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1 Sperner’s Lemma
There are two commonly used definitions of a simplex. The one we use here follows Kura-
towski [14] and makes simplexes open sets. The other definition corresponds to what we call
closed simplexes.

1.1 Definition
A set {x0, . . . , xn} ⊂ Rm is affinely independent if ∑n

i=0 λix
i = 0 and ∑n

i=0 λi = 0 imply that
λ0 = · · · = λn = 0.

An n-simplex is the set of all strictly positive convex combinations of an n+1 element affinely
independent set. A closed n-simplex is the convex hull of an affinely independent set of n+1
vectors. The simplex x0 · · · xn (written without commas) is the set of strictly positive convex
combinations of the xi vectors, i.e.,

x0 · · · xn =
{

n∑
i=0

λix
i : λi > 0, i = 0, . . . , n;

n∑
i=0

λi = 1
}

.

Each xi is a vertex of x0 · · · xn and each k-simplex xi0 · · · xik is a face of x0 · · · xn. By this
definition each vertex is a face, and x0 · · · xn is a face of itself. It is easy to see that the closure
of x0 · · · xn = co{x0, . . . , xn}. Given y =

∑n
i=0 λix

i ∈ co{x0, . . . , xn}, let χ(y) = {i : λi > 0}. If
χ(y) = {i0, . . . , ik}, then y ∈ xi0 · · · xik . This face is called the carrier of y. It follows that the
union of the faces of x0 · · · xn is its closure.

If y belongs to the convex hull of the affinely independent set {x0, . . . , xn}, there is a unique
set of numbers λ0, . . . , λn such that y =

∑n
i=0 λix

i. Consequently y belongs to exactly one face
of the simplex x0 · · · xn. This means that the carrier as described above is well-defined. The
numbers λ0, . . . , λn are called the barycentric coordinates of y.

The standard n-simplex is {y ∈ Rn+1 : yi > 0, i = 0, . . . , n;
∑n

i=0 yi = 1} = e0 · · · en. Let
∆n denote the closure of the standard n-simplex, which we call the standard closed n-simplex.
(We may simply write ∆ when n is apparent from the context.)

1.2 Definition
Let T = x0 · · · xn be an n-simplex. A simplicial subdivision of T is a finite collection of simplexes
{Ti : i ∈ I} satisfying ∪

i∈I Ti = T and such that for any i, j ∈ I, T j
∩

T i is either empty or
equal to the closure of a common face. The mesh of a subdivision is the diameter of the largest
subsimplex.

For course use only. This material is excerpted from Border [3].
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1.3 Example
Refer to Figure 1. The collection

{x0x2x4, x1x2x3, x1x3x4, x0x2, x0x4,

x1x2, x1x3, x1x4, x2x3, x3x4, x0, x1, x2, x3, x4}

indicated by the solid lines is not a simplicial subdivision of x0x1x2. This is because x0x2x4 ∩
x1x2x3 =

x2x3, which is not the closure of a face of x0x2x4. By replacing x0x2x4 by x0x2x3, x0x3x4 and
x0x3 as indicated by the faint line, the result is a valid simplicial subdivision.

x0 x1

x2

x4

x3

Figure 1. Not a simplicial subdivision.

1.4 Example: Barycentric Subdivision
For any simplex T = x0 · · · xn, the barycenter of T , denoted b(T ), is the point 1

n+1
∑n

i=0 xi.
For simplexes T1, T2 define T1 > T2 to mean T2 is a face of T1 and T1 ̸= T2. Given a simplex
T , the family of all simplexes b(T0) · · · b(Tk) such that T ⩾ T0 > T1 > · · · > Tk is a simplicial
subdivision of T called the first barycentric subdivision of T . See Figure 2. Further barycentric
subdivisions are defined recursively. It can be shown that there are barycentric subdivisions of
arbitrarily small mesh.

1.5 Definition
Let T = x0 · · · xn be simplicially subdivided. Let V denote the collection of all the vertexes of
all the subsimplexes. (Note that each xi ∈ V .) A function λ : V → {0, . . . , n} satisfying

λ(v) ∈ χ(v)

is called a proper labeling of the subdivision. (Recall the definition of the carrier χ from 1.1.)
Call a subsimplex completely labeled if λ assumes all the values 0, . . . , n on its set of vertexes.
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First barycentric subdivision. Second barycentric subdivision.

Third barycentric subdivision. Fourth barycentric subdivision.

