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Both Theorems 1 and 2 below have been described to me as Leibniz’ Rule.

1 The vector case
The following is a reasonably useful condition for differentiating a Riemann integral. The proof
may be found in Dieudonné [6, Theorem 8.11.2, p. 177]. One thing you have to realize is that
for Dieudonné a partial derivative can be taken with respect to a vector variable. That is, if
f : Rn × Rm where a typical element of Rn × Rm is denoted (x, z) with x ∈ Rn and y ∈ Rm.
The partial derivative Dxf is a Fréchet derivative with respect to x holding z fixed.

1 Theorem Let A ⊂ Rn be open, let I = [a, b] ⊂ R be a compact interval, and let f be a
(jointly) continuous mapping of A × I into R. Then

g(x) =
∫ b

a

f(x, t) dt

is continuous in A.
If in addition, the partial derivative Dxf exists and is (jointly) continuous on A × I, then g

is continuously differentiable on A and

g′(x) =
∫ b

a

Dx(x, t) dt.

The next, even more useful, result is listed as an exercise (fortunately with hint) by Dieudonné [6,
Problem 8.11.1, p. 177].

2 Leibniz’s Rule Under the hypotheses of Theorem 1, let α and β be two continuously
differentiable mappings of A into I. Let

g(x) =
∫ β(x)

α(x)
f(x, t) dt.

Then g is continuously differentiable on A and

g′(x) =
∫ β(x)

α(x)
Dxf(x, t) dt + f

(
x, β(x)

)
β′(x) − f

(
x, α(x)

)
α′(x).
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2 The measure space case
This section is intended for use with expected utility, where instead if integrating with respect
to a real parameter t as in Theorem 1, we integrate over an abstract probability space. So let
(Ω,F, µ) be a measure space, let A ⊂ Rn be open. We are interested in the properties of a
function g : A → R defined by

g(x) =
∫

Ω
f(x, ω) dµ(ω). (1)

We are particularly interested in when g is continuous or continuously differentiable. It seems
clear that in order for g to be defined, the function f must be measurable in ω, and in order for
g to stand a chance of being continuous, the function f needs to be continuous in x.

3 Definition Let (Ω,F, µ) be a measure space, let A be a topological space. We say that a
function f : A×Ω → R is a Carathéodory function if for each x ∈ A the mapping ω 7→ f(x, ω)
is F-measurable, and for each ω ∈ Ω the mapping x 7→ f(x, ω) is continuous. (Sometimes we
say that f is continuous in x and measurable in ω.)

In order for the function g defined by (1) to be finite-valued we need that for each x, the
function ω 7→ f(x, ω) needs to be integrable. But this is not enough for our needs we need the
following stronger property.

4 Definition The function f : A × Ω → R is locally uniformly integrably bounded if for
every x there is a nonnegative measurable function hx : Ω → R such that hx is integrable, that
is,

∫
Ω hx(ω) dP (ω) < ∞, and there exists a neighborhood Ux of x such that for all

for all y ∈ Ux,
∣∣f(y, ω)

∣∣ ⩽ hx(ω).

Note that since x ∈ Ux, if f is locally uniformly integrably bounded, then we also have that
ω 7→

∣∣f(x, ω)
∣∣ is integrable.

Note that if µ is a finite measure, and if f is bounded, then it is also locally uniformly
integrably bounded. The next result may be found, for instance, in [2, Theorem 24.5, p. 193],
Billingsley [4, Theorem 16.8, pp.181–182], or Cramér [5, ¶ II, p. 67–68].

5 Proposition Let (Ω,F, µ) be a measure space, let A ⊂ Rn be open, and let the function
f : A×Ω → R be a Carathéodory function. Assume further that f is locally uniformly integrably
bounded. Then the function g : A → R defined by

g(x) =
∫

Ω
f(x, ω) dµ(ω)

is continuous.

Suppose further that for each i and each ω, the partial derivative Dif(x, ω) with respect to
xi is a continuous function of x and Dif is locally uniformly integrably bounded. Then g is
continuously differentiable and

Dig(x) =
∫

Ω
Dif(x, ω) dµ(ω).

