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1 Implicit Function Theorems
The Implicit Function Theorem is a basic tool for analyzing extrema of
differentiable functions.

Definition 1 An equation of the form

f(x, p) = y (1)

implicitly defines x as a function of p on a domain P if there is a
function ξ on P for which f(ξ(p), p) = y for all p ∈ P . It is traditional to
assume that y = 0, but not essential.

The use of zero in the above equation serves to simplify notation. The
condition f(x, p) = y is equivalent to g(x, p) = 0 where g(x, p) = f(x, p)−y,
and this transformation of the problem is common in practice.

The implicit function theorem gives conditions under which it is possible
to solve for x as a function of p in the neighborhood of a known solution
(x̄, p̄). There are actually many implicit function theorems. If you make
stronger assumptions, you can derive stronger conclusions. In each of the
theorems that follows we are given a subset X of Rn, a metric space P (of
parameters), a function f from X × P into Rn, and a point (x̄, p̄) in the
interior of X × P such that Dxf(x̄, p̄) exists and is invertible. Each asserts
the existence of neighborhoods U of x̄ andW of p̄ and a function ξ : W → U
such that f

(
ξ(p), p

)
= f(x̄, p̄) for all p ∈ W . They differ in whether ξ is

uniquely defined (in U) and how smooth it is. The following table serves as
a guide to the theorems. For ease of reference, each theorem is stated as a
standalone result.
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Theorem Hypotheses Conclusion
All f is continuous on X × P f

(
ξ(p), p

)
= f

(
x̄, p̄

)
for all p in W

Dxf(x̄, p̄) is invertible ξ(p̄) = x̄

2 ξ is continuous at p̄
3 Dxf is continuous on X × P ξ is unique in U

ξ is continuous on W
4 Df(x̄, p̄) (wrt x, p) exists ξ is differentiable at p̄
5 Df (wrt x, p) exists on X × P ξ is unique in U

Dxf is continuous on X × P ξ is differentiable on W
1 f is Ck on X × P ξ is unique in U

ξ is Ck on W

The first result is due to Halkin [13, Theorem B].

Theorem 2 (Implicit Function Theorem 0) Let X be a subset of Rn,
let P be a metric space, and let f : X ×P → Rn be continuous. Suppose the
derivative Dxf of f with respect to x exists at a point and that Dxf(x̄, p̄) is
invertible. Let

ȳ = f(x̄, p̄).

Then for any neighborhood U of x̄, there is a neighborhood W of p̄ and
a function ξ : W → U such that:

a. ξ(p̄) = x̄.

b. f
(
ξ(p), p

)
= ȳ for all p ∈ W .

c. ξ is continuous at the point p̄.

However, it may be that ξ is neither continuous nor uniquely defined on
any neighborhood of p̄. There are two ways to strengthen the hypotheses and
derive a stronger conclusion. One is to assume the derivative with respect
to x exists and is continuous on X ×P . The other is to make P a subset of
a Euclidean space and assume that f has a derivative with respect to (x, p)
at the single point (x̄, p̄).

Taking the first approach allows us to conclude that the function ξ is
uniquely defined and moreover continuous. The following result is Theo-
rem 9.3 in Loomis and Sternberg [19, pp. 230–231].

Theorem 3 (Implicit Function Theorem 1a) Let X be an open subset
Rn, let P be a metric space, and let f : X×P → Rn be continuous. Suppose
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the derivative Dxf of f with respect to x exists at each point (x, p) and is
continuous on X × P . Assume that Dxf(x̄, p̄) is invertible. Let

ȳ = f(x̄, p̄).

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄, and a
function ξ : W → U such that:

a. f(ξ(p); p) = ȳ for all p ∈ W .

b. For each p ∈ W , ξ(p) is the unique solution to (1) lying in U . In
particular, then

ξ(p̄) = x̄.

c. ξ is continuous on W .

The next result, also due to Halkin [13, Theorem E] takes the second
approach. It concludes that ξ is differentiable at a single point. Related
results may be found in Hurwicz and Richter [14, Theorem 1], Leach [16, 17],
Nijenhuis [21], and Nikaidô [22, Theorem 5.6, p. 81].

Theorem 4 (Implicit Function Theorem 1b) Let X be a subset of
Rn, let P be an open subset of Rm, and let f : X × P → Rn be continu-
ous. Suppose the derivative Df of f with respect to (x, p) exists at (x̄, p̄).
Write Df(x̄, p̄) = (T, S), where T : Rn → Rn and S : Rm → Rm, so that
Df(x̄, p̄)(h, z) = Th+ Sz. Assume T is invertible. Let

ȳ = f(x̄, p̄).

Then there is a neighborhood W of p̄ and a function ξ : W → X satisfy-
ing

a. ξ(p̄) = x̄.

b. f
(
ξ(p), p

)
= ȳ for all p ∈ W .

c. ξ is differentiable (hence continuous) at p̄, and

Dξ(p̄) = −T−1 ◦ S.