Figure 2. Successive barycentric subdivisions of ∆2.
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1.6 Theorem (Sperner [19])
Let T = x0 · · · xn be simplicially subdivided and properly labeled by the function λ. Then there
is an odd number of completely labeled subsimplexes in the subdivision.

1.7 Proof (Kuhn [13])
The proof is by induction on n. The case n = 0 is trivial. The simplex consists of a single point
x0, which must bear the label 0, and so there is one completely labeled subsimplex, x0 itself.

We now assume the statement to be true for n−1 and prove it for n. Let

C denote the set of completely labeled n-simplexes;

A denote the set of almost completely labeled n-simplexes, i.e., those such that the range of λ
is exactly {0, . . . , n−1};

B denote the set of (n−1)-simplexes on the boundary that bear all the labels {0, . . . , n−1};
and

E denote the set of (n−1)-simplexes that bear all the labels {0, . . . , n−1}.

An n−1 simplex either lies on the boundary and is the face of a single n-simplex in the
subdivision or it is a common face of two n-simplexes. We can view this situation as a graph,
i.e., a collection of nodes and edges joining them. Let D = C

∪
A

∪
B be the set of nodes and

E the set of edges. Define edge e ∈ E and node d ∈ D to be incident if either

(i) d ∈ A
∪

C and e is a face of d or

(ii) e = d ∈ B.

The degree of a node d, δ(d), is the number of edges incident at d. If d ∈ A, then one label
is repeated and exactly two faces of d belong to E, so its degree is 2. The degree of d ∈ B

∪
C

is 1. On the other hand, each edge is incident at exactly two nodes: If an (n−1)-simplex lies on
the boundary and bears labels {0, . . . , n−1}, then it is incident at itself (as a node in B) and
at an n-simplex (which must be a node in either A or C). If an (n−1)-simplex is a common
face of two n-simplexes, then each n-simplex belongs to either A or C.

Thus

δ(d) =

1 d ∈ B
∪

C

2 d ∈ A

A standard graph theoretic argument yields ∑
d∈D δ(d) = 2|E|. That is, since each edge joins

exactly two nodes, counting the number of edges incident at each node and adding them up
counts each edge twice. By the definition of δ, ∑

d∈D δ(d) = 2|A| + |B| + |C|. Thus 2|E| =
2|A| + |B| + |C| so that |B| + |C| is even. Since |B| is odd by the induction hypothesis, we must
have that |C| is odd.
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2 The Knaster–Kuratowski–Mazurkiewicz lemma
2.1 Theorem (Knaster–Kuratowski–Mazurkiewicz [12])
Let ∆ = co{e0, . . . , em} ⊂ Rm+1 and let {F0, . . . , Fm} be a family of closed subsets of ∆ such
that for every A ⊂ {0, . . . , m} we have

co{ei : i ∈ A} ⊂
∪
i∈A

Fi. (1)

Then ∩m
i=0 Fi is compact and nonempty.

2.2 Proof (Knaster–Kuratowski–Mazurkiewicz [12])
The intersection is clearly compact, being a closed subset of a compact set. Let η > 0 be
given and subdivide ∆ into subsimplexes of diameter ⩽ η. For a vertex v of the subdivision
belonging to the face ei0 · · · eik , by 1 there is some index i in {i0, . . . , ik} with v ∈ Fi. If we
label all the vertexes this way, then the labeling satisfies the hypotheses of Sperner’s lemma, so
there is a completely labeled subsimplex ηp0 · · ·η pm, with ηpi ∈ Fi for each i. As η ↓ 0, choose a
convergent subsequence ηpi → z. Since Fi is closed and ηpi ∈ Fi for each i, we have z ∈

∩m
i=0 Fi.

2.3 Corollary
Let K = co{a0, . . . , am} ⊂ Rk and let {F0, . . . , Fm} be a family of closed sets such that for
every A ⊂ {0, . . . , m} we have

co{ai : i ∈ A} ⊂
∪
i∈A

Fi. (2)

Then K ∩
∩m

i=0 Fi is compact and nonempty.

2.4 Proof
Again compactness is immediate. Define the mapping σ : ∆ → K by σ(z) =

∑m
i=0 zia

i. If
{a0, . . . , am} is not an affinely independent set, then σ is not injective, but it is nevertheless
continuous. Put Ei = σ

−1 [Fi
∩

K] for each i. Since σ is continuous, each Ei is a closed subset
of ∆. It is straightforward to verify that 1 is satisfied by {E0, . . . , Em}, so let z ∈

∩m
i=0 Ei ̸= ∅.

