Caltech Division of the Humanities and Social Sciences

Introduction to Point-Set Topology

KC Border v. 2018.10.03::13.35

Abstract

These notes are gathered from several of my other handouts, and are a terse introduction to the topological concepts used in economic theory. For further study I recommend Willard [4] and Wilanksy [3]. You may also be interested in my on-line notes on metric spaces [2].

Contents

1	Topological spaces	1
2	Relative topologies	2
3	Neighborhoods, interiors, closed sets, closures	2
4	Bases	3
5	Product topology	3
6	Continuous functions	3
7	Homeomorphisms	4
8	Compactness	4
9	Topological vector spaces	6

1 Topological spaces

You should know that the collection of open subsets of \mathbf{R}^{m} is closed under finite intersections and arbitrary unions. Use that as the motivation for the following definition.

1 Definition A topology τ on a nonempty set X is a family of subsets of X, called **open** sets satisfying

1. $\emptyset \in \tau$ and $X \in \tau$.

- 2. The family τ is closed under finite intersections. That is, if U_1, \ldots, U_m belong to τ , then $\bigcap_{i=1}^m U_i$ belongs to τ .
- 3. The family τ is closed under arbitrary unions. That is, if U_{α} , $\alpha \in A$, belong to τ , then $\bigcup_{\alpha \in A} U_{\alpha}$ belongs to τ .

The pair (X, τ) is a **topological space**.

The topology τ is a **Hausdorff** topology if for every two distinct points x, y in X there are disjoint open sets U, V with $x \in U$ and $y \in V$.

The collection of open sets in \mathbb{R}^{m} is a Hausdorff topology. A property of X that can be expressed in terms of its topology is called a topological property.

2 Relative topologies

2 Definition (Relative topology) If (X, τ) is a topological space and $A \subset X$, then (A, τ_A) is a topological space with its **relative topology**, where $\tau_A = \{G \cap A : G \in \tau\}$.

Not that if τ is a Hausdorff topology, then τ_A is also a Hausdorff topology.

3 Neighborhoods, interiors, closed sets, closures

3 Definition The set A is a **neighborhood** of x if there is an open set U satisfying $x \in U \subset A$. We also say that x is an **interior point** of A.

The interior of A, denoted int A, is the set of interior points of A.

4 Lemma A set is open if and only it is a neighborhood of each of it points.

Proof: Clearly an open set is a neighborhood of each of its points. So assume the set G is a neighborhood of each of it points. That is, for each $x \in G$ there is an open set U_x satisfying $x \in U_x \subset G$. Then $G = \bigcup_{x \in G} U_x$ is open, being a union open sets.

5 Exercise The interior of any set A is open (possibly empty), and is indeed the largest open set included in A.

6 Definition A set is closed if its complement is open.

The closure of a set A, denoted \overline{A} or cl A, is the intersection of all the closed sets that include A.

7 Exercise The union of finitely many closed sets is closed and the intersection of an arbitrary family of closed sets is closed. \Box

8 Exercise The closure of A is the smallest closed set that includes A. \Box

9 Lemma A point x is not in \overline{A} , that is, $x \in (\overline{A})^c$, if and only if there is an open neighborhood U of x disjoint from A.

3

Proof: (\Leftarrow) If $x \in U$, where U is open and $U \cap A = \emptyset$, then the complement U^c is a closed set including A^c , so by definition $\overline{A^c} \subset U^c$. Thus $x \notin \overline{A^c}$.

 (\Longrightarrow) Since \overline{A} is closed, if $x \notin \overline{A}$, then $(\overline{A})^c$ is an open neighborhood of x disjoint from \overline{A} , so a fortiori disjoint from A.

10 Definition The **boundary** of a set A, denoted ∂A , is $\overline{A} \cap \overline{A^c}$.

11 Corollary $\partial A = \overline{A} \setminus \operatorname{int} A$.

Proof: By Lemma 9, int $A = (\overline{A^c})^c$. Thus $\overline{A} \setminus \operatorname{int} A = \overline{A} \cap \overline{A^c} = \partial A$.

4 Bases

12 Definition A family \mathcal{G} of open sets is a **base** (or basis) for the topology τ if every open set in τ is a union of sets from \mathcal{G} . A **neighborhood base at** x is a collection \mathbb{N} of neighborhoods of x such that for every neighborhood G of x there is a neighborhood U of x belong to \mathbb{N} satisfying $x \in U \subset G$.