The following result is Theorem 9.4 in Loomis and Sternberg [19, p. 231].
It strengthens the hypotheses of both Theorems 3 and 4. In return we get
differentiability of ξ on W .
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Theorem 5 (Semiclassical Implicit Function Theorem) Let X × P
be an open subset of Rn × Rm, and let f : X × P → Rn be differentiable.
Suppose the derivative Dxf of f with respect to x is continuous on X × P .
Assume that Dxf(x̄, p̄) is invertible. Let

ȳ = f(x̄, p̄).

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄ on which
equation (1) uniquely defines x as a function of p. That is, there is a function
ξ : W → U such that:

a. f(ξ(p); p) = ȳ for all p ∈ W .

b. For each p ∈ W , ξ(p) is the unique solution to (1) lying in U . In
particular, then

ξ(p̄) = x̄.

c. ξ is differentiable on W , and
∂ξ1
∂p1

. . .
∂ξ1
∂pm...

...
∂ξn

∂p1
. . .

∂ξn

∂pm

 = −


∂f1
∂x1

. . .
∂f1
∂xn...

...
∂fn

∂x1
. . .

∂fn

∂xn


−1 

∂f1
∂p1

. . .
∂f1
∂pm...

...
∂fn

∂p1
. . .

∂fn

∂pm

 .

The classical version maybe found, for instance, in Apostol [3, Theo-
rem 7-6, p. 146], Rudin [24, Theorem 9.28, p. 224], or Spivak [26, Theo-
rem 2-12, p. 41]. Some of these have the weaker statement that there is a
unique function ξ within the class of continuous functions satisfying both
ξ(p̄) = x̄ and f(ξ(p); p) = 0 for all p. Dieudonné [8, Theorem 10.2.3, p. 272]
points out that the Ck case follows from the formula for Dξ and the fact
that the mapping from invertible linear transformations to their inverses,
A 7→ A−1, is C∞. (See Marsden [20, Lemma 2, p. 231].)

Classical Implicit Function Theorem Let X × P be an open subset of
Rn × Rm, and let f : X×P → Rn be Ck, for k ⩾ 1. Assume that Dxf(x̄, p̄)
is invertible. Let

ȳ = f(x̄, p̄).

Then there are neighborhoods U ⊂ X and W ⊂ P of x̄ and p̄ on which
equation (1) uniquely defines x as a function of p. That is, there is a function
ξ : W → U such that:
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a. f(ξ(p); p) = ȳ for all p ∈ W .

b. For each p ∈ W , ξ(p) is the unique solution to (1) lying in U . In
particular, then

ξ(p̄) = x̄.

c. ξ is Ck on W , and
∂ξ1
∂p1

. . .
∂ξ1
∂pm...

...
∂ξn

∂p1
. . .

∂ξn

∂pm

 = −


∂f1
∂x1

. . .
∂f1
∂xn...

...
∂fn

∂x1
. . .

∂fn

∂xn


−1 

∂f1
∂p1

. . .
∂f1
∂pm...

...
∂fn

∂p1
. . .

∂fn

∂pm

 .

As a bonus, let me throw in the following result, which is inspired by
Apostol [4, Theorem 7.21].

Theorem 6 (Lipschitz Implicit Function Theorem) Let P be a com-
pact metric space and let f : R × P → R be continuous and assume that
there are real numbers 0 < m < M such that for each p

m ⩽ f(x, p) − f(y, p)
x− y

⩽M.

Then there is a unique function ξ : P → R satisfying f
(
ξ(p), p

)
= 0. More-

over, ξ is continuous.

An interesting extension of this result to Banach spaces and functions
with compact range may be found in Warga [28].

1.1 Proofs of Implicit Function Theorems
The proofs given here are based on fixed point arguments and are adapted
from Halkin [12, 13], Rudin [24, pp. 220–227], Loomis and Sternberg [19,
pp. 229–231], Marsden [20, pp. 230–237], and Dieudonné [8, pp. 265—273].
Another sort of proof, which is explicitly finite dimensional, of the classical
case may be found in Apostol [3, p. 146] or Spivak [26, p. 41].

The first step is to show that for each p (at least in a neighborhood of p̄)
there is a zero of the function f(x, p) − ȳ, where ȳ = f(x̄, p̄). As is often the
case, the problem of finding a zero of f − ȳ is best converted to the problem
of finding a fixed point of some other function. The obvious choice is to find
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a fixed point of πX − (f − ȳ) (where πX(x, p) = x), but the obvious choice
is not clever enough in this case. Let

T = Dxf(x̄, p̄).

Define φ : X × P → Rn by φ = πX − T−1(f − ȳ
)
. That is,

φ(x, p) = x− T−1(f(x, p) − ȳ
)
. (2)

Note that φ(x, p) = x if and only if T−1(f(x, p)−ȳ
)

= 0. But the invertibility
of T−1 guarantees that this happens if and only if f(x, p) = ȳ. Thus the
problem of finding a zero of f(·, p)− ȳ is equivalent to that of finding a fixed
point of φ(·, p). Note also that

φ(x̄, p̄) = x̄. (3)

Observe that φ is continuous and also has a derivative Dxφ with respect to
x whenever f does. In fact,

Dxφ(x, p) = I − T−1Dxf(x, p).