Then σ(z) ∈
∩m

i=0 Fi ̸= ∅.

2.5 Corollary (Fan [7])
Let X ⊂ Rm, and for each x ∈ X let F (x) ⊂ Rm be closed. Suppose:

(i) For any finite subset {x1, . . . , xk} ⊂ X, co{x1, . . . , xk} ⊂
∪k

i=1 F (xi).

(ii) F (x) is compact for some x ∈ X.

Then ∩
x∈X F (x) is compact and nonempty.
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2.6 Proof
The conclusion follows from Corollary 2.3 and the fact that in a compact set, a family of closed
sets with the finite intersection property has a nonempty intersection. (Rudin [17, 2.36].)

3 Brouwer’s fixed point theorem
3.1 Remark
The basic fixed point theorem that we will use is due to Brouwer [5]. For our purposes the most
useful form of Brouwer’s fixed point theorem is Corollary 3.7 below, but the simplest version
to prove is Theorem 3.2.

3.2 Theorem
Let f : ∆m → ∆m be continuous. Then f has a fixed point.

3.3 Proof
Let η > 0 be given and subdivide ∆ simplicially into subsimplexes of diameter ⩽ η. Let V
be the set of vertexes of the subdivision and define a labeling function λ : V → {0, . . . , m} as
follows. For v ∈ ei0 · · · eik choose

λ(v) ∈ {i0, . . . , ik}
∩

{i : fi(v) ⩽ vi}.

(This intersection is nonempty, for if fi(v) > vi for all i ∈ {i0, . . . , ik}, we would have

1 =
m∑

i=0
fi(v) >

k∑
j=0

vij =
m∑

i=0
vi = 1,

a contradiction, where the second equality follows from v ∈ xi0 · · · xik .) Since λ so defined
satisfies the hypotheses of Sperner’s lemma (1.6), there exists a completely labeled subsimplex.
That is, there is a simplex ηp0 · · ·η pm such that fi(ηpi) ⩽η pi

i for each i. Letting η ↓ 0 we can
extract a convergent subsequence (as ∆ is compact) of simplexes such that ηpi → z as η → 0
for all i = 0, . . . , m. Since f is continuous we must have fi(z) ⩽ zi, i = 0, . . . , m, so f(z) = z.

3.4 Definition
A set A is homeomorphic to the set B if there is a bijective continuous function h : A → B such
that h−1 is also continuous. Such a function h is called a homeomorphism.

3.5 Corollary
Let K be homeomorphic to ∆ and let f : K → K be continuous. Then f has a fixed point.

3.6 Proof
Let h : ∆ → K be a homeomorphism. Then h−1 ◦ f ◦ h : ∆ → ∆ is continuous, so there exists z′

with h−1 ◦ f ◦ h(z′) = z′. Set z = h(z′). Then h−1(f(z)) = h−1(z), so f(z) = z as h is injective.
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3.7 Corollary
Let K ⊂ Rm be convex and compact and let f : K → K be continuous. Then f has a fixed
point.

3.8 Proof
Since K is compact, it is contained in some sufficiently large simplex T . Define h : T → K by
setting h(x) equal to the point in K closest to x. Then h is continuous and is equal to the
identity on K. So f ◦ h : T → K ⊂ T has a fixed point z. Such a fixed point cannot belong to
T \ K, as f ◦ h maps into K. Thus z ∈ K and f ◦ h(z) = z; but h(z) = z, so f(z) = z.

3.9 Note
The above method of proof provides a somewhat more general theorem. Following Borsuk [4],
we say that E is an r-image of F if there are continuous functions h : F → E and g : E → F
such that h ◦ g is the identity on E. Such a function h is called an r-map of F onto E. In
particular, if h is a homeomorphism, then it is an r-map. In the special case where E ⊂ F and
g is the inclusion map, i.e., the identity map on E, we say that E is a retract of F and that h
is a retraction.

3.10 Theorem
Let E be an r-image of a compact convex set K ⊂ Rm, and let f : E → E be continuous. Then
f has a fixed point.

3.11 Proof
The map g ◦ f ◦ h : K → K has a fixed point z, (g ◦ f)(h(z)) = z. Set x = h(z) ∈ E. Then
(g ◦ f)(x) = z, so h ◦ g ◦ f(x) = h(z) = x, but h ◦ g is the identity on E, so f(x) = x.

3.12 Remark
Let Bm be the unit ball in Rm, i.e., Bm = {x ∈ Rm : |x| ⩽ 1}, and let ∂Bm = {x ∈ Rm : |x| =
1}. The following theorem is equivalent to the fixed point theorem.