In a metric space, the collection of open balls $\{B_{\varepsilon}(x) : \varepsilon > 0, x \in X\}$ is base for the metric topology, and $\{B_{1/n}(x) : n > 0\}$ is a neighborhood base at x.

Given a nonempty family \mathcal{A} of subsets of X there is a smallest topology $\tau_{\mathcal{A}}$ on X that includes \mathcal{A} , called the **topology generated by** \mathcal{A} . It consists of arbitrary unions of finite intersections of members of \mathcal{A} . If \mathcal{A} is closed under finite intersections, then \mathcal{A} is a base for the topology $\tau_{\mathcal{A}}$.

5 Product topology

13 Definition If X and Y are topological spaces, the collection sets of the form $U \times V$, where U is an open set in X and V is an open set in Y, is closed under finite intersections, so it is a base for the topology it generates on $X \times Y$, called the **product topology**.

6 Continuous functions

14 Definition Let X and Y be topological spaces and let $f: X \to Y$. Then f is **continuous** if the inverse image of open sets are open. That is, if U is an open subset of Y, then $f^{-1}(U)$ is an open subset of X.

This corresponds to the usual ε - δ definition of continuity that you are familiar with.

15 Lemma A function $f: X \to Y$ is continuous if and only if the inverse image of every closed set is closed.

16 Lemma If $f: X \to Y$ is continuous, then for every $A \subset X$, we have $f(\overline{A}) \subset \overline{f(A)}$.

Proof: Since f is continuous and $\overline{f(A)}$ is closed, $f^{-1}(\overline{f(A)})$ is a closed set that clearly includes

A, and so includes its closure \overline{A} . That is, $\overline{A} \subset f^{-1}(\overline{f(A)})$, so $f(\overline{A}) \subset f(f^{-1}(\overline{f(A)})) = \overline{f(A)}$.

KC Border

7 Homeomorphisms

17 Definition Let X and Y be topological spaces. A function $f: X \to Y$ is a **homeomorphism** if it is a bijection (one-to-one and onto), is continuous, and its inverse is continuous.

If f is homeomorphism $U \leftrightarrow f(U)$ is a one-to-one correspondence between the topologies of X and Y. Thus X and Y have the same topological properties. They can in effect be viewed as the same topological space, where f simply renames the points.

8 Compactness

Let K be a subset of a topological space. A family \mathcal{A} of sets is a **cover** of K if

$$K \subset \bigcup_{A \in \mathcal{A}} A.$$

If each set in the cover \mathcal{A} is open, then \mathcal{A} is an **open cover** of K. A family \mathcal{B} of sets is a **subcover** of \mathcal{A} if $\mathcal{B} \subset \mathcal{A}$ and $K \subset \bigcup_{A \in \mathcal{B}} A$.

For example, let K be a subset of \mathbf{R} , and for each $x \in K$, let $\varepsilon_x > 0$. Then the family $\mathcal{A} = \{(x - \varepsilon_x, x + \varepsilon_x) : x \in K\}$ of open intervals is a open cover of K.

18 Definition A set K in a topological space X is **compact** if for every family \mathcal{G} of open sets satisfying $K \subset \cup \mathcal{G}$ (an **open cover** of K), there is a finite subfamily $\{G_1, \ldots, G_k\} \subset \mathcal{G}$ with $K \subset \bigcup_{i=1}^k G_i$ (a **finite subcover** of K).

19 Lemma If (X, τ) is a topological space and $K \subset A \subset X$, then K is a compact subset of (A, τ_A) if and only if it is a compact subset of (X, τ) .

Proof: Assume K is a compact subset of (X, τ) . Let \mathcal{G} be a τ_A -open cover of K in A. For each $G \in \mathcal{G}$ there is some $U_G \in \tau$ with $G = U_G \cap A$. Then $\{U_G : G \in \mathcal{G}\}$ is a τ -open cover of K in X, so it has a finite subcover U_{G_1}, \ldots, U_{G_k} . But then G_1, \ldots, G_k is a finite subcover of K in A.

The converse is similar.

There is an equivalent characterization of compact sets that is sometimes more convenient. A family \mathcal{A} of sets has the **finite intersection property** if every finite subset $\{A_1, \ldots, A_n\}$ of \mathcal{A} has a nonempty intersection, $\bigcap_{i=1}^n A_i \neq \emptyset$.