In particular, at (x̄, p̄), we get

Dxφ(x̄, p̄) = I − T−1T = 0. (4)

That is, Dxφ(x̄, p̄) is the zero transformation.
Recall that for a linear transformation A, its operator norm ‖A‖ is de-

fined by ‖A‖ = sup|x|⩽1 |Ax|, and satisfies |Ax| ⩽ ‖A‖ · |x| for all x. If A is
invertible, then ‖A−1‖ > 0.

Proof of Theorem 2: Let X, P , and f : X×P → Rn be as in the hypotheses
of Theorem 2.

In order to apply a fixed point argument, we must first find a subset of
X that is mapped into itself. By the definition of differentiability and (4)
we can choose r > 0 so that∣∣φ(x, p̄) − φ(x̄, p̄)

∣∣
|x− x̄|

⩽ 1
2

for all x ∈ B̄r(x̄).

Noting that φ(x̄, p̄) = x̄ and rearranging, it follows that∣∣φ(x, p̄) − x̄
∣∣ ⩽ r

2
for all x ∈ B̄r(x̄).

v. 2019.12.06::17.04
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For each p set m(p) = maxx

∣∣φ(x, p)−φ(x, p̄)
∣∣ as x runs over the compact

set B̄r(x̄). Since φ is continuous (and B̄r(x̄) is a fixed set), the Maximum
Theorem ?? implies that m is continuous. Since m(p̄) = 0, there is some
ε > 0 such that |m(p)| < r

2 for all p ∈ Bε(p̄). That is,∣∣φ(x, p) − φ(x, p̄)
∣∣ < r

2
for all x ∈ B̄r(x̄), p ∈ Bε(p̄).

For each p ∈ Bε(p̄), the function φ maps B̄r(x̄) into itself, for∣∣φ(x, p) − x̄
∣∣ ⩽

∣∣φ(x, p) − φ(x, p̄)
∣∣+ ∣∣φ(x, p̄) − x̄

∣∣
<

r

2
+ r

2
= r.

That is, φ(x, p) ∈ B̄r(x̄). Since φ is continuous and B̄r(x̄) is compact and
convex, by the Brouwer Fixed Point Theorem (e.g., [5, Corollary 6.6, p. 29]),
there is some x ∈ B̄r(x̄) satisfying φ(x, p) = x, or in other words f(x, p) = 0.

We have just proven parts (a) and (b) of Theorem 2. That is, for every
neighborhood X of x̄, there is a neighborhood W = B̄ε(r)(p̄) of p̄ and a
function ξ from B̄ε(r)(p̄) into B̄r(x̄) ⊂ X satisfying ξ(p̄) = x̄ and f

(
ξ(p), p

)
=

0 for all p ∈ W . (Halkin actually breaks this part out as Theorem A.)
We can use the above result to construct a ξ that is continuous at p̄.

Start with a given neighborhood U of x̄. Construct a sequence of r1 > r2 >
· · · > 0 satisfying lim rn = 0 and for each n consider the neighborhood
Un = U ∩ Brn(x̄). From the argument above there is a neighborhood Wn

of p̄ and a function ξn from Wn into Un ⊂ U satisfying ξn(p̄) = x̄ and
f
(
ξn(p), p

)
= 0 for all p ∈ Wn. Without loss of generality we may assume

Wn ⊃ Wn+1 (otherwise replace Wn+1 with Wn ∩ Wn+1), so set W = W1.
Define ξ : W → U by ξ(p) = ξn(p) for p ∈ Wn \Wn+1. Then ξ is continuous
at p̄, satisfies ξ(p̄) = x̄, and f

(
ξ(p), p

)
= 0 for all p ∈ W .

Note that the above proof used in an essential way the compactness of
B̄r(x̄), which relies on the finite dimensionality of Rn. The compactness
was used first to show that m(p) is finite, and second to apply the Brouwer
fixed point theorem.

Theorem 3 adds to the hypotheses of Theorem 2. It assumes that Dxf
exists everywhere on X ×P and is continuous. The conclusion is that there
are some neighborhoods U of x̄ and W of p̄ and a continuous function
ξ : W → U such that ξ(p) is the unique solution to f

(
ξ(p), p

)
= 0 lying in U .

It is the uniqueness of ξ(p) that puts a restriction on U . If U is too large, say
U = X, then the solution need not be unique. (On the other hand, it is easy
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to show, as does Dieudonné [8, pp. 270–271], there is at most one continuous
ξ, provided U is connected.) The argument we use here, which resembles
that of Loomis and Sternberg, duplicates some of the proof of Theorem 2,
but we do not actually need to assume that the domain of f lies in the finite
dimensional space Rn × Rm, any Banach spaces will do, and the proof need
not change. This means that we cannot use Brouwer’s theorem, since closed
balls are not compact in general Banach spaces. Instead, we will be able to
use the Mean Value Theorem and the Contraction Mapping Theorem.

Proof of Theorem 3: Let X, P , and let f : X×P → Rn obey the hypotheses
of Theorem 3. Set T = Dxf(x̄, p̄), and recall that T is invertible.