3.13 Theorem
∂Bm is not an r-image of Bm.

3.14 Proof
Suppose ∂B is an r-image of B. Then there are continuous functions g : ∂B → B and h : B →
∂B such that h ◦ g is the identity. Define f(x) = g(−h(x)). Then f is continuous and maps B
into itself and so by 3.7 has a fixed point z. That is, z = g(−h(z)) and so h(z) = (h◦g)(−h(z)) =
−h(z). Thus h(z) = 0 /∈ ∂B, a contradiction.
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3.15 Exercise: Theorem 3.13 implies the fixed point theorem for balls
Hint: Let f : B → B be continuous and suppose that f has no fixed point. For each x let
λ(x) = max{λ : |x + λ

(
f(x) − x

)
| = 1} and put h(x) = x + λ(x)(f(x) − x). Then h is an r-map

of B onto ∂B.

3.16 Note
For any continuous function f : E → Rm, the set of fixed points {x : x = f(x)} is a closed (but
possibly empty) subset of E. If E is compact, then the set of fixed points is also compact.

4 Maximization of binary relations
4.1 Definition
A binary relation U on a set K associates to each x ∈ K a set U(x) ⊂ K, which may be
interpreted as the set of those objects in K that are “better” “larger” or “after” x. Define
U−1(x) = {y ∈ K : x ∈ U(y)}. An element x ∈ K is U-maximal if U(x) = ∅. The U-maximal
set is {x ∈ K : U(x) = ∅}. The graph of U is {(x, y) : y ∈ U(x)}.

4.2 Theorem (cf. Sonnenschein [18])
Let K ⊂ Rm be compact and convex and let U be a relation on K satisfying the following:
(i) x /∈ co U(x) for all x ∈ K.

(ii) if y ∈ U−1(x), then there exists some x′ ∈ K (possibly x′ = x) such that y ∈ int U−1(x′).
Then K has a U -maximal element, and the U -maximal set is compact.

4.3 Proof (cf. Fan [7, Lemma 4]; Sonnenschein [18, Theorem 4])
Note that {x : U(x) = ∅} is just ∩

x∈K

(
K \ U−1(x)

)
. By hypothesis (ii),∩

x∈K

(
K \ U−1(x)

)
=

∩
x′∈K

(
K \ int U−1(x′)

)
.

This latter intersection is clearly compact, being the intersection of compact sets.
For each x, put F (x) = K \int U−1(x). As noted above, each F (x) is compact. If y ∈ co{xi :

i = 1, . . . , n}, then y ∈
∪n

i=1 F (xi): Suppose that y /∈
∪n

i=1 F (xi). Then y ∈ U−1(xi) for all i,
so xi ∈ U(y) for all i. But then y ∈ co{xi} ⊂ co U(y), which violates (i). It then follows from
the Knaster–Kuratowski–Mazurkiewicz lemma as extended by Fan (2.5) that ∩

x∈K F (x) ̸= ∅.

4.4 Corollary (Fan’s Lemma [7, Lemma 4])
Let K ⊂ Rm be compact and convex. Let E ⊂ K × K be closed and suppose
(i) (x, x) ∈ E for all x ∈ K.

(ii) for each y ∈ K, {x ∈ K : (x, y) /∈ E} is convex (possibly empty).
Then there exists ȳ ∈ K such that K × {ȳ} ⊂ E. The set of such ȳ is compact.
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4.5 Corollary (Fan’s Lemma – Alternate Statement)
Let K ⊂ Rm be compact and let U be a relation on K satisfying:

(i) x /∈ U(x) for all x ∈ K.

(ii) U(x) is convex for all x ∈ K.

(iii) {(x, y) : y ∈ U(x)} is open in K × K.

Then the U -maximal set is compact and nonempty.

4.6 Exercise
Show that both statements of Fan’s lemma are special cases of Theorem 4.2.

4.7 Definition
A set C ⊂ Rm is called σ-compact if there is a sequence {Cn} of compact subsets of C satisfying∪

n Cn = C. The euclidean space Rm is itself σ-compact as Rm =
∪

n{x : |x| ⩽ n}. So is any
closed convex cone in Rm. Another example is the open unit ball, {x : |x| < 1} =

∪
n{x : |x| ⩽

1 − 1
n}.
Let C =

∪
n Cn, where {Cn} is an increasing sequence of nonempty compact sets. A sequence

{xk} is said to be escaping from C (relative to {Cn}) if for each n there is an M such that
for all k ⩾ M , xk /∈ Cn. A boundary condition on a binary relation on C puts restrictions on
escaping sequences. Boundary conditions can be used to guarantee the existence of maximal
elements for sets that are not compact. Theorems 4.8 and 4.10 below are two examples.