20 Theorem A set K is compact if and only if every family of closed subsets of K having the finite intersection property has a nonempty intersection.

Proof: Start with this observation: Let \mathcal{A} be an arbitrary family of subsets of K, and define $\overline{\mathcal{A}} = \{K \setminus A : A \in \mathcal{A}\}$. By de Morgan's Laws $\bigcap_{A \in \mathcal{A}} A = \emptyset$ if and only if $K = \bigcup_{B \in \overline{\mathcal{A}}} B$. That is, \mathcal{A} has an empty intersection if and only if $\overline{\mathcal{A}}$ covers K.

 (\Longrightarrow) Assume K is compact and let \mathcal{F} be a family of closed subsets of K. Then $\overline{\mathcal{F}}$ is a family of relatively open sets of K. If \mathcal{F} has the finite intersection property, by the above observation, no finite subset of $\overline{\mathcal{F}}$ can cover K. Since K is compact, this implies that $\overline{\mathcal{F}}$ itself cannot cover K. But then by the observation \mathcal{F} has nonempty intersection. KC Border

5

 (\Leftarrow) Assume that every family of closed subsets of K having the finite intersection property has a nonempty intersection, and let \mathcal{G} be an open cover of K. Then $\overline{\mathcal{G}}$ is a family of closed having an empty intersection. Thus $\overline{\mathcal{G}}$ cannot have the finitie intersection property, so there is a finite subfamily $\overline{\mathcal{G}_0}$ of $\overline{\mathcal{G}}$ with empty intersection. But then $\overline{\overline{\mathcal{G}_0}}$ is a finite subfamily of \mathcal{G} that covers K. Thus K is compact.

21 Lemma A closed subset of a compact set is compact.

Proof: Let K be compact and $F \subset K$ be closed. Let \mathcal{G} be an open cover of F. Then $\mathcal{G} \cup \{F^c\}$ is an open cover of K. Let $\{G_1, \ldots, G_k, F^c\}$ be a finite subcover of K. Then $\{G_1, \ldots, G_k\}$ is a finite subcover of F.

22 Lemma A compact subset of a Hausdorff space is closed.

Proof: Let K be compact, and let $x \notin K$. Then by the Hausdorff property, for each $y \in K$ there are disjoint open sets U_y and V_y with $y \in U_y$ and $x \in V_y$. By compactness there are y_1, \ldots, y_k with $K \subset \bigcup_{i=1}^k U_{y_i} = U$. Then $V = \bigcap_{i=1}^k V_{y_i}$ is an open set satisfying $x \in V \subset U^c \subset K^c$. That is, K^c is a neighborhood of x. Since x is an arbitrary member of K^c , we see that K^c is open (Lemma 4), so K is closed.

23 Lemma Let $f: X \to Y$ be continuous. If K is a compact subset of X, then f(K) is a compact subset of Y.

Proof: Let \mathcal{G} be an open cover of f(K). Then $\{f^{-1}(G) : G \in \mathcal{G}\}$ is an open cover of K. Let $\{f^{-1}(G_1), \ldots, f^{-1}(G_k)\}$ be a finite subcover of K. Then $\{G_1, \ldots, G_k\}$ is a finite subcover of f(K).

24 Lemma Let $f: X \to Y$ be one-to-one and continuous, where Y is a Hausdorff space and X is compact. The $f: X \to f(X)$ is a homeomorphism, where f(X) has its relative topology as a subset of Y.

Proof: We need to show that the function $f^{-1}: f(X) \to X$ is continuous. So let G be any open subset of X. We must show that $(f^{-1})^{-1}(G) = f(G)$ is open in f(X). Now G^c is a closed subset of X, and thus compact. Therefore $f(G^c)$ is compact, and since Y is Hausdorff, so is f(X), so $f(G^c)$ is a closed subset of Y. Now $f(X) \cap f(G^c)^c = f(G)$, so f(G) is open in f(X).

25 Weierstrass's Theorem If K is compact and $f: K \to \mathbf{R}$ is continuous, then there exists a point x^* in K that maximizes f. That is, $(\forall x \in K) [f(x^*) \ge f(x)]$.