Again we must find a suitable subset of X so that each φ(·, p) maps
this set into itself. Now we use the hypothesis that Dxf (and hence Dxφ)
exists and is continuous on X × P to deduce that there is a neighborhood
B̄r(x̄) ×W1 of (x̄, p̄) on which the operator norm ‖Dxφ‖ is strictly less than
1
2 . Set U = B̄r(x̄). Since φ(x̄, p̄) = x̄ and since φ is continuous (as f is), we
can now choose W so that p̄ ∈ W , W ⊂ W1, and p ∈ W implies∣∣φ(x̄, p) − x̄

∣∣ < r

2
.

We now show that for each p ∈ W , the mapping x 7→ φ(x, p) is a
contraction that maps B̄r(x̄) into itself. To see this, note that the Mean
Value Theorem (or Taylor’s Theorem) implies

φ(x, p) − φ(y, p) = Dxφ(z, p)(x− y),

for some z lying on the segment between x and y. If x and y lie in B̄r(x̄),
then z too must lie in B̄r(x̄), so ‖Dxφ(z, p)‖ < 1

2 . It follows that∣∣φ(x, p) − φ(y, p)
∣∣ < 1

2
|x− y| for all x, y ∈ B̄r(x̄), p ∈ Bε(p̄), (5)

so φ(·, p) is a contraction on B̄r(x̄) with contraction constant 1
2 .

To see that B̄r(x̄) is mapped into itself, let (x, p) belong to B̄r(x̄) × W
and observe that∣∣φ(x, p) − x̄

∣∣ ⩽
∣∣φ(x, p) − φ(x̄, p)

∣∣+ ∣∣φ(x̄, p) − x̄
∣∣

<
1
2
∣∣x− x̄

∣∣+ r

2
< r.

Thus φ(x, p) ∈ B̄r(x̄).

v. 2019.12.06::17.04
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Since B̄r(x̄) is a closed subset of the complete metric space Rn, it is
complete itself, so the Contraction Mapping Theorem guarantees that there
is a unique fixed point of φ(·, p) in B̄r(x̄). In other words, for each p ∈ W
there is a unique point ξ(p) lying in U = B̄r(x̄) satisfying f(ξ(p), p) = 0.

It remains to show that ξ must be continuous on W . This follows from
a general result on parametric contraction mappings, presented as Lemma 7
below, which also appears in [19, Corollary 4, p. 230].

Note that the above proof nowhere uses the finite dimensionality of Rm,
so the theorem actually applies to a general Banach space.

Proof of Theorem 4: For this theorem, in addition to the hypotheses of The-
orem 2, we need P to be a subset of a Euclidean space (or more generally a
Banach space), so that it makes sense to partially differentiate with respect
to p. Now assume f is differentiable with respect to (x, p) at the point (x̄, p̄).

There is a neighborhoodW of p̄ and a function ξ : W → X satisfying the
conclusions of Theorem 2. It turns out that under the added hypotheses,
such a function ξ is differentiable at p̄.

We start by showing that ξ is locally Lipschitz continuous at p̄. First set

∆(x, p) = f(x, p) − f(x̄, p̄) − T (x− x̄) − S(p− p̄).

SinceDf exists at (x̄, p̄), there exists r > 0 such that Br(x̄)×Br(p̄) ⊂ X×W
and if |x− x̄| < r and |p− p̄| < r, then∣∣∆(x, p)

∣∣
|x− x̄| + |p− p̄|

<
1

2 ‖T−1‖
,

which in turn implies

∣∣T−1∆(x, p)
∣∣ < 1

2
|x− x̄| + 1

2
|p− p̄|.

Since ξ is continuous at p̄ and ξ(p̄) = x̄, there is some r ⩾ δ > 0 such that
|p− p̄| < δ implies |ξ(p) − x̄| < r. Thus

∣∣T−1∆
(
ξ(p), p

)∣∣ < 1
2
∣∣ξ(p) − x̄

∣∣+ 1
2

|p− p̄| for all p ∈ Bδ(p̄). (6)

But f
(
ξ(p), p

)
− f(x̄, p̄) = 0 implies∣∣T−1∆

(
ξ(p), p

)∣∣ =
∣∣(ξ(p) − x̄

)
+ T−1S(p− p̄)

∣∣. (7)

v. 2019.12.06::17.04
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Therefore, from the facts that |a+ b| < c implies |a| < |b| + c, and ξ(p̄) = x̄,
equations (6) and (7) imply
∣∣ξ(p) − ξ(p̄)

∣∣ < ∣∣T−1S(p− p̄)
∣∣+ 1

2
∣∣ξ(p) − ξ(p̄)

∣∣+ 1
2

|p− p̄| for all p ∈ Bδ(p̄)

or, ∣∣ξ(p) − ξ(p̄)
∣∣ < (2‖T−1S‖ + 1

)
|p− p̄| for all p ∈ Bδ(p̄).

That is, ξ satisfies a local Lipschitz condition at p̄. For future use set M =
2‖T−1S‖ + 1.