Proof : First we deal with continuity. Since f is locally uniformly integrably bounded, for each x
there is a nonnegative integrable function hx : Ω → R, and a neighborhood Ux of x such that
for all y ∈ Ux, we have

∣∣f(y, ω)
∣∣ ⩽ hx(ω). Then

∣∣g(x)
∣∣ ⩽

∫
Ω hx(ω) dµ(ω) < ∞. Now suppose
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xn → x. Since f is continuous in x, f(xn, ω) → f(x, ω) for each ω. Eventually xn belongs to
Ux, so for large enough n,

∣∣f(xn, ω)
∣∣ ⩽ hx(ω). Then by the Dominated Convergence Theorem,1

g(xn) =
∫

Ω
f(xn, ω) dµ(ω) →

∫
Ω

f(x, ω) dµ(ω) = g(x).

That is, g is continuous.

For continuous differentiability, start by observing that Dif(x, ω) is measurable in ω and
hence a Carathéodory function. To see this, recall that

Dif(x, ω) = lim
t→0

f(x + tei, ω) − f(x, ω)
t

.

For each t, the difference quotient is a measurable function of ω, so its limit is measurable as
well.

Assume that Dif(x, ω) is uniformly bounded by the integrable hx(ω) on a neighborhood Ux

of x. Let ei denote the ith unit coordinate vector. By the Mean Value Theorem,2 for each ω
and for each nonzero t there is a point ξ(t, ω) belonging to the interior of the segment joining x
and x + tei with

f(x + tei, ω) − f(x, ω) = tDif
(
ξ(t, ω), ω

)
.

Since both functions on the left hand side are measurable, the right-hand side is also a measurable
function of ω. 3 For |t| small enough, since ξ(t, ω) lies between x and x + tei, we must have that
ξ(t, ω) ∈ Ux, so ∣∣tDif

(
ξ(t, ω), ω

)∣∣ ⩽ hx(ω).

Now

g(x + tei) − g(x) =
∫

Ω
f(x + tei, ω) − f(x, ω) dµ(ω) =

∫
Ω

tDif
(
ξ(t, ω), ω

)
dµ(ω).

As t → 0, we have ξ(t, ω) → x, so Di

(
ξ(t, ω), ω

)
→ Dif(x, ω) for each ω. Dividing by t and

applying the Dominated Convergence Theorem yields

Dig(x) = lim
t→0

g(x + tei) − g(x)
t

=
∫

Ω
Dif(x, ω) dµ(ω).

The proof of continuity of Dig is the same as the proof of continuity of g.

3 An application to expected utility
The previous section dealt directly with a function f defined on the Cartesian product of a
subset of Rn and a measurable space Ω. In practice the dependence on Ω is often via a random
vector, which allows for conditions that easier to understand. Here is a common application of
these results. See, for instance, Hildreth [9], who refers the reader to Hildreth and Tesfatsion [10]
for proofs.

1See, for example, Royden [12, Theorem 16, p. 267] or Aliprantis and Border [1, Theorem 11.21, p. 415].
2See, for instance, Apostol [3, Theorem 4.5, p. 185]. It is also sometimes known as Darboux’s Theorem.
3In fact, by the Stochastic Taylor’s Theorem 8 below we can show that ω 7→ ξ(t, ω) can be taken to be

measurable with respect to ω. But that theorem requires a lot of high-powered machinery for its proof, and
contrary to my initial instincts we don’t need it for our purposes.
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6 Corollary Let I be an interval of the real line with interior I◦, and let u : I → R be strictly
increasing, continuous, and concave on I, and twice continuously differentiable on I◦. Let
(Ω,F, P ) be a probability space, and let x, y : Ω → R be measurable functions (random vari-
ables). Let A be an open interval of the real line, and assume that for all α ∈ A and almost all
ω ∈ Ω that

x(ω) + αy(ω) ∈ I◦.

In addition, assume that for each α ∈ A that∫
Ω

∣∣u(
x(ω) + αy(ω)

)∣∣ dP (ω) < ∞, (ii)∫
Ω

∣∣u′(x(ω) + αy(ω)
)
y(ω)

∣∣ dP (ω) < ∞, (iii)∫
Ω

∣∣u′′(x(ω) + αy(ω)
)
y2(ω)

∣∣ dP (ω) < ∞. (iv)

Define the function
g(α) =

∫
Ω

u
(
x(ω) + αy(ω)

)
dP (ω).