4.8 Proposition
Let C ⊂ Rm be convex and σ-compact and let U be a binary relation on C satisfying

(i) x /∈ co U(x) for all x ∈ C.

(ii) U−1(x) is open (in C) for each x ∈ C.

Let D ⊂ C be compact and satisfy

(iii) for each x ∈ C \ D, there exists z ∈ D with z ∈ U(x).

Then C has a U -maximal element. The set of U -maximal elements is a compact subset of
D.

4.9 Proof
Since C is σ-compact, there is a sequence {Cn} of compact subsets of C satisfying ∪

n Cn = C.
Set Kn = co

(∪n
j=1 Cj

∪
D

)
. Then {Kn} is an increasing sequence of compact convex sets each

containing D with ∪
n Kn = C. By Theorem 4.2, it follows from (i) and (ii) that each Kn has a

U -maximal element xn, i.e., U(xn)
∩

Kn = ∅. Since D ⊂ Kn, (iii) implies that xn ∈ D. Since
D is compact, we can extract a convergent subsequence xn → x̄ ∈ D.
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Suppose that U(x̄) ̸= ∅. Let z ∈ U(x̄). By (ii) there is a neighborhood W of x̄ contained
in U−1(z). For large enough n, xn ∈ W and z ∈ Kn. Thus z ∈ U(xn)

∩
Kn, contradicting the

maximality of xn. Thus U(x̄) = ∅.
Hypothesis (iii) implies that any U -maximal element must belong to D, and (ii) implies

that the U -maximal set is closed. Thus the U -maximal set is a compact subset of D.

4.10 Theorem
Let C =

∪
n Cn, where {Cn} is an increasing sequence of nonempty compact convex subsets of

Rm. Let U be a binary relation on C satisfying the following:

(i) x /∈ co U(x) for all x ∈ C.

(ii) U−1(x) is open (in C) for each x ∈ C.

(iii) For each escaping sequence {xn}, there is a z ∈ C such that z ∈ U(xn) for infinitely many
n.

Then C has a U -maximal element and the U -maximal set is a closed subset of C.

4.11 Proof
By 4.2 each Cn has a U -maximal element xn, i.e., U(xn)

∩
Cn = ∅. Suppose the sequence

{xn} were escaping from C. Then by the boundary condition (iii), there is a z ∈ C such that
z ∈ U(xn) infinitely often. But since {Cn} is increasing, z ∈ Ck for all sufficiently large k. Thus
for infinitely many n, z ∈ U(xn)

∩
Ck, which contradicts the U -maximality of xk. Thus {xn} is

not escaping from C. This means that some subsequence of {xn} must lie entirely in some Ck,
which is compact. Thus there is a subsequence of {xn} converging to some x̄ ∈ C.

This x̄ is U -maximal: Let xn → x̄ be a convergent subsequence and suppose that there
exists some y ∈ U(x̄). Then for sufficiently large k, y ∈ Ck, and by (ii) there is a neighborhood
of x̄ contained in U−1(y). So for large enough k, y ∈ Ck

∩
U(xk), again contradicting the

maximality of xk. Thus U(x̄) = ∅. The closedness of the U -maximal set follows from (ii).

5 Variational inequalities, price equilibrium, and complemen-
tarity

5.1 Lemma (Hartman and Stampacchia [11, Lemma 1.1])
Let K ⊂ Rm be compact and convex and let f : K → Rm be continuous. Then there exists
p̄ ∈ K such that for all p ∈ K,

p̄ · f(p̄) ⩾ p · f(p̄).

Furthermore, the set of such p̄ is compact.
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5.2 Proof
Define the relation U on K by q ∈ U(p) if and only if

q · f(p) > p · f(p).

Since f is continuous, U has open graph. Also U(p) is convex and p /∈ U(p) for each p ∈ K.
Thus by Fan’s lemma (4.5), there is a p̄ ∈ K with U(p̄) = ∅, i.e., for each p ∈ K it is not
true that p · f(p̄) > p̄ · f(p̄). Thus for all p ∈ K, p̄ · f(p̄) ⩾ p · f(p̄). Conversely, any such p̄ is
U -maximal, so the U -maximal set is compact by 4.5.