Now we are in a position to prove that −T−1S is the differential of ξ at
p̄. Let ε > 0 be given. Choose 0 < r < δ so that |x− x̄| < r and |p− p̄| < r
implies ∣∣∆(x, p)

∣∣
|x− x̄| + |p− p̄|

<
ε

(M + 1) ‖T−1‖
,

so∣∣(ξ(p)−ξ(p̄))+T−1S(p−p̄)
∣∣ =

∣∣T−1∆
(
ξ(p), p

)∣∣ < ε

(M + 1)
(
|ξ(p)−ξ(p̄)|+|p−p̄|

)
⩽ ε|p−p̄|,

for |p − p̄| < r, which shows that indeed −T−1S is the differential of ξ at
p̄.

Proof of Theorem 5: ************

Proof of Theorem 1: ************

Proof of Theorem 6: Let f satisfy the hypotheses of the theorem. Let C(P )
denote the set of continuous real functions on P . Then C(P ) is complete
under the uniform norm metric, ‖f−g‖ = supp |f(p)−g(p)| [2, Lemma 3.97,
p. 124]. For each p define the function ψp : R → R by

ψp(x) = x− 1
M
f(x, p).

Note that ψp(x) = x if and only if f(x, p) = 0. If ψp has a unique fixed point
ξ(p), then we shall have shown that there is a unique function ξ satisfying
f
(
ξ(p), p

)
= 0. It suffices to show that ψp is a contraction.

To see this, write

ψp(x) − ψp(y) = x− y − f(x, p) − f(y, p)
M

=
(

1 − 1
M

f(x, p) − f(y, p)
x− y

)
(x− y).

v. 2019.12.06::17.04
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By hypothesis
0 < m ⩽ f(x, p) − f(y, p)

x− y
⩽M,

so
|ψp(x) − ψp(y)| ⩽

(
1 − m

M

)
|x− y|.

This shows that ψp is a contraction with constant 1 − m
M < 1.

To see that ξ is actually continuous, define the function ψ : C(P ) → C(P )
via

ψg(p) = g(p) − 1
M
f
(
g(p), p

)
.

(Since f is continuous, ψg is continuous whenever g is continuous.) The
pointwise argument above is independent of p, so it also shows that |ψg(p)−
ψh(p)| ⩽

(
1 − m

M

)
|g(p) − h(p)| for any functions g and h. Thus

‖ψg − ψh‖ ⩽
(
1 − m

M

)
‖g − h‖.

In other words ψ is a contraction on C(P ), so it has a unique fixed point ḡ
in C(P ), so ḡ is continuous. But ḡ also satisfies f

(
ḡ(p), p

)
, but since ξ(p) is

unique we have ξ = ḡ is continuous.

Lemma 7 (Continuity of fixed points) Let φ : X × P → X be contin-
uous in p for each x, where X is a complete metric space under the metric
d and P is a metrizable space. Suppose that φ is a uniform contraction in
x. That is, there is some 0 ⩽ α < 1 such that

d
(
φ(x, p) − φ(y, p)

)
⩽ αd(x, y)

for all x and y in X and all p in P . Then the mapping ξ : P → X from p to
the unique fixed point of φ(·, p), defined by φ

(
ξ(p), p

)
= ξ(p), is continuous.

Proof : Fix a point p in P and let ε > 0 be given. Let ρ be a compatible
metric on P and using the continuity of φ(x, ·) on P , choose δ > 0 so that
ρ(p, q) < δ implies that

d
(
φ
(
ξ(p), p

)
, φ
(
ξ(p), q

))
< (1 − α)ε.

So if ρ(p, q) < δ, then

d
(
ξ(p), ξ(q)

)
= d

(
φ
(
ξ(p), p

)
, φ
(
ξ(q), q

))
⩽ d

(
φ
(
ξ(p), p

)
, φ
(
ξ(p), q

))
+ d

(
φ
(
ξ(p), q

)
, φ
(
ξ(q), q

))
< (1 − α)ε+ αd

(
ξ(p), ξ(q)

)
v. 2019.12.06::17.04
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f(x, p) = 0

p

x
f(x, p) > 0

f(x, p) < 0

(x1, p1)

(x2, p2) (x3, p3)f ′

Figure 1. Looking for implicit functions.

so
(1 − α)d

(
ξ(p), ξ(q)

)
< (1 − α)ε

or
d
(
ξ(p), ξ(q)

)
< ε,

which proves that ξ is continuous at p.

1.2 Examples
Figure 1 illustrates the Implicit Function Theorem for the special case n =
m = 1, which is the only one I can draw. The figure is drawn sideways since
we are looking for x as a function of p. In this case, the requirement that the
differential with respect to x be invertible reduces to ∂f

∂x 6= 0. That is, in the
diagram the gradient of f may not be horizontal. In the figure, you can see
that the points, (x1, p1), (x2, p2), and (x3, p3), the differentials Dxf are zero.
At (x1, p1) and (x2, p2) there is no way to define x as a continuous function
of p locally. (Note however, that if we allowed a discontinuous function, we
could define x as a function of p in a neighborhood of p1 or p2, but not
uniquely.) At the point (x3, p3), we can uniquely define x as a function of p
near p3, but this function is not differentiable.

