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1 The Classical Fundamental Theorems of Calculus
We start with a review of the Fundamental Theorems of Calculus, as presented in Apostol [1].
The notion of integration employed is the Riemann integral.

1 Definition An indefinite integral F of f over the interval I is any function F such that
for some a in I,

F (x) =
∫ x

a
f(s) ds for all x in I.

Different values of a give rise to different indefinite integrals of f .

An antiderivative is distinct from the concept of an indefinite integral.

2 Definition A function P is a primitive or antiderivative of a function f on an interval I
if

P ′(x) = f(x) for every x in I.

Leibniz’ notation for this is
∫

f(x) dx = P (x)+C. Note that if P is an antiderivative of f , then
so is P + C for any constant function C.

Despite the similarity in notation, the statement that P is an antiderivative of f is a state-
ment about the derivative of P , namely that P ′(x) = f(x) for all x in I; whereas the statement
that F is an indefinite integral of f is a statement about the integral of f , namely that there
exists some a in I with

∫ x
a f(s) ds = F (x) for all x in I. Nonetheless there is a close connection

between the concepts, which justifies the similar notation. The connection is laid out in the
two Fundamental Theorems of Calculus.

3 Theorem (First Fundamental Theorem of Calculus [1, Theorem 5.1, p. 202]) Let
f be integrable on [a, x] for each x in [a, b]. Let a ⩽ c ⩽ b, and let F be the indefinite integral
of f defined by

F (x) =
∫ x

c
f(s) ds.

Then F is differentiable at every x in (a, b) where f is continuous, and at such points F ′(x) =
f(x).

Therefore an indefinite integral of a continuous function f is also an antiderivative of f .
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4 Theorem (Second Fundamental Theorem of Calculus [1, Theorem 5.3, p. 205])
Let f be continuous on (a, b) and let P be any antiderivative of f on (a, b). The for each x and
c in (a, b), we have

P (x) = P (c) +
∫ x

c
f(s) ds.

That is, an antiderivative of a continuous function f is also an indefinite integral of f .

2 The Cantor ternary function��
Given any number x with 0 ⩽ x ⩽ 1 there is an infinite sequence a1, a2, . . ., where each an

belongs to {0, 1, 2} such that x =
∑∞

n=1
an
3n . This sequence is called the ternary representa-

tion of x. If x is of the form N
3m (in lowest terms), then it has two ternary representations:

x =
∑∞

n=1
an
3n , where am > 0 and an = 0 for n > m, and another representation of the form

x =
∑m−1

n=1
an
3n + am−1

3m +
∑∞

n=m+1
2

3n . But these are the only cases of a nonunique ternary repre-
sentation, and there are only countably many such numbers. (See, e.g., Boyd [2, Theorem 1.23,
p. 20].)

Given x ∈ [0, 1], let N(x) be the first n such that an = 1 in the ternary representation.
If x has two ternary representations use the one that gives the larger value of N(x). If x has
a ternary representation with no an = 1, then N(x) = ∞. The Cantor set C consists of all
numbers x in [0, 1] for which N(x) = ∞. That is, those that have a ternary representation
where no an = 1. That is, all numbers x of the form x =

∑∞
n=1

2bn
3n , where each bn belongs

to {0, 1}. Each distinct sequence of 0s and 1s gives rise to a distinct element of C. Indeed
some authors identify the Cantor set with {0, 1}N endowed with its product topology, since the
mapping (b1, b2, . . .) 7→

∑∞
n=1

2bn
3n is a homeomorphism. Also note that a sequence (b1, b2, . . .)

of 0s and 1s also corresponds to a unique subset of N, namely {n ∈ N : bn = 1}. Thus there are
as many elements C as there are subset of N, so the Cantor set is uncountable. (This follows
from the Cantor diagonal procedure.) Yet the Cantor set includes no interval.

It is perhaps easier to visualize the complement of the Cantor set. Let

An = {x ∈ [0, 1] : N(x) = n}.

The complement of the Cantor set is ∪∞
n=1 An. Define

Cn = [0, 1] \
n∪

k=1
Ak,

so that C =
∩∞

n=0 Cn. Now A1 consists of those x for which a1 = 1 in its ternary expansion.
This means that

A1 =
(

1
3 , 2

3

)
and C1 =

[
0, 1

3

]
∪
[

2
3 , 1
]

.

