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Abstract

These notes are gathered from several of my other handouts, and are a terse introduc-
tion to the topological concepts used in economic theory. For further study I recommend
Willard [1] and Wilanksy [3]. You may also be interested in my on-line notes on metric

spaces [2].
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1 Topological spaces

You should know that the collection of open subsets of R™ is closed under finite intersections
and arbitrary unions. Use that as the motivation for the following definition.

1 Definition A topology T on a nonempty set X is a family of subsets of X, called open
sets satisfying

1. derTand X €.
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2. The family T is closed under finite intersections. That is, if Uy,...,U,, belong to T, then
N2, U; belongs to .

3. The family 7 is closed under arbitrary unions. That is, if U,, o € A, belong to 7, then
Uaea Ua belongs to .

The pair (X, 7) is a topological space.
The topology T is a Hausdorff topology if for every two distinct points x,y in X there are
disjoint open sets U, V with x € U andy € V.

The collection of open sets in R™ is a Hausdorff topology. A property of X that can be
expressed in terms of its topology is called a topological property.

2 Relative topologies

2 Definition (Relative topology) If (X,7) is a topological space and A C X, then (A, T4)
is a topological space with its relative topology, where T4 = {GNA:G € 7}.

Not that if 7 is a Hausdorff topology, then 74 is also a Hausdorff topology.

3 Neighborhoods, interiors, closed sets, closures

3 Definition The set A is a neighborhood of x if there is an open set U satisfyingx € U C A.
We also say that x is an interior point of A.
The interior of A, denoted int A, is the set of interior points of A.

4 Lemma A set is open if and only it is a neighborhood of each of it points.

Proof: Clearly an open set is a neighborhood of each of its points. So assume the set G is a
neighborhood of each of it points. That is, for each x € G there is an open set U, satisfying
x €U, CG. Then G = |J,¢q U, is open, being a union open sets. |

5 Exercise The interior of any set A is open (possibly empty), and is indeed the largest open
set included in A. a

6 Definition A set is closed if its complement is open.
The closure of a set A, denoted A or cl A, is the intersection of all the closed sets that

include A.

7 Exercise The union of finitely many closed sets is closed and the intersection of an arbitrary
family of closed sets is closed. O

8 Exercise The closure of A is the smallest closed set that includes A. O

9 Lemma A point x is not in A, that is, x € (A)¢, if and only if there is an open neighborhood U
of x disjoint from A.
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Proof: (<) Ifxz €U, where U is open and U N A = &, then the complement U€ is a closed
set including A¢, so by definition A¢ C U¢. Thus = ¢ A°.

(=) Since A is closed, if z ¢ A, then (A4)¢ is an open neighborhood of z disjoint from
A, so a fortiori disjoint from A. |

10 Definition The boundary of a set A, denoted A, is AN Ac.

11 Corollary A = A\ int A.
Proof: By Lemma 9, int A = (A°)¢. Thus A\ int A = AN Ac = 9A. |

4 Bases

12 Definition A family G of open sets is a base (or basis) for the topology T if every open set
in T is a union of sets from §. A neighborhood base at x is a collection N of neighborhoods
of x such that for every neighborhood G of x there is a neighborhood U of x belong to N
satisfying x € U C G.

In a metric space, the collection of open balls {B:(z) : € > 0, = € X} is base for the metric
topology, and {By/,(z) : n > 0} is a neighborhood base at z.

Given a nonempty family A of subsets of X there is a smallest topology 74 on X that
includes A, called the topology generated by A. It consists of arbitrary unions of finite
intersections of members of A. If A is closed under finite intersections, then A is a base for the

topology 7.

5 Product topology

13 Definition If X and Y are topological spaces, the collection sets of the form U x V', where
U is an open set in X and V is an open set in Y, is closed under finite intersections, so it is a
base for the topology it generates on X x Y, called the product topology.

6 Continuous functions

14 Definition Let X and Y be topological spaces and let f: X — Y. Then f is continuous
if the inverse image of open sets are open. That is, if U is an open subset of Y, then f~Y(U) is
an open subset of X.