Another example of the failure of the conclusion of the Classical Implicit
Function Theorem is provided by the function from Example ??.

Example 8 (Differential not invertible) Define f : R × R → R by

f(x, p) = −(x− p2)(x− 2p2).

Consider the function implicitly defined by f(x, p) = 0. The function f is
zero along the parabolas x = p2 and x = 2p2, and in particular f(0, 0) = 0.
See Figure 2 on page 20. The hypothesis of the Implicit Function Theorem
is not satisfied since ∂f(0,0)

∂x = 0. The conclusion also fails. The problem here
is not that a smooth implicit function through (x, p) = (0, 0) fails to exist.

v. 2019.12.06::17.04
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The problem is that it is not unique. There are four distinct continuously
differentiable implicitly defined functions. □

Example 9 (Lack of continuous differentiability) Consider again the
function h(x) = x + 2x2 sin 1

x2 from Example ??. Recall that h is differen-
tiable everywhere, but not continuously differentiable at zero. Furthermore,
h(0) = 0, h′(0) = 1, but h is not monotone on any neighborhood of zero.
Now consider the function f(x, p) = h(x) − p. It satisfies f(0, 0) = 0 and
∂f(0,0)

∂x 6= 0, but it there is no unique implicitly defined function on any
neighborhood, nor is there any continuous implicitly defined function.

To see this, note that f(x, p) = 0 if and only if h(x) = p. So a unique
implicitly defined function exists only if h is invertible on some neighborhood
of zero. But this is not so, for given any ε > 0, there is some 0 < p < ε

2 for
which there are 0 < x < x′ < ε satisfying h(x) = h(x′) = p. It is also easy
to see that no continuous function satisfies h

(
ξ(p)

)
= p either. □

If X is more than one-dimensional there are subtler ways in which Dxf
may fail to be continuous. The next example is taken from Dieudonné [8,
Problem 10.2.2, p. 273].

Example 10 Define f : R2 → R2 by

f1(x, y) = x

and

f2(x, y) =



y − x2 0 ⩽ x2 ⩽ y

y2 − x2y

x2 0 ⩽ y < x2

−f2(x,−y) y < 0.

Dieudonné claims that f is everywhere differentiable on R2, and Df(0, 0) Work out the
details.is the identity mapping, but Df is not continuous at the origin. I’ll let you

ponder that.
Furthermore in every neighborhood of the origin there are distinct points

(x, y) and (x′, y′) with f(x, y) = f(x′, y′). To find such a pair, pick a (small)
x′ = x > 0 and set y = x2 and y′ = −x2. Then f1(x, y) = f1(x′, y′) = x,
and f2(x, y) = f2(x′, y′) = 0.

This implies f has no local inverse, so the equation f(x, y)−p = f(0, 0) =
0 does not uniquely define (x, y) as a function of p = (p1, p2) near the origin.

□

v. 2019.12.06::17.04
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1.3 Implicit vs. inverse function theorems
In this section we discuss the relationship between the existence of a unique
implicitly defined function and the existence of an inverse function. These
results are quite standard and may be found, for instance, in Marsden [20,
p. 234].

First we show how the implicit function theorem can be used to prove
an inverse function theorem. Suppose X ⊂ Rn and g : X → Rn. Let P be
a neighborhood of p̄ = g(x̄). Consider f : X × P → Rn defined by

f(x, p) = g(x) − p.

Then f(x, p) = 0 if and only if p = g(x). Thus if there is a unique implicitly
defined function ξ : P → X implicitly defined by f

(
ξ(p), p

)
= 0, it follows

that g is invertible and ξ = g−1. Now compare the Jacobian matrix of f
with respect to x and observe that it is just the Jacobian matrix of g. Thus
each of the implicit function theorems has a corresponding inverse function
theorem.

We could also proceed in the other direction, as is usually the case in
textbooks. Let X × P be a subset of Rn × Rm, and let f : X × P → Rn,
and suppose f(x̄, p̄) = 0. Define a function g : X × P → Rn × P by

g(x, p) =
(
f(x, p), p

)
.

Suppose g is invertible, that is, it is one-to-one and onto. Define ξ : P → X
by

ξ(p) = πx
(
g−1(0, p)

)
.

Then ξ is the unique function implicitly defined by(
f
(
ξ(p), p

)
, p
)

= 0

for all p ∈ P . Now let’s compare hypotheses. The standard Inverse Function
Theorem, e.g. [20, Theorem 7.1.1, p. 206], says that if g is continuously
differentiable and has a nonsingular Jacobian matrix at some point, then
there is a neighborhood of the point where g is invertible. The Jacobian

v. 2019.12.06::17.04
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matrix for g(x, p) =
(
f(x, p), p

)
above is

∂f1
∂x1

· · · ∂f1
∂xn

∂f1
∂p1

· · · ∂f1
∂pm...

...
...

...
∂fn

∂x1
· · · ∂fn

∂xn

∂fn

∂p1
· · · ∂fn

∂pm

0 · · · 0 1 0
...

... . . .
0 · · · 0 0 1


.