Then g is continuously differentiable, and

g′(α) =
∫

Ω
u′(x(ω) + αy(ω)

)
y(ω) dP (ω). (1)

If in addition u′′ is (weakly) increasing,4 then g is twice continuously differentiable and

g′′(α) =
∫

Ω
u′′(x(ω) + αy(ω)

)
y2(ω) dP (ω). (2)

Proof : Since u is concave, u′ is (weakly) decreasing, and u′′ ⩽ 0. It also follows that u′ > 0 on
I◦.5 Define f : A × Ω → R by

f(α, ω) = u
(
x(ω) + αy(ω)

)
.

Then f is clearly a Carathéodory function. In order to apply Proposition 5, we need to show
that f and D1f are locally uniformly integrably bounded. So let ᾱ ∈ A and choose δ > 0 so
that A′ = [ᾱ − δ, ᾱ + δ] ⊂ A. Since u is strictly increasing,∣∣f(α, ω)

∣∣ ⩽ ∣∣f(ᾱ − δ, ω)
∣∣ +

∣∣f(α + δ, ω)
∣∣ = hᾱ(ω)

for all α ∈ A′. By (ii), hᾱ is integrable. Thus f is uniformly locally integrably bounded, so g
continuous.

Similarly, since u′ is decreasing∣∣D1f(α, ω)
∣∣ ⩽ ∣∣D1f(ᾱ − δ, ω)

∣∣ +
∣∣D1f(α + δ, ω)

∣∣
for all α ∈ A′, so (iii) implies D1f is uniformly locally integrably bounded and the same reasoning
implies that g′ is continuous and satisfies (1). You can now see how the remainder of the theorem
is proven.

4This condition is known as prudence in the expected utility literature, as it implies a desire to save more
in the face of increased risk. For the purposes of twice differentiability of g, we could have assumed that u′′ is
weakly decreasing, but there is no convincing economic interpretation of that condition.

5Since u is strictly increasing, u′ ⩾ 0 and it cannot attain a maximum on I◦. But for concave u, the condition
u′ = 0 implies a maximizer. Thus u′ > 0.
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4 An illustrative (counter)example
To get an idea of what these conditions mean, consider the following example, taken from
Gelbaum and Olmsted [7, Example 9.15, p. 123].

7 Example The following example shows what can go wrong when the hypotheses of the pre-
vious theorems are violated.

Define f : R × R+ → R via

f(x, t) =


x3

t2 e−x2/t t > 0,

0 t = 0.

First observe that for fixed t the function x 7→ f(x, t) is continuous at each x, and for each
fixed x the function t 7→ f(x, t) is continuous at each t, including t = 0. (This is because the
exponential term goes to zero much faster than the polynomial term goes to zero as t → 0.) The
function is not jointly continuous though. On the curve t = x2 we have f(x, t) = e−1/x, which
diverges to ∞ as x ↓ 0 and diverges to −∞ as x ↑ 0. See Figure 1.

Define

g(x) =
∫ 1

0
f(x, t) dt

= x3
∫ 1

0

1
t2 e−x2/t dt.

Consulting a table of integrals if necessary, we find the indefinite integral
∫ 1

t2 e−a/t dt = e−a/t/a.
Thus, letting a = x2 we have

g(x) = xe−x2

This holds for all x ∈ R. Consequently

g′(x) = (1 − 2x2)e−x2

again for all x.
Now let’s compute ∫ 1

0
D1f(x, t) dt.

For t = 0, f(x, t) = 0 for all x, so D1f(x, 0) = 0. For t > 0, we have

D1f(x, t) = 3x2

t2 e−x2/t + x3

t2 e−x2/t(−2x/t)

= e−x2/t
(3x2

t2 − 2x4

t3

)
.