Note that N(1
3) = ∞ since 1

3 can also be written as ∑∞
n=2

2
3n , so a1 = 0, an = 2 for n > 1. Now

A2 consists of those x for which a1 = 0 or a1 = 2 and a2 = 1 in its ternary expansion. Thus

A2 =
(

1
9 , 2

9

)
∪
(

7
9 , 8

9

)
and C2 =

[
0, 1

9

]
∪
[

2
9 , 1

3

]
∪
[

2
3 , 7

9

]
∪
[

8
9 , 1
]

.
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Each Cn is the union of 2n closed intervals, each of length 1
3n−1 , and An+1 consists of the open

middle third of each of the intervals in Cn. The total length of the removed open segments is

1
3

+ 2 · 1
9

+ 4 · 1
27

+ · · · =
∞∑

n=0

2n

3n+1 = 1
3

∞∑
n=0

(2
3

)n

= 1
3

· 1
1 − 2

3
= 1.

Thus the total length of the Cantor set is 1 − 1 = 0.
The Cantor ternary function f is defined as follows. On the open middle third (1

3 , 2
3) its

value is 1
2 . On the open interval (1

9 , 2
9) its value is 1

4 and on (7
9 , 8

9) its value is 3
4 . Continuing

in this fashion, the function is defined on the complement of the Cantor set. The definition is
extended to the entire interval by continuity. See Figure 1. A more precise but more opaque
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Figure 1. Partial graph of the Cantor ternary function.

definition is this:

f(x) =


∑N(x)−1

n=1
1
2 an

2n + aN(x)
2N(x) if N(x) < ∞,∑∞

n=1
1
2 an

2n if N(x) = ∞.

In any event notice that f is constant on each open interval in some An, so it is differentiable
there and f ′ = 0. Thus f is differentiable almost everywhere, and f ′ = 0 wherever it exists, but

f(1) − f(0) = 1 and
∫ 1

0
f ′(x) dx = 0.

3 The Classic Integration by Parts Theorem
The Fundamental Theorems enable us to prove the following result.

5 Theorem (Integration by Parts) Suppose f and g are continuously differentiable on the
open interval I. Let a < b belong to I. Then∫ b

a
f(x)g′(x) dx +

∫ b

a
f ′(x)g(x) dx = f(b)g(b) − f(a)g(a).
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Proof based on Apostol [1, Section 5.9, pp. 217–218]: Define h(x) = f(x)g(x). Then h is con-
tinuously differentiable on I and h′(x) = f(x)g′(x) + f ′(x)g(x). That is, h is an antiderivative
of the continuous function f(x)g′(x) + f ′(x)g(x). So by the Second Fundamental Theorem of
Calculus

h(b) − h(a) =
∫ b

a
f(x)g′(x) + f ′(x)g(x) dx.

This result is usually written less symmetrically as∫ b

a
f(x)g′(x) dx = f(b)g(b) − f(a)g(a) −

∫ b

a
f ′(x)g(x) dx,

where the integral on the left is one that you already know how to evaluate. Sometimes one
uses the language of change of variables: Letting u = f(x) and v = g(x), write du = f ′(x) dx,
dv = g′(x) dx, and ∫

u dv = uv −
∫

v du.

4 A more general result
To apply the Second Fundamental Theorem of Calculus, we need f ′g + g′f to be a continuous
function. The only reasonable sufficient condition for this is that f and g be continuously
differentiable. However, Fubini’s Theorem 10 on interchanging the order of integration allows
us to prove the integration by parts formula under weaker conditions. All we need is that f and
g be indefinite integrals. That is, we do not need f and g to be differentiable everywhere, only
that they are indefinite integrals. This assumption is equivalent to what is called absolute
continuity. In statistics, it is traditional to use upper case letters for distribution functions,
and lower case letters for their densities, so I’ll adopt that notation.

6 Theorem (Integration by Parts, Part II) Suppose F and G satisfy

F (x) = F (a) +
∫ x

a
f(s) ds

and
G(x) = G(a) +

∫ x

a
g(s) ds

for every x in [a, b], where f and g are integrable over [a, b] and fg is integrable over [a, b]×[a, b].
Then ∫ b

a
F (x)g(x) dx +

∫ b

a
f(x)G(x) dx = F (b)G(b) − F (a)G(a).