Since this is block diagonal, it is easy to see that this Jacobian matrix is
nonsingular at (x̄, p̄) if and only if the derivative Dxf(x̄, p̄), is invertible.

1.4 Global inversion
The inverse function theorems proven above are local results. Even if the
Jacobian matrix of a function never vanishes, it may be that the function
does not have an inverse everywhere. The following example is well known,
see e.g., [20, Example 7.1.2, p. 208]. Add a section on

the Gale–Nikaidô
Theorem.

Example 11 (A function without a global inverse) Define f : R2 →
R2 via

f(x, y) = (ex cos y, ex sin y).

Then the Jacobian matrix is(
ex cos y −ex sin y
ex sin y ex cos y

)

which has determinant e2x(cos2 y + sin2 y) = e2x > 0 everywhere. Nonethe-
less, f is not invertible since f(x, y) = f(x, y + 2π) for every x and y. □

2 Applications of the Implicit Function Theorem
2.1 A fundamental lemma
A curve in Rn is simply a function from an interval of R into Rn, usually
assumed to be continuous.

v. 2019.12.06::17.04
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Fundamental Lemma on Curves Let U be an open set in Rn and let
g : U → Rm. Let x∗ ∈ U satisfy g(x∗) = 0, and suppose g is differentiable at
x∗. Assume that g1

′(x∗), . . . , gm
′(x∗) are linearly independent. Let v ∈ Rn

satisfy
gi

′(x∗) · v = 0, i = 1, . . . ,m.
Then there exists δ > 0 and a curve x̂ : (−δ, δ) → U satisfying:

1. x̂(0) = x∗.

2. g
(
x̂(α)

)
= 0 for all α ∈ (−δ, δ).

3. x̂ is differentiable at 0. Moreover, if g is Ck on U , then x̂ is Ck on
(−δ, δ).

4. x̂′(0) = v.

Proof : Since the gi
′(x∗)s are linearly independent, n ⩾ m, and without

loss of generality, we may assume the coordinates are numbered so that the
m×m matrix 

∂g1
∂x1

. . .
∂g1
∂xm...
...

∂gm

∂x1
. . .

∂gm

∂xm


is invertible at x∗.

Fix v satisfying gi
′(x∗) · v = 0 for all i = 1, . . . ,m. Rearranging terms

we have
m∑

j=1

∂gi(x∗)
∂xj

· vj = −
n∑

j=m+1

∂gi(x∗)
∂xj

· vj i = 1, . . . ,m,

or in matrix terms
∂g1
∂x1

. . .
∂g1
∂xm...
...

∂gm

∂x1
. . .

∂gm

∂xm


 v1

...
vm

 = −


∂g1

∂xm+1
. . .

∂g1
∂xn

...
...

∂gm

∂xm+1
. . .

∂gm

∂xn


vm+1

...
vn

 ,
so

 v1
...
vm

 = −


∂g1
∂x1

. . .
∂g1
∂xm...
...

∂gm

∂x1
. . .

∂gm

∂xm


−1 

∂g1
∂xm+1

. . .
∂g1
∂xn

...
...

∂gm

∂xm+1
. . .

∂gm

∂xn


vm+1

...
vn

 .
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Observe that these conditions completely characterize v. That is, for any
y ∈ Rn,(
gi

′(x∗)·y = 0, i = 1, . . . ,m, and yj = vj , j = m+1, . . . , n
)

=⇒ y = v.
(8)

Define the C∞ function f : Rm × R → Rn by

f(z, α) = (z1, . . . , zm, x
∗
m+1 + αvm+1, . . . , x

∗
n + αvn).

Set z∗ = (x∗
1, . . . , x

∗
m) and note that f(z∗, 0) = x∗. Since x∗ is an interior

point of U , there is a neighborhood W of z∗ and an interval (−η, η) in R so
that for every z ∈ W and α ∈ (−η, η), the point f(z, α) belongs to U ⊂ Rn.
Finally, define h : W × (−η, η) → Rm by

h(z, α) = g
(
f(z, α)

)
= g(z1, . . . , zm, x

∗
m+1 + αvm+1, . . . , x

∗
n + αvn).

Observe that h possesses the same degree of differentiability as g, since h is
the composition of g with the C∞ function f .

Then for j = 1, . . . ,m, we have = ∂hi
∂zj

(z, 0) = ∂gi
∂xj

(x), where z =
(x1, . . . , xm). Therefore the m-vectors

∂hi(z∗; 0)
∂z1...

∂hi(z∗; 0)
∂zm

 , i = 1, . . . ,m

are linearly independent.
But h(z∗, 0) = 0, so by the Implicit Function Theorem 4 there is an

interval (−δ, δ) ⊂ (−η, η) about 0, a neighborhood V ⊂ W of z∗ and a
function ζ : (−δ, δ) → V such that

ζ(0) = z∗,

h
(
ζ(α), α

)
= 0, for all α ∈ (−δ, δ),

and ζ is differentiable at 0. Moreover, by Implicit Function Theorem 1, if g
is Ck on U , then h is Ck, so ζ is Ck on (−δ, δ).