5.3 Equilibrium Theorem
Let f : ∆m → Rm+1 be continuous and satisfy

p · f(p) ⩽ 0 for all p.

Then the set {p ∈ ∆ : f(p) ≦ 0} of free disposal equilibrium prices is compact and nonempty.

5.4 Proof
Compactness is immediate. From 5.1 and Walras’ law, there is a p̄ ∈ ∆ such that p · f(p̄) ⩽
p̄ · f(p̄) ⩽ 0 for all p ∈ ∆. Therefore f(p̄) ≦ 0.

5.5 Definition
Let Sm = {x ∈ ∆m : xi > 0, i = 0, . . . , m}, the standard m-simplex. The function f : S →
Rm+1 satisfies the boundary condition (B1) if the following holds.

(B1) there is a p∗ ∈ S and a neighborhood V of ∆ \ S in ∆ such that for all p ∈ V
∩

S,
p∗ · f(p) > 0.

5.6 Theorem (Neuefeind [15, Lemma 1])
Let f : S → Rn+1 be continuous and satisfy the strong form of Walras’ law and the boundary
condition (B1):

(SWL) p · f(p) = 0.

(B1) there is a p∗ ∈ S and a neighborhood V of ∆ \ S in ∆ such that for all p ∈ V
∩

S,
p∗ · f(p) > 0.

Then the set {p : f(p) = 0} of equilibrium prices for f is compact and nonempty.
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5.7 Proof (cf. Aliprantis and Brown [1])
Define the binary relation U on ∆ by

p ∈ U(q) if


p · f(q) > 0 and p, q ∈ S

or

p ∈ S, q ∈ ∆ \ S.

There are two steps in the proof. The first is to show that the U -maximal elements are
precisely the equilibrium prices. The second step is to show that U satisfies the hypotheses
of 4.2.

First suppose that p̄ is U -maximal, i.e., U(p̄) = ∅. Since U(p) = S for all p ∈ ∆ \ S, we
have that p̄ ∈ S. Since p̄ ∈ S and U(p̄) = ∅, we have

for each q ∈ S, q · f(p̄) ⩽ 0.

Therefore f(p̄) ⩽ 0. But the strong form of Walras’ law says that p̄ · f(p̄) = 0. Since p̄ ∈ S, we
must have that f(p̄) = 0.

Conversely, if p̄ is an equilibrium price, then 0 = f(p̄) and since p ·0 = 0 for all p, U(p̄) = ∅.
Verify that U satisfies the hypotheses of 4.2:

(ia) p /∈ U(p): For p ∈ S this follows from Walras’ law. For p ∈ ∆ \ S, p /∈ S = U(p).

(ib) U(p) is convex: For p ∈ S, this is immediate. For p ∈ ∆ \ S, U(p) = S, which is convex.

(ii) If q ∈ U−1(p), then there is a p′ with q ∈ int U−1(p′): There are two cases: (a) q ∈ S and
(b) q ∈ ∆ \ S.

(iia) q ∈ S
∩

U−1(p). Then p · f(q) > 0. Let H = {z : p · z > 0}. Then by continuity of f ,
f−1[H] is a neighborhood of q contained in U−1(p).

(iib) q ∈ (∆ \ S)
∩

U−1(p). By boundary condition (B1) q ∈ int U−1(p∗).

6 Alternate arguments
6.1 Brouwer’s Theorem (3.7) Implies the K–K–M Lemma (2.3)
Let K = co{ai : i = 0, . . . , m}. Then K is convex and compact. Suppose by way of contradiction
that ∩m

i=0 Fi = ∅. Then {F c
i } is an open cover of K and so there is a partition of unity f0, . . . , fm

subordinate to it. Define g : K → K by g(x) =
∑m

i=0 fi(x)ai. This g is continuous and hence
by 3.7 has a fixed point z. Let A = {i : fi(z) > 0}. Then z ∈ co{ai : i ∈ A} and z /∈ Fi for each
i ∈ A, which contradicts co{ai : i ∈ A} ⊂

∪
i∈A Fi.

6.2 Another Proof of the K–K–M Lemma (2.1) Using Brouwer’s Theorem
(cf. Peleg [16])

Let F0, . . . , Fm satisfy the hypotheses of 2.1. Set gi(x) = dist(x, Fi) and define f : ∆ → ∆ by

fi(x) = xi + gi(x)
1 +

∑m
j=0 gj(x)

.
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The function f is clearly continuous, so by Brouwer’s theorem it has a fixed point x̄. Now
x̄ ∈

∪m
i=0 Fi by hypothesis, so some gi(x̄) = 0. For this particular i,

x̄i = x̄i

1 +
∑m

j=0 gj(x̄)
,

which implies gj(x̄) = 0 for all j. That is, ∩m
j=0 Fj ̸= ∅.