This corresponds to the usual -6 definition of continuity that you are familiar with.

15 Lemma A function f: X — Y is continuous if and only if the inverse image of every closed
set is closed.

16 Lemma If f: X — Y is continuous, then for every A C X, we have f(A) C f(A).

Proof: Since f is continuous and f(A) is closed, f~ Lf(A )) is a closed set that clearly includes

A, and so includes its closure A. That is, A C f~1(f(A)), so ) C f(f LfA ))) =f(A). 1
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7 Homeomorphisms

17 Definition Let X and Y be topological spaces. A function f: X — Y is a homeomor-
phism if it is a bijection (one-to-one and onto), is continuous, and its inverse is continuous.

If f is homeomorphism U < f(U) is a one-to-one correspondence between the topologies of
X and Y. Thus X and Y have the same topological properties. They can in effect be viewed
as the same topological space, where f simply renames the points.

8 Compactness
Let K be a subset of a topological space. A family A of sets is a cover of K if

Kc U A
AEA

If each set in the cover A is open, then A is an open cover of K. A family B of sets is a
subcover of A if B C A and K C UgesA.

For example, let K be a subset of R, and for each x € K, let €, > 0. Then the family
A={(zr —ez,x+e;):x € K} of open intervals is a open cover of K.

18 Definition A set K in a topological space X is compact if for every family G of open sets
satisfying K C UG (an open cover of K), there is a finite subfamily {G1,...,Gr} C G with
K c U%, G; (a finite subcover of K).

19 Lemma If (X, 1) is a topological space and K C A C X, then K is a compact subset of
(A, 74) if and only if it is a compact subset of (X, T).

Proof: Assume K is a compact subset of (X, 7). Let G be a 74-open cover of K in A. For each

G € G there is some Ug € 7 with G = UgN A. Then {Uq : G € G} is a 7-open cover of K in X,

so it has a finite subcover Ug,,...,Ug,. But then G1,..., Gy, is a finite subcover of K in A.
The converse is similar. |

There is an equivalent characterization of compact sets that is sometimes more convenient.
A family A of sets has the finite intersection property if every finite subset {Aj,..., 4,} of
A has a nonempty intersection, (L, 4; # .

20 Theorem A set K is compact if and only if every family of closed subsets of K having the
finite intersection property has a nonempty intersection.

Proof: Start with this observation: Let A be an arbitrary family of subsets of K, and define
A={K\A:AeA}. BydeMorgan’s Laws 44 A = @ if and only if K = U7 B. That is,
A has an empty intersection if and only if A covers K.

(=) Assume K is compact and let F be a family of closed subsets of K. Then J is
a family of relatively open sets of K. If F has the finite intersection property, by the above
observation, no finite subset of F can cover K. Since K is compact, this implies that F itself
cannot cover K. But then by the observation F has nonempty intersection.
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( <= ) Assume that every family of closed subsets of K having the finite intersection
property has a nonempty intersection, and let G be an open cover of K. Then G is a family of
closed having an empty intersection. Thus G cannot have the fintiie intersection property, so
there is a finite subfamily Gy of § with empty intersection. But then Gy is a finite subfamily of
G that covers K. Thus K is compact. |

21 Lemma A closed subset of a compact set is compact.

Proof: Let K be compact and F' C K be closed. Let G be an open cover of F. Then §U {F*}
is an open cover of K. Let {G1,..., G, F°} be a finite subcover of K. Then {Gy,...,Gi} is a
finite subcover of F. |

22 Lemma A compact subset of a Hausdorff space is closed.

Proof: Let K be compact, and let = ¢ K. Then by the Hausdorff property, for each y € K there
are disjoint open sets Uy and V,, with y € Uy and = € V. By compactness there are y1,...,yx
with K C UZ_ y; = U. Then V ﬂz 1 Vi, is an open set satisfying x € V C U° C K°. That
is, K¢ is a neighborhood of x. Since x is an arbitrary member of K¢ we see that K¢ is open
(Lemma 4), so K is closed. |

23 Lemma Let f: X — Y be continuous. If K is a compact subset of X, then f(K) is a
compact subset of Y.

Proof: Let G be an open cover of f(K). Then {f~*(G) : G € G} is an open cover of K. Let
{f~4(G1),..., f~1(Gr)} be a finite subcover of K. Then {Gj,...,G}} is a finite subcover of

FK). N

24 Lemma Let f: X — Y be one-to-one and continuous, where Y is a Hausdorff space and
X is compact. The f: X — f(X) is a homeomorphism, where f(X) has its relative topology
as a subset of Y.

