rows and columns are the same, that is, if i1 = j1, i2 = j2, …,
ip = jp, then A

(i1,...,ip

j1,...,jp

)
is called a principal minor of order p. I think the following hybrid

terminology is useful: a minor submatrix is any square submatrix of A (regardless of whether
A is square) and a minor of A is the determinant of a minor submatrix (same as Gantmacher).
To be on the safe side, I may use the redundant term minor determinant to mean minor.

Given a square n × n matrix

A =

α1,1 . . . α1,n
...

...
αn,1 . . . αn,n


the cofactor cof αi,j of αi,j is the determinant obtained by replacing the jth column of A with
the ith unit coordinate vector ei. That is,

cof αi,j = det(A1, . . . , Aj−1, ei, Aj+1, . . . , An).

By multilinearity we have for any column j,

det A =
n∑

i=1
αi,j cof αi,j .

123 Lemma (Cofactors and minors) For any square matrix A,

cof αi,j = (−1)i+j det Ai,j ,

where Ai,j is the minor submatrix obtained by deleting the ith row and jth column from A.
Consequently

det A =
n∑

i=1
(−1)i+jαi,j det Ai,j .
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Similarly (interchanging the roles of rows and columns), for any row i,

det A =
n∑

j=1
(−1)i+jαi,j det Ai,j .

Proof : Cf. Apostol [6, Theorem 3.9, p. 87]. By definition

cof αi,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1,1 . . . α1,j−1 0 α1,j+1 . . . α1,n
...

...
...

...
...

αi−1,1 . . . αi−1,j−1 0 αi−1,j+1 . . . αi−1,n

αi,1 . . . αi,j−1 1 αi,j+1 . . . αi,n

αi+1,1 . . . αi+1,j−1 0 αi+1,j+1 . . . αi+1,n
...

...
...

...
...

αn,1 . . . αn,j−1 0 αn,j+1 . . . αn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Adding −αi,kei to column k does not change the determinant. Doing this for all k 6= j yields

cof αi,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1,1 . . . α1,j−1 0 α1,j+1 . . . α1,n
...

...
...

...
...

αi−1,1 . . . αi−1,j−1 0 αi−1,j+1 . . . αi−1,n

0 . . . 0 1 0 . . . 0
αi+1,1 . . . αi+1,j−1 0 αi+1,j+1 . . . αi+1,n

...
...

...
...

...
αn,1 . . . αn,j−1 0 αn,j+1 . . . αn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now by repeatedly interchanging columns a total of j − 1 times we obtain

cof αi,j = (−1)j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 α1,1 . . . α1,j−1 α1,j+1 . . . α1,n
...

...
...

0 αi−1,1 . . . αi−1,j−1 αi−1,j+1 . . . αi−1,n

1 0 . . . 0 0 . . . 0
0 αi+1,1 . . . αi+1,j−1 αi+1,j+1 . . . αi+1,n
...

...
...

0 αn,1 . . . αn,j−1 αn,j+1 . . . αn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Interchanging rows i − 1 times yields

cof αi,j = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0 . . . 0
0 α1,1 . . . α1,j−1 α1,j+1 . . . α1,n
...

...
...

0 αi−1,1 . . . αi−1,j−1 αi−1,j+1 . . . αi−1,n

0 αi+1,1 . . . αi+1,j−1 αi+1,j+1 . . . αi+1,n
...

...
...

0 αn,1 . . . αn,j−1 αn,j+1 . . . αn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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(Recall that (−1)j−1+i−1 = (−1)i+j .) This last determinant is block diagonal, so we see that it
is just

∣∣∣Ai,j

∣∣∣, which completes the proof.
The conclusion for rows follows from that for columns and Proposition 116 on transposes.

By repeatedly applying this result, we can express det A in terms of 1 × 1 determinants.
If we take the cofactors from an alien column or row, we have:

124 Lemma (Expansion by alien cofactors) Let A be a square n × n matrix. For any
column j and any k 6= j,

n∑
i=1

αi,j cof αi,k = 0.

Likewise for any row i and any k 6= i,
n∑

j=1
αi,j cof αk,j = 0.