Proof: Since f is continuous, $F_{\alpha} = \{x \in K : f(x) \ge \alpha\} = f^{-1}([\alpha, \infty))$ is closed for each $\alpha \in \mathbf{R}$, as inverse images of closed sets are closed for a continuous function. Let $A = \{f(x) : x \in K\}$ denote the range of f. Then $\mathcal{F} = \{f_{\alpha} : \alpha \in A\}$ is family of nonempty closed subsets of K having the finite intersection property.¹ Since K is compact, $M = \bigcap_{\alpha \in A} F_{\alpha}$ is nonempty. Let x^* belong to M and let x be any point in K. Set $\alpha = f(x)$. Then $x^* \in F_{\alpha}$, which means that $f(x^*) \ge \alpha = f(x)$. That is, x^* maximizes f over K.

¹Let $\alpha = \max\{\alpha_1, \ldots, \alpha_n\}$. Then $F_\alpha = F_{\alpha_1} \cap \cdots \cap F_{\alpha_n}$, and $F_\alpha \neq \emptyset$ since α belongs to A, the range of f.

Note that this proof works if we only assume that each F_{α} is closed, that is, that f is **upper** semicontinuous.

The following result is well known.

26 Heine–Borel–Lebesgue Theorem A subset of \mathbf{R}^{m} is compact if and only if it is both closed and bounded in the Euclidean metric.

This result is special. In general, a subset of a metric space may be closed and bounded without being compact. (Consider the coordinate vectors in ℓ_{∞} .)

9 Topological vector spaces

For a detailed discussion of topological vector spaces, see chapter five of the Hitchhiker's Guide [1]. But here are some of the results we will need.

27 Definition A (real) **topological vector space** is a vector space X together with a topology τ where τ has the property that the mappings scalar multiplication and vector addition are continuous functions. That is, the mappings

$$(\alpha, x) \mapsto \alpha x$$

from $\mathbf{R} \times X$ to X and

$$(x,y) \mapsto x+y$$

from $X \times X$ to X are continuous. (Where, of course, **R** has its usual topology, and $\mathbf{R} \times X$ and $X \times X$ have their product topologies.)

28 Lemma If V is open, then V + y is open.

Proof: Since $f: x \mapsto x - y$ is continuous, $V + y = f^{-1}(V)$ is open.

29 Lemma If V is open, and $\alpha \neq 0$, then αV is open.

Proof: Since $f: x \mapsto (1/\alpha)x$ is continuous, $\alpha V = f^{-1}(V)$ is open.

30 Definition A set C in a vector space is **circled** or **radial** if $\alpha C \subset C$ whenever $|\alpha| \leq 1$.

31 Lemma Let V be a neighborhood of zero. Then there is an open circled neighborhood U of zero included in V.

Proof: The mapping $f: (\alpha, x) \mapsto \alpha x$ is continuous, and f(0, 0) = 0, the inverse image $f^{-1}(V)$ is a neighborhood of 0. Thus there is an $\delta > 0$ and an open neighborhood W of 0 such that $(-\delta, \delta) \times W \subset f^{-1}(V)$. This implies that for any α with $|\alpha| < \delta$ and $x \in W$, we have $\alpha x \in V$. In other words $\alpha W \subset V$. Set

$$U = \bigcup_{\alpha: 0 < |\alpha| < \delta} \alpha W$$

Then $U \subset V$, U is circled, and U is open, being the union of the open sets αW .

v. 2018.10.03::13.35

KC Border

32 Lemma Let $T: X \to Y$ be a linear transformation between topological vector spaces. Then T is continuous on X if it is continuous at 0.

Proof: It suffices to prove that T is continuous at each point x. So let V be an open neighborhood of T(x). Then V - T(x) is an open neighborhood of 0. Since T is continuous at 0, the inverse image $T^{-1}(V - T(x))$, is a neighborhood of 0, so $T^{-1}(V - T(x)) + x$ is a neighborhood of x. But by linearity, $T^{-1}(V - T(x)) + x = T^{-1}(V)$, and we are done.

References

- C. D. Aliprantis and K. C. Border. 2006. Infinite dimensional analysis: A hitchhiker's guide, 3d. ed. Berlin: Springer-Verlag.
- [2] K. C. Border. 2013. What to remember about metric spaces. http://www.its.caltech.edu/~kcborder/Notes/MetricSpaces.pdf
- [3] A. Wilansky. 1998. Topology for analysis. Mineola, NY: Dover. Unabridged republication of the work originally published by Ginn and Company, Waltham, MA in 1970.
- [4] S. Willard. 1970. General topology. Reading, Massachusetts: Addison Wesley.