6.3 The K–K–M Lemma (2.1) Implies the Brouwer Theorem (3.2) (K–K–
M [12])

Let f : ∆m → ∆m be continuous. Put Fi = {z ∈ ∆ : fi(z) ⩽ zi}. The collections {e0, . . . , em}
and {F0, . . . , Fm} satisfy the hypotheses of the K–K–M lemma: For suppose z ∈ ei0 . . . eik , then∑m

i=0 fi(z) =
∑k

j=0 zij and therefore at least one fij (z) ⩽ zij , so z ∈ Fij . Also each Fi is closed
as f is continuous. Thus ∩m

i=0 Fi is compact and nonempty but ∩m
i=0 Fi is {x ∈ ∆ : f(x) ≦ x}

which is just the set of fixed points of f .

6.4 The K–K–M Lemma (2.1) Implies the Equilibrium Theorem (5.3) (Gale [9])
Put Fi = {p ∈ ∆ : fi(p) ⩽ 0}, i = 0, . . . , m. Then {e0, . . . , em} and {F0, . . . , Fm} satisfy
the hypotheses of the K–K–M lemma: For if p ∈ co{ei0 , . . . , eik}, we cannot have fij (p) > 0
for all j = 0, . . . , k, since then p · f(p) =

∑k
j=0 pik

fik
(p) > 0, a contradiction. Thus co{ei :

i ∈ A} ⊂
∪

i∈A Fi, for any A ⊂ {0, . . . , m}, and each Fi is closed as f is continuous. Thus
{p : f(p) ≦ 0} =

∩m
i=0 Fi is compact and nonempty.

6.5 The Equilibrium Theorem (5.3) Implies the Brouwer Theorem (3.2)
(Uzawa [20])

Let f : ∆m → ∆m be continuous. Define g : ∆ → Rm+1 via

g(x) = f(x) − x · f(x)
x · x

x.

Then g is continuous and satisfies

x · g(x) = x · f(x) − x · f(x)
x · x

x · x = 0 for all x,

i.e., g projects f(x) onto the hyperplane through zero to which x is normal. Thus by 5.3 there
is a p ∈ ∆ with g(p) ≦ 0, i.e.,

fi(p) ⩽ p · f(p)
p · p

pi i = 0, . . . , n. (3)

If pi = 0 then 3, implies fi(p) ⩽ 0 but fi(p) ⩾ 0 as f(p) ∈ ∆; so fi(p) = 0 and hence

fi(p) = p · f(p)
p · p

pi.
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If, on the other hand, pi > 0, then p · g(p) = 0 and g(p) ⩽ 0 imply gi(p) = 0 or

fi(p) = p · f(p)
p · p

pi.

Thus 3 must hold with equality for each i. Summing then over i yields p·f(p)
p·p = 1, so p = f(p).

Thus g(p) ⩽ 0 implies p = f(p), and the converse is clearly true. Hence {p : g(p) ≦ 0} =
{p : p = f(p)}.

6.6 Fan’s Lemma (4.5) Implies the Equilibrium Theorem (5.3) (Brown [6])
For each p ∈ ∆ define U(p) = {q ∈ ∆ : q · f(p) > 0}. Then U(p) is convex for each p and
Walras’ law implies that p /∈ U(p). The continuity of f implies that U has open graph. If p is
U -maximal, then U(p) = ∅, so for all q ∈ ∆, q · f(p) ⩽ 0. Thus f(p) ≦ 0. If f(p) ≦ 0, then
q · f(p) ⩽ 0 for all q ∈ ∆; so by 4.5, {p : f(p) ≦ 0} is compact and nonempty.

6.7 Fan’s Lemma (4.5) Implies Brouwer’s Theorem (3.7) (cf. Fan [8, Theo-
rem 2])

Let f : K → K be continuous, and for each x set U(x) = {y : |y − f(x)| < |x − f(x)|}. Then
for each x, U(x) is convex, x /∈ U(x), and U has open graph. If x is U -maximal, then for all
y ∈ K, |x − f(x)| ⩽ |y − f(x)|. Picking y = f(x) yields |x − f(x)| = 0, so f(x) = x. Conversely,
if x is a fixed point, then U(x) = {y : |y − f(x)| < 0} = ∅. The conclusion is now immediate
from 4.5.