Proof : Consider the matrix A1 = [α̃i,j ] obtained from A by replacing the kth column with
another copy of column j. Then the i, k cofactors, i = 1, . . . , n, of A and A1 are the same. (The
cofactors don’t depend on the column they belong to, since it is replaced by a unit coordinate
vector.) So by Lemma 123,

∣∣∣A1
∣∣∣ =

∑n
i=1 α̃i,k cof αi,k =

∑n
i=1 αi,j cof αi,k. But

∣∣∣A1
∣∣∣ = 0 since it

has two identical columns.
The conclusion for rows follows from that for columns and Proposition 116 on transposes.

The transpose of the cofactor matrix is also called the adjugate matrix of A. Combining
the previous two lemmas yields the following on the adjugate.

125 Theorem (Cofactors and the inverse matrix) For a square matrix

A =

α1,1 . . . α1,n
...

...
αn,1 . . . αn,n

 ,

we have α1,1 . . . α1,n
...

...
αn,1 . . . αn,n


cof α1,1 . . . cof αn,1

...
...

cof α1,n . . . cof αn,n

 =


∣∣∣A∣∣∣ 0

. . .
0

∣∣∣A∣∣∣

 .

That is, the product of A and its adjugate is (det A)In. Consequently, if det A 6= 0, then

A−1 = 1
det A

cof α1,1 . . . cof αn,1
...

...
cof α1,n . . . cof αn,n

 .
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Combining this with Corollary 121 yields the following.

126 Corollary (Determinants and invertibility) A square matrix is invertible if and
only if its determinant is nonzero.

Similar reasoning leads to the following theorem due to Jacobi. It expresses a pth order minor
of the adjugate in terms of the corresponding complementary minor of A. The complement
of the pth-order minor A

(i1,...,ip

j1,...,jp

)
is the n − pth-order minor obtained by deleting rows i1, . . . , ip

and columns j1, . . . , jp from A.

127 Theorem (Jacobi) For a square matrix

A =

α1,1 . . . α1,n
...

...
αn,1 . . . αn,n

 ,

we have for any 1 ⩽ p ⩽ n,

∣∣∣A∣∣∣ ·
∣∣∣∣∣∣∣
cof α1,1 . . . cof αp,1

...
...

cof α1,p . . . cof αp,p

∣∣∣∣∣∣∣ =
∣∣∣A∣∣∣p ·

∣∣∣∣∣∣∣
αp+1,p+1 . . . αp+1,n

...
...

αn,p+1 . . . αn,n

∣∣∣∣∣∣∣ .
Proof : Observe, recalling Theorem 124 on alien cofactors, that

α1,1 . . . α1,p α1,p+1 . . . α1,n
...

...
...

...
αp,1 . . . αp,p αp,p+1 . . . αp,n

αp+1,1 . . . αp+1,p αp+1,p+1 . . . αp1,n
...

...
...

...
αn,1 . . . αn,p αn,p+1 . . . αn,n





cof α1,1 . . . cof αp,1 0 . . . 0
...

...
...

...
cof α1,p . . . cof αp,p 0 . . . 0

cof α1,p+1 . . . cof αp,p+1 1 0
...

... . . .
cof α1,n . . . cof αn,n 0 1



=



∣∣∣A∣∣∣ 0 α1,p+1 . . . α1,n

. . . ...
...

0
∣∣∣A∣∣∣ αp,p+1 . . . αp,n

0 . . . 0 αp+1,p+1 . . . αp+1,n
...

...
...

...
0 . . . 0 αn,p+1 . . . αn,n


and take determinants on both sides.

12.4 Characteristic polynomials
The characteristic polynomial f of a square matrix A is defined by f(λ) = det (λI − A).
Roots of this polynomial are called characteristic roots of A.
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128 Lemma Every eigenvalue of a matrix is a characteristic root, and every real characteristic
root is an eigenvalue.

Proof : To see this note that if λ is an eigenvalue with eigenvector x 6= 0, then (λI − A)x =
λx − Ax = 0, so (λI − A) is singular, so det (λI − A) = 0. That is, λ is a characteristic root
of A.

Conversely, if det(λI − A) = 0, then there is some nonzero x with (λI − A)x = 0, or
Ax = λx.