Proof based on Fubini’s Theorem: Define the function h : [a, b] × [a, b] → R by

h(s, t) = f(s)g(t).
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Fubini’s Theorem 10 below tells us that we can compute the integral of h over the rectangle
[a, b] × [a, b] as an iterated integral in either order:∫∫

h(s, t) d(s, t) =
∫ b

a

(∫ b

a
h(s, t) ds

)
dt =

∫ b

a

(∫ b

a
h(s, t) dt

)
ds.

For our nice choice of h this becomes∫∫
h(s, t) d(s, t) =

∫ b

a

(∫ b

a
f(s)g(t) ds

)
dt

=
∫ b

a
g(t)

(∫ b

a
f(s) ds

)
dt

=
∫ b

a
g(t)

(
F (b) − F (a)

)
dt

=
[
F (b) − F (a)

] ∫ b

a
g(t) dt

=
[
F (b) − F (a)

][
G(b) − G(a)

]
= F (b)G(b) + F (a)G(a) − F (b)G(a) − F (a)G(b). (1)

But there is another way to compute the integral over the rectangle. Divide it into two triangles
with the diagonal s = t. See Figure 2. This is equivalent to the following construction. Let
U = {(s, t) : t > s} and let L = {(s, t) : t > s}. Then for all (s, t),

f(s)g(t) = 1U (s, t)f(s)g(t) + 1L(s, t)f(s)g(t).

s

t

(a, a)

(b, b)

s > t

t > s

Figure 2. Splitting the rectangle.

Let IU =
∫∫

1U (s, t)h(s, t) d(s, t) and IL =
∫∫

1L(s, t)h(s, t) d(s, t). By Fubini’s Theorem
each of IU and IL can be calculated as an iterated integral in either order. So on the upper
triangle U , for each s let’s first integrate h with respect to t over the interval (s, b] (shown as
a vertical line segment in Figure 2) to get a function of s alone, and then integrate that result
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with respect to s as s runs over [a, b].

IU =
∫∫

1U (s, t)h(s, t) d(s, t)

=
∫ b

a

(∫ b

s
f(s)g(t) dt

)
ds

=
∫ b

a
f(s)

(
G(b) − G(s)

)
ds

= G(b)
[
F (b) − F (a)] −

∫ b

a
f(s)G(s) ds.

In the lower rectangle L, we reverse the order of integration.

IL =
∫∫

1U (s, t)h(s, t) d(s, t)

=
∫ b

a

(∫ b

t
f(s)g(t) ds

)
dt

=
∫ b

a
g(t)

(
F (b) − F (t)

)
dt

= F (b)
[
G(b) − G(a)] −

∫ b

a
g(t)F (t) dt.

The integral rect over the rectangle is the sum of the two triangular integrals, so

F (b)G(b) + F (a)G(a) − F (b)G(a) − F (a)G(b) =

G(b)
[
F (b) − F (a)] −

∫ b

a
f(s)G(s) ds + F (b)

[
G(b) − G(a)] −

∫ b

a
g(t)F (t) dt.

This simplifies to ∫ b

a
f(s)G(s) ds +

∫ b

a
g(t)F (t) dt = F (b)G(b) − F (a)G(a).

Now we simply note that s and t are dummy variables and may be replaced by x to get the
integration by part formula.

If you are astute and suspicious, you will not that I used the notation
∫ b

t to mean the
integral over the closed interval [t, b], but

∫ b
s to indicate the integral over the half-open interval

(s, b]. Under our assumptions on F and G (absolute continuity), it doesn’t make a difference,
since points contribute zero to the value of the integral. But more generally, in statistics and
probability we consider distributions where points may have strictly positive probability. For
that case, the Riemann integral is not adequate, and the difference between closed and open
intervals may matter. An integration by parts formula for that case is discussed in the next
section.
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5 Finite measures and nondecreasing functions
Let µ be a finite (nonnegative) measure on the Borel subsets of R.1 Define Fµ : R → R+ by

Fµ(x) = µ
(
{y ∈ R : y ⩽ x}

)
.