Define the curve x̂ : (−δ, δ) → U by

x̂(α) = f
(
ζ(α), α

)
=
(
ζ1(α), . . . , ζm(α), x∗

m+1 + αvm+1, . . . , x
∗
n + αvn

)
. (9)

Then x̂(0) = x∗,
g
(
x̂(α)

)
= 0 for all α ∈ (−δ, δ),

v. 2019.12.06::17.04
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and x̂ is differentiable at 0, and if g is Ck, then x̂ is Ck. So by the Chain
Rule,

gi
′(x∗) · x̂′(0) = 0, i = 1, . . . ,m.

Now by construction (9), x̂′
j(0) = vj , for j = m+1, . . . , n. Thus (8) implies

x̂′(0) = v.

2.2 A note on comparative statics
“Comparative statics” analysis tells us how equilibrium values of endogenous
variables x1, . . . , xn (the things we want to solve for) change as a function
of the exogenous parameters p1, . . . , pm. (As such it is hardly unique to
economics.) Typically we can write the equilibrium conditions of our model
as the zero of a system of equations in the endogenous variables and the
exogenous parameters:

F1(x1, . . . , xn; p1, . . . , pm) = 0
...

Fn(x1, . . . , xn; p1, . . . , pm) = 0
(10)

This implicitly defines x as a function of p, which we will explicitly denote
x = ξ(p), or

(x1, . . . , xn) =
(
ξ1(p1, . . . , pm), . . . , ξn(p1, . . . , pm)

)
.

This explicit function, if it exists, satisfies the implicit definition

F
(
ξ(p); p

)
= 0 (11)

for at least a rectangle of values of p. The Implicit Function Theorem tells
that such an explicit function exists whenever it is possible to solve for all
its partial derivatives.

Setting G(p) = F
(
ξ(p); p

)
, and differentiating Gi with respect to pj ,

yields, by equation (11), ∑
k

∂Fi

∂xk

∂ξk

∂pj
+ ∂Fi

∂pj
= 0 (12)

for each i = 1, . . . , n, j = 1, . . . ,m. In matrix terms we have
∂F1
∂x1

. . .
∂F1
∂xn...
...

∂Fn

∂x1
. . .

∂Fn

∂xn




∂ξ1
∂p1

. . .
∂ξ1
∂pm...
...

∂ξn

∂p1
. . .

∂ξn

∂pm

+


∂F1
∂p1

. . .
∂F1
∂pm...
...

∂Fn

∂p1
. . .

∂Fn

∂pm

 = 0. (13)

v. 2019.12.06::17.04



KC Border Notes on the Implicit Function Theorem 19

Provided


∂F1
∂x1

. . .
∂F1
∂xn...
...

∂Fn

∂x1
. . .

∂Fn

∂xn

 has an inverse (the hypothesis of the Implicit

Function Theorem) we can solve this:
∂ξ1
∂p1

. . .
∂ξ1
∂pm...
...

∂ξn

∂p1
. . .

∂ξn

∂pm

 = −


∂F1
∂x1

. . .
∂F1
∂xn...
...

∂Fn

∂x1
. . .

∂Fn

∂xn


−1 

∂F1
∂p1

. . .
∂F1
∂pm...
...

∂Fn

∂p1
. . .

∂Fn

∂pm

 (14)

The old-fashioned derivation (see, e.g., Samuelson [25, pp. 10–14]) of this
same result runs like this: “Totally differentiate” the ith row of equation (10)
to get ∑

k

∂Fi

∂xk
dxk +

∑
ℓ

∂Fi

∂pℓ
dpℓ = 0 (15)

for all i. Now set all dpℓ’s equal to zero except pj , and divide by dpj to get∑
k

∂Fi

∂xk

dxk

dpj
+ ∂Fi

∂pj
= 0 (16)

for all i and j, which is equivalent to equation (12). For further information
on total differentials and how to manipulate them, see [3, Chapter 6].

Using Cramer’s Rule (e.g. [4, pp. 93–94]), we see then that

dxi

dpj
= ∂ξi

∂pj
= −

∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

. . .
∂F1
∂xi−1

∂F1
∂pj

∂F1
∂xi+1

· · · ∂F1
∂xn

...
...

...
...

...
∂Fn

∂x1
. . .

∂Fn

∂xi−1

∂Fn

∂pj

∂Fn

∂xi+1
. . .

∂Fn

∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

· · · ∂F1
∂xn...
...

∂Fn

∂x1
· · · ∂Fn

∂xn

∣∣∣∣∣∣∣∣∣∣∣

. (17)

Or, letting ∆ denote the determinant of


∂F1
∂x1

. . .
∂F1
∂xn...
...

∂Fn

∂x1
. . .

∂Fn

∂xn

, and letting ∆i,j

v. 2019.12.06::17.04
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denote the determinant of the matrix formed by deleting its i-th row and
j-th column, we have

∂ξi

∂pj
= −

n∑
k=1

(−1)i+k ∂Fk

∂pj

∆k,i

∆
. (18)

f < 0

f < 0

f > 0 f > 0

Figure 2. f(x, y) = −(y − x2)(y − 2x2).
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