129 Lemma The determinant of a square matrix is the product of its characteristic roots.

Proof : (Cf. [6, p. 106]) Let A be an n × n square matrix and let f be its characteristic polyno-
mial. Then f(0) = det (−A) = (−1)n det A. On the other hand, we can factor f as

f(λ) = (λ − λ1) · · · (λ − λn)

where λ1, . . . , λn are its characteristic roots. Thus f(0) = (−1)nλ1 · · · λn.

130 Corollary The determinant of a symmetric matrix is the product of its eigenvalues.

12.5 The determinant as an “oriented volume”
There is another interpretation of the determinant of an n × n matrix A. The unit coordinate
vectors e1, . . . , en determine a hypercube [0, 1]n in Rn of n-dimensional volume 1. The matrix
A maps the jth unit coordinate vector to the jth column Aj of A. These columns define a
parallelotope and det A is the volume of the parallelotope, perhaps multiplied by −1, depending
on the orientation of the columns. In any event, the area of the parallelotope is equal to |det A|.
So |det A| measures the effect that A has on volumes. (That is why the absolute value of
Jacobian determinants show up in change of variables formulas for integrals.) I don’t want to
go into detail on the notion of orientation, but I shall present enough so that you can get a
glimmer of what the assertion is.

First, what is a parallelotope? It is a polytope with parallel faces, for

0

x
y

x + y

example, a cube. The parallelotope generated by the vectors x1, . . . , xn is the
convex hull of zero and the vectors of the form xi1 + xi2 + · · · + xik

, where
1 ⩽ k ⩽ n and i1, . . . , in are distinct. For instance, in R2 the parallelotope
generated by x and y is the plane parallelogram with vertexes 0, x, y, and
x + y.

The notion of n-dimensional volume is straightforward. For n = 1, it is length, for n = 2, it
is area, etc. Oriented volume is more complicated. It distinguishes parallelotopes based on the
order that the vectors are presented. For instance, in the boxedfigure above the angle swept out
from x to y counterclockwise is positive, while from y to x is clockwise. The oriented volume
is positive in the first case and negative in the second.

Let’s start with a simple case, with vectors x and y in R2. To simply further, assume that

x lies on the horizontal axis, that is, x = (x1, 0). Then det(x, y) = det
[
x1 y1
0 y2

]
= x1y2. Now

consider the parallelogram generated by x and y. See Figure 4. As drawn, the base of the
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0 x

y x + y

Figure 4. The area of the parallelogram determined by x and y.

parallelogram has length x1 and its altitude is y2, so the area is x1y2. More generally, depending
on the quadrant that y lies in, the area is |x1y2|. If y2 > 0, then the area is equal to det A,
and if y2 < 0, then the area is − det A. The first case is where y lies counterclockwise from x,
and the second case is where y lies clockwise from x. So the oriented area in R2 depends on
the clockwise-counterclockwise notion of orientation. Higher dimensional orientation is more
complicated.

For more general vectors x in R2, we make us of the linear transformation of rotation.
There is an orthogonal matrix C such that Cx lies on the positive horizontal axis. Since
orthogonal matrices preserve distance and angles the area of the parallelogram generated by x
and y is the same as the area of the parallelogram generated by Cx and C. But the latter is
det(Cx, Cy) = det CA. But det CA = det C ·det A, and since C is orthogonal its determinant
is ±1. Thus the area of the parallelogram generated by x and y is |det(x, y)|.

12.6 Computing inverses and determinants by Gauss’ method
This section describes how to use the method of Gaussian elimination to find the inverse of a
matrix and to compute its determinant. Let A be an n × n invertible matrix, so that

AA−1 = I.

To find the jth column x = A−1j of A−1, recall from the definition of matrix multiplication
that x satisfies Ax = Ij , where Ij is the jth column of the identity matrix. Indeed if A is
invertible, then x is the unique vector with this property. Thus we can form the n × (n + 1)
augmented coefficient matrix (A|Ij) and use elementary row operations of Gaussian elimination
to transform it to (I|x) = (I|A−1j). The same sequence of row operations is employed to
transform A into I regardless of which column Ij we use to augment with. So we can solve
for all the columns simultaneously by augmenting with all the columns of I. That is, form the
n × 2n augmented matrix (A|I1, I2, . . . , In) = (A|I). If we can transform this by elementary
row operations into (I|X), it must be that X = A−1. Furthermore, if we cannot make the
transformation, then A is not invertible.