The function Fµ is called the distribution function of µ, and has the following properties:

1. Fµ is nondecreasing.

2. Fµ is right continuous. That is, Fµ(x) = limy↓x Fµ(y).

3. limx→−∞ Fµ(x) = 0.

4. limx→∞ Fµ(x) = µ(R).

5. F (b) − F (a) = µ
(
(a, b]

)
for a < b.

Conversely, for any F : R → R+ satisfying

1. F is nondecreasing.

2. F is right continuous.

3. limx→−∞ F (x) = 0.

4. limx→∞ F (x) < ∞.

there is a unique nonnegative Borel measure µf satisfying µF

(
(a, b]

)
= F (b) − F (a) for a < b.

Given a distribution function F : R → R+ and a µF -integrable function g, the Lebesgue–
Stieltjes integral ∫

g dF =
∫

g dµF

by definition. I learned this next theorem from Naresh Jain.

7 Integration by Parts for Distribution Functions Let F and G be distribution func-
tions on R. Then∫

(a,b]
F (x) dG(x) +

∫
(a,b]

G(x−) dF (x) = F (b)G(b) − F (a)G(a), (2)

where G(x−) = limy↑x G(y).

Proof : Define A = {(x, y) ∈ (a, b]2 : x ⩽ y}. By Fubini’s Theorem 10 on iterated integrals, we
have

∫∫
1A d(µG × µF ) =



∫
(a,b]

(∫
(a,b]

1A dµF

)
dµG =

∫
(a,b]

(F (x) − F (a)) dµG(x)

or∫
(a,b]

(∫
(a,b]

1A dµG

)
dµF =

∫
(a,b]

(
G(b) − G(y−)

)
dµF (y),

1See, e.g., Halmos [3] for more on Borel measures.
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where 1A is the indicator function defined by 1A(x, y) =

1 (x, y) ∈ A

0 (x, y) /∈ A
.

Rearrange to get∫
(a,b]

(F (x) − F (a)) dµG(x) =
∫

(a,b]

(
G(b) − G(y−)

)
dµF (y)

or ∫
(a,b]

F (x) dG(x) − F (a)
(
G(b) − G(a)

)
= G(b)

(
F (b) − F (a)

)
−
∫

(a,b]
G(y−) dµF (y),

from which the conclusion follows.

8 Corollary If either F or G is continuous, then∫
[a,b]

F (x) dG(x) +
∫

[a,b]
G(x) dF (x) = F (b)G(b) − F (a)G(a). (2′)

Proof : If G is continuous, then G(x−) = G(x), so IP-df implies IP-df’. Now simply note that
the statement is symmetric in F and G.

9 Corollary Let F be a cumulative distribution function with F (0) = 0 and limx→∞ F (x) = 1,
that is, the cumulative distribution function of a nonnegative random variable. Then for any
p > 0, ∫

[0,∞)
xp dF (x) = p

∫ ∞

0

(
1 − F (x)

)
xp−1 dx

Proof : Fix b > 0 and set

Gb(x) =


0 x ⩽ 0

xp 0 ⩽ x ⩽ b

bp x ⩾ b

and note that Gb is a continuous distribution function. By Corollary 8,∫ b

0
xp dF = F (b)bp −

∫ b

0
F (x) dGb(x).

= F (b)bp − p

∫ b

0
F (x)xp−1 dx

= p

∫ b

0
(F (b) − F (x))xp−1 dx,

since Gb has derivative pxp−1 on (0, b). Now let b → ∞.

v. 2020.08.21::13.46



KC Border Notes on Integration by Parts 9

6 Fubini’s Theorem
There is a collection of related results that are all referred to as Fubini’s theorem. This version
is taken from Halmos [3, Theorem C, p. 148].

10 Fubini’s Theorem Let (X, S, µ) and (Y,T, ν) be σ-finite measure spaces. If f : X×Y → R
is µ × ν-integrable, then x 7→

∫
Y f(x, y) dν(y) and y 7→

∫
X f(x, y) dµ(x) are µ-integrable and

ν-integrable respectively, and∫
X×Y

f(x, y) d(µ × ν)(x, y) =
∫

X

(∫
Y

f(x, y) dν(y)
)

dµ(x) =
∫

Y

(∫
X

f(x, y) dµ(x)
)

dν(y).
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