So

D1f(x, t) =

e−x2/t
(

3x2

t2 − 2x4

t3

)
t > 0

0 t = 0.

v. 2016.12.25::15.02
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Note that for fixed x the limit of D1f(x, t) as t ↓ 0 is zero, so for each fixed x, D1f(x, t) is
continuous in t. But again, along the curve t = x2, we have D1f(x, t) = e−1(

3x−2 − 2x−2)
=

−e−1/x2 which diverges to ∞ as x → 0. Thus D1f(x, t) is not continuous at (0, 0). See Figure 2.
The integral

I(x) =
∫ 1

0
e−x2/t

(3x2

t2 − 2x4

t3

)
dt

satisfies I(0) = 0 and for x > 0 it can be computed as∫ 1

0
D1f(x, t) dt =

∫ 1

0
e−x2/t

(3x2

t2 − 2x4

t3

)
dt

= 3x2
∫ 1

0

1
t2 e−x2/t dt − 2x4

∫ 1

0

1
t3 e−x2/t dt

so dividing by x2 ̸= 0,

= 3e−x2/t
∣∣∣t=1

t=0
− 2e−x2/t

(
1 + x2

t

)∣∣∣t=1

t=0

= (1 − 2x2)e−x2

which holds for all x > 0.
Thus at x = 0, we have

g′(0) = (1 − 2 · 02)e−02
= 1 ̸= 0 = I(0) =

∫ 1

0
D1f(0, t) dt.

The remarks above show that f and D1f(x, t) fail to be continuous at (0, 0) so this example
does not violate Leibniz’ Rule. How does it compare to the hypotheses of Proposition 5?

In this example t plays the role of ω in Proposition 5, so locally uniform integrability re-
quires that for each x there is an integrable function hx and a neighborhood Ux such that
supy∈Ux

∣∣D1f(y, t)
∣∣ ⩽ hx(t). Let’s check this for x = 0. We need to find a δ > 0 so that |y| < δ

implies |D1f(y, t)| ⩽ h0(t). Now for t > 0,

D1f(y, t) = e−y2/t
(3y2

t2 − 2y4

t3

)
.

Looking at points of the form y =
√

t, we see that h0(t) must satisfy

h0(t) ⩾ D1f(
√

t, t) = e−1
(3

t
− 2

t

)
= e−1/t,

which is not integrable over any interval (0, ε), so the hypotheses of Proposition 5 are also
violated by this example. □

5 A Stochastic version of Taylor’s Theorem
I used to think the following sort of result was necessary in the proof of Proposition 5, but I was
wrong. But I spent a lot of effort figuring out the machinery needed to prove it, so I’m sharing
it with you.

v. 2016.12.25::15.02
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8 Stochastic Taylor’s Theorem Let h : [a, b] → R be continuous and possess a continuous
nth-order derivative on (a, b). Fix c ∈ [a, b] and let X be a random variable on the probability
space (S, S, P ) such that c + X ∈ [a, b] almost surely. Then there is a (measurable) random
variable ξ satisfying ξ(s) ∈ [0, X(s)] for all s (where [0, X(s)] is the line segment joining 0 and
X(s), regardless of the sign of X(s)), and

h
(
c + X(s)

)
= h(c) +

n−1∑
k=1

1
k!

h(k)(c)Xk(s) + 1
n!

h(n)(c + ξ(s)
)
Xn(s).

Proof : (See [1, Theorem 18.18, p. 603].) Taylor’s Theorem without remainder (see, for instance,��
Landau [11, Theorem 177, p. 120] or Hardy [8, p. 286]) is a generalization of the Mean Value
Theorem that asserts that there is such a ξ(s) for each s, the trick is to show that there is a
measurable version. To this end define the correspondence φ : S ↠ R by φ(s) = [0, X(s)]. It
follows from [1, Theorem 18.5, p. 595] that φ is measurable and it clearly has compact values.
Set g(s) = h

(
c + X(s)

)
− h(c) −

∑n−1
k=1

1
k! h

(k)(c)Xk(s), f(s, x) = 1
n! h

(n)(c + x
)
Xn(s). Then

g is measurable and f is a Carathéodory function. (See section 4.10 of [1] for the definition
of measurable correspondences.) By Filippov’s Implicit Function Theorem [1, Theorem 18.17,
p. 603] there is a measurable function ξ such that for all s, ξ(s) ∈ φ(s) and f

(
s, ξ(s)

)
= g(s),

and we are done.
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Figure 1. Plots of x3

t2 e−x2/t.
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