You may ask, how can we tell if we cannot transform A into I? Perhaps it is possible, but
we are not clever enough. To attack this question we must write down a specific algorithm.
So here is one version of an algorithm for inverting a matrix by Gaussian elimination, or else
showing that it is not invertible.

Let A0 = A. At each stage t we apply an elementary operation to transform
At−1 into At in such a way that

det At 6= 0 ⇐⇒ det A 6= 0.
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The rules for selecting the elementary row operation are described below. By stage
t = n, either At = I or else we shall have shown that det A = 0, so A is not
invertible.

Stage t: At stage t, assume that all the columns j = 1, . . . , t − 1 of At−1 have
been transformed into the corresponding columns of I, and that det A 6= 0 ⇐⇒
det At−1 6= 0.

Step 1: Normalize the diagonal to 1.
Case 1: at−1

t,t is nonzero. Divide row 1 by at−1
t,t to set at

t,t = 1. This has the side
effect of setting det At = at−1

t,t det At−1.
Case 2: at−1

t,t = 0, but there is row i with i > t for which at−1
i,t 6= 0. Divide row i

by at−1
i,t and add it to row 1. This sets at

t,t = 1, and leaves det At = det At−1.
Case 3: If at−1

t,t = 0, but there is no row i with i > t for which at−1
i,t 6= 0. In

this case, the first t columns of At−1 must be dependent. This is because there are
t column vectors whose only nonzero components are in the first t − 1 rows. This
implies det At−1 = 0, and hence det A = 0. This shows that A is not invertible.

If Case 3 occurs stop. We already know that A is not invertible. In cases 1 and
2 proceed to:

Step 2: Eliminate the off diagonal elements. Since at
t,t = 1, for i 6= t multiply

row 1 by at−1
i,t and subtract it from row i. This sets at

i,t = 0, for i 6= t, and does not
change det At.

This completes the construction of At from At−1. Proceed to stage t+1, and note
that all the columns j = 1, . . . , t of At have been transformed into the corresponding
columns of I, and that det A 6= 0 ⇐⇒ det At 6= 0.

Now observe how this also can be used to calculate the determinant. Suppose the process
runs to completion so that An = I. Every time a row was divided by its diagonal element at−1

t,t

to normalize it, we had det At = 1
at−1

t,t

det At−1. Thus we have

1 = det I = det An =
∏

t:at−1
t,t 6=0

1
at−1

t,t

det A

or
det A =

∏
t:at−1

t,t 6=0

at−1
t,t .

One of the virtues of this approach is that it is extremely easy to program, and reasonably
efficient. Each elementary row operation has at most 2n multiplications and 2n additions, and
at most n2 elementary row operations are required, so the number of steps grows no faster than
4n3.

Here are two illustrative examples, which, by the way, were produced (text and all) by a
475-line program written in perl of all things.

131 Example (Matrix inversion by Gaussian elimination) Invert the following 3 × 3
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matrix using Gaussian elimination and compute its determinant as a byproduct.

A =


0 0 1
0 1 0
1 0 0


We use only two elementary row operations: dividing a row by a scalar, which also divides the
determinant, and adding a multiple of one row to a different row, which leaves the determinant
unchanged. Thus the determinant of A is just the product of all the scalars used to divide the
rows of A to normalize its diagonal elements to ones. We shall keep track of this product in the
variable µ as we go along. At any given stage, µ times the determinant of the left hand block
is equal to the determinant of A. Before each step, we put a box around the target entry to be
transformed.

α1,1 is zero,

µ = 1


0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1


so add row 3 to row 1. To eliminate α3,1 = 1,

µ = 1


1 0 1 1 0 1
0 1 0 0 1 0
1 0 0 0 0 1


subtract row 1 from row 3. To normalize α3,3 = −1,

µ = 1


1 0 1 1 0 1
0 1 0 0 1 0
0 0 −1 −1 0 0


divide row 3 (and multiply µ) by −1. To eliminate α1,3 = 1,

µ = −1


1 0 1 1 0 1
0 1 0 0 1 0
0 0 1 1 0 0


subtract row 3 from row 1. This gives us

µ = −1


1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0


To summarize:

A =


0 0 1
0 1 0
1 0 0

 A−1 =


0 0 1
0 1 0
1 0 0


v. 2020.03.29::12.55



KC Border Quick Review of Matrix and Real Linear Algebra 60

And the determinant of A is −1. We could have gotten this result faster by interchanging
rows 1 and 3, but it is hard (for me) to program an algorithm to recognize when to do this. □

132 Example (Gaussian elimination on a singular matrix) Consider the following 3×3
matrix.

A =


1 1 2
2 4 4
3 6 6


We shall use the method of Gaussian elimination to attempt transform the augmented block

matrix
(
A|I

)
into

(
I|A−1). To eliminate α2,1 = 2,

µ = 1


1 1 2 1 0 0
2 4 4 0 1 0
3 6 6 0 0 1


multiply row 1 by 2 and subtract it from row 2. To eliminate α3,1 = 3,

µ = 1


1 1 2 1 0 0
0 2 0 −2 1 0
3 6 6 0 0 1


multiply row 1 by 3 and subtract it from row 3. To normalize α2,2 = 2,

µ = 1


1 1 2 1 0 0
0 2 0 −2 1 0
0 3 0 −3 0 1


divide row 2 (and multiply µ) by 2. To eliminate α1,2 = 1,

µ = 2


1 1 2 1 0 0
0 1 0 −1 1

2 0
0 3 0 −3 0 1


subtract row 2 from row 1. To eliminate α3,2 = 3,

µ = 2


1 0 2 2 −1

2 0
0 1 0 −1 1

2 0
0 3 0 −3 0 1


multiply row 2 by 3 and subtract it from row 3. Now notice that the first 3 columns of A
are dependent, as each column has at most its first 2 entries nonzero, and any 3 vectors in a
2-dimensional space are dependent.

µ = 2


1 0 2 2 −1

2 0
0 1 0 −1 1

2 0
0 0 0 0 −11

2 1


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Therefore A has no inverse, and the determinant of A is zero. (If we had interchanged columns 1
and 3, we would have arrived at this result sooner, but hindsight is hard to program.) □

133 Exercise Using the language of your choice, write a program to accept a square matrix
and invert it by Gaussian elimination, or stop when you find it is not invertible. □
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isomorphism, 7

Jacobi’s theorem on determinants, 55

kernel, 21

L(V, W ), 6, 7
ℓp, 3
left inverse, 22
linear combination, 4
linear dependence, 5
linear functional, 6

discontinuous, 20
linear independence, 5
linear operator, 6
linear space = vector space, 2
linear subspace, 4
linear transformation, 6

idempotent, 27
matrix representation of, 33

M(T ), matrix representation of T , 33
matrix, 30

characteristic polynomial, 47
determinant of, 48
diagonal, 31
identity, 31
inverse, 35
main diagonal, 31
nonsingular, 46
orthogonal, 39
product, 31
representation of a linear transformation,

33
scalar multiple of, 30
similarity of, 38, 43
singular, 46
sum, 30
trace, 41
transpose, 36
triangular, 31
zero, 31

metric, 7
minor, 52
minor determinant, 52
minor submatrix, 52

M(m, n), 4, 30
multilinear form, 47

alternating, 48
multiplication

of scalars, 1

norm, 8
null space, 21
nullity, 21

operator norm, 18
ordered basis, 7
orthogonal complement, 13
orthogonal matrix, 39

determinant of, 51
orthogonal projection, 15
orthogonal transformation, 25

is norm-preserving, 25
preserves inner products, 25

orthogonality, 11
orthonormality, 11

p-norm, 8
parallelogram law, 10
permutation, 49

signature, 49
Principal Axis Theorem, 39
principal minor of order p, 52
product, 1

quadratic form, 45
and eigenvalues, 45
definite, semidefinite, 45

Rm, 2
rank, 21
rational numbers, 1
real numbers, 1
real vector space, 2
right inverse, 22
row space, 30

scalar, 1
scalar addition, 1
scalars, 1
self-adjoint transformation, 26
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signature of a permutation, 49
similar matrices, 38, 43
skew-symmetric transformation, 26
span, 4
standard basis, 6
sum, 1
symmetric transformation, 26

Todd, John, 45n
topological dual, 6
topological vector space, 7
trace, 41
transpose, 23

unit coordinate vectors, 2

V ′, 6
V ∗, 6
vector, 2
vector space, 2

trivial, 2
vector subspace, 4
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