Proof: We need to show that the function f~!: f(X) — X is continuous. So let G be any
open subset of X. We must show that (f71)~1(G) = f(G) is open in f(X). Now G€ is a closed

subset of X, and thus compact. Therefore f(G€) is compact, and since Y is Hausdorff, so is
f(X), so f(G°) is a closed subset of Y. Now f(X)Nf(G°)¢ = f(G), so f(G) isopenin f(X). 1

25 Weierstrass’s Theorem If K is compact and f: K — R is continuous, then there exists
a point x* in K that mazimizes f. That is, (VYz € K) [ f(z*) > f(z)].

Proof: Since f is continuous, F,, = {z € K : f(x) > a} = f~!([a, 00)) is closed for each a € R,
as inverse images of closed sets are closed for a continuous function. Let A = {f(x) : z € K}
denote the range of f. Then F = {f, : @ € A} is family of nonempty closed subsets of K
having the finite intersection property.! Since K is compact, M = ﬂAF is nonempty. Let z*

belong to M and let x be any point in K. Set @ = f(z). Then x* € F,, which means that
f(@*) > a= f(z). That is, * maximizes f over K. |

et a = max{ai,...,an}. Then Fy = Fo, N---NF,,, and F, # & since a belongs to A, the range of f.
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Note that this proof works if we only assume that each Fy, is closed, that is, that f is upper
semicontinuous.
The following result is well known.

26 Heine—Borel-Lebesgue Theorem A subset of R™ is compact if and only if it is both
closed and bounded in the Fuclidean metric.

This result is special. In general, a subset of a metric space may be closed and bounded
without being compact. (Consider the coordinate vectors in {.)

9 Topological vector spaces

For a detailed discussion of topological vector spaces, see chapter five of the Hitchhiker’s
Guide [1]. But here are some of the results we will need.

27 Definition A (real) topological vector space is a vector space X together with a topol-
ogy T where T has the property that the mappings scalar multiplication and vector addition
are continuous functions. That is, the mappings

(a,z) — ax

from R x X to X and

(z,y) =z +y
from X x X to X are continuous. (Where, of course, R has its usual topology, and R x X and
X x X have their product topologies.)
28 Lemma IfV is open, then V + y is open.
Proof: Since f: z + x — y is continuous, V +y = f~1(V) is open. |
29 Lemma IfV is open, and « # 0, then oV is open.
Proof: Since f: x — (1/a)x is continuous, aV = f~1(V) is open. |

30 Definition A set C in a vector space is circled or radial if «C C C whenever |a| < 1.

31 Lemma Let V be a neighborhood of zero. Then there is an open circled neighborhood U
of zero included in V.

Proof: The mapping f: (o, ) = ax is continuous, and f(0,0) = 0, the inverse image f~1(V)
is a neighborhood of 0. Thus there is an § > 0 and an open neighborhood W of 0 such that
(—=0,6) x W C f~1(V). This implies that for any o with || < 6 and € W, we have ax € V.
In other words aW C V. Set
U= | aow
o:0<|a] <6

Then U C V, U is circled, and U is open, being the union of the open sets alV. |
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32 Lemma LetT: X — Y be a linear transformation between topological vector spaces. Then
T is continuous on X if it is continuous at 0.

Proof: It suffices to prove that T is continuous at each point x. So let V' be an open neighbor-
hood of T'(z). Then V — T'(z) is an open neighborhood of 0. Since T is continuous at 0, the
inverse image 7-(V — T(z)), is a neighborhood of 0, so T~(V — T(z)) + z is a neighborhood
of x. But by linearity, 7= (V — T'(z)) + x = T~ }(V), and we are done. i
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