6.8 Remark
The above argument implies the following generalization of Brouwer’s fixed point theorem,
which in turn yields another proof of Lemma 5.1.

6.9 Proposition (Fan [8, Theorem 2])
Let K ⊂ Rm be nonempty compact and convex, and let f : K → Rm be continuous. Then
there exists a point x̄ ∈ K such that

|x̄ − f(x̄)| ⩽ |x − f(x̄)| for all x ∈ K.

(Consequently, if f(K) ⊂ K, then x̄ is a fixed point of f .)

6.10 The Brouwer Theorem Implies Theorem 4.2 (cf. Anderson [2, p. 66])
Suppose U(x) ̸= ∅ for each x. Then for each x there is y ∈ U(x) and so x ∈ U−1(y). Thus
{U−1(y) : y ∈ K} covers K. By (ii), {int U−1(y) : y ∈ K} is an open cover of K. Let f1, . . . , fk

be a partition of unity subordinate to the finite subcover {int U−1(y1), . . . , int U−1(yk)}. Define
the continuous function g : K → K by g(x) =

∑k
i=lf

i(x)yi. It follows from the Brouwer fixed
point theorem that g has a fixed point x̄. Let A = {i : f i(x) > 0}. Then x̄ ∈ U−1(yi)
or yi ∈ U(x̄) for all i ∈ A. Thus x̄ ∈ co{yi : i ∈ A} ⊂ co U(x̄), a contradiction. Thus
{x : U(x) = ∅} is nonempty. It is clearly closed, and hence compact, as K is compact.
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6.11 The Brouwer Theorem (3.2) Implies the Equilibrium Theorem (5.3)
Define the price adjustment function h : ∆ → ∆ by

h(p) = p + f(p)+

1 +
∑

i f(p)+
i

where fi(p)+ = max{fi(p), 0} and f(p)+ = (f0(p)+, . . . , fn(p)+). This is readily seen to satisfy
the hypotheses of 3.2 and so has a fixed point p̄, i.e.,

p̄ = p̄ + f(p̄)+

1 +
∑

i fi(p̄)+ .

By Walras’ law p̄ · f(p̄) ⩽ 0; so for some i, we must have p̄i > 0 and fi(p̄) ⩽ 0. (Otherwise
p̄ · f(p̄) > 0.) For this i, f(p̄)+ = 0, and since

p̄ = p̄ + f(p̄)+

1 +
∑

i fi(p̄)+ ,

it follows that ∑
i fi(p̄)+ = 0. But this implies f(p̄) ≦ 0.

7 What good is a completely labeled subsimplex?
7.1 Theorem
Let {F0, . . . , Fm} satisfy the hypotheses of the K–K–M lemma (2.1). Let ∆ be simplicially
subdivided and labeled as in 2.2. Set F =

∩m
i=0 Fi. Then for every η > 0 there is a δ > 0, such

that if the mesh of the subdivision is less than δ, then every completely labeled subsimplex lies
in Nη(F ).

7.2 Proof
Put gi(x) = dist(x, Fi) and g = maxi gi. Since K \ (Nη(F )) is compact, and g is continuous, it
follows that g achieves a minimum value δ > 0. Let x0 · · · xm be a completely labeled subsimplex
of diameter < δ containing the point x. Since x0 · · · xm is completely labeled, xi ∈ Fi and so
dist(x, Fi) ⩽ |x − xi| < δ for all i. Thus g(x) < δ, so x ∈ Nη(F ).

7.3 Theorem
Let f : ∆ → ∆ and put F = {z : f(z) = z}. Let ∆ be subdivided and labeled as in 3.3. Then
for every η > 0 there is a δ > 0, such that if the mesh of the subdivision is less than δ, then
every completely labeled subsimplex lies in Nη(F ).

7.4 Proof
Put Fi = {z : fi(z) ⩽ zi}. Then each Fi is closed and F =

∩m
i=0 Fi. If the simplex x0 · · · xm is

completely labeled, then xi ∈ Fi and the conclusion follows from 7.1.
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7.5 Theorem
Let f satisfy the hypotheses of Brouwer’s fixed point theorem (3.7) and let F be the set of fixed
points of f . Then for every η > 0 there is a δ > 0 such that |f(z) − z| < δ implies z ∈ Nη(F ).

7.6 Proof (Green [10])
Set g(z) = |f(z) − z|. Since C = K \ Nη(F ) is compact and g is continuous, δ = minz∈C g(z)
satisfies the conclusion of the theorem.
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