Caltech Division of the Humanities and Social Sciences

Euler's Theorem for Homogeneous Functions

KC Border October 2000 v. 2017.10.27::16.34

1 Definition Let X be a subset of \mathbb{R}^n . A function $f: X \to \mathbb{R}$ is homogeneous of degree k if for all $x \in X$ and all $\lambda > 0$ with $\lambda x \in X$,

$$f(\lambda x) = \lambda^k f(x).$$

- Note that if $0 \in X$ and f is homogeneous of degree $k \neq 0$, then $f(0) = f(\lambda 0) = \lambda^k f(0)$, so setting $\lambda = 2$, we see $f(0) = 2^k f(0)$, which implies f(0) = 0.
- A constant function is homogeneous of degree 0.
- If a function is homogeneous of degree 0, then it is constant on rays from the the origin.
- Linear functions are homogenous of degree one.
- The economists' favorite homogeneous function is the weighted geometric mean with domain \mathbf{R}^{n}_{+} , which they know as the Cobb–Douglas function [3],

$$f(x_1,\ldots,x_n)=x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n},$$

where each $\alpha_i > 0$. It is homogeneous of degree $\alpha = \alpha_1 + \cdots + \alpha_n$.

• If f_1, \ldots, f_m are homogeneous of degree k and g is homogeneous of degree ℓ , then $h(x) = g(f_1(x), \ldots, f_m(x))$ is homogeneous of degree $k + \ell$.

2 Remark Usually the domain of f will be taken to be a **cone**, that is, a set in \mathbb{R}^n closed under multiplication by positive scalars. Indeed, we often take the domain to be the set \mathbb{R}^n_+ of vectors with nonnegative components, or the set \mathbb{R}^n_{++} of vectors with strictly positive components. Apostol [2, Exercises 8, 9, p. 287] proves the following theorem for any open domain. The proof is the same as the one used here.

3 Euler's theorem Let $f: \mathbb{R}^n_+ \to \mathbb{R}$ be continuous and also differentiable on \mathbb{R}^n_{++} . Then f is homogeneous of degree k if and only if for all $x \in \mathbb{R}^n_{++}$,

$$\sum_{i=1}^{n} D_i f(x) x_i = k f(x).$$
 (*)

Proof: (\Longrightarrow) Assume f is homogeneous of degree k. Let $x \in \mathbb{R}^{n}_{++}$. Define the function $g: [0, \infty) \to \mathbb{R}$ (depending on x) by

$$g(\lambda) = f(\lambda x) - \lambda^k f(x),$$

and note that for all $\lambda > 0$,

$$g(\lambda) = 0.$$

Therefore

$$g'(\lambda) = 0$$

for all $\lambda > 0$. But by the chain rule,

$$g'(\lambda) = \sum_{i=1}^{n} D_i f(\lambda x) x_i - k \lambda^{k-1} f(x).$$

Evaluate this at $\lambda = 1$ to obtain (*).

 (\Leftarrow) Suppose

$$kf(x) = \sum_{i=1}^{n} D_i f(x) x_i$$

for all $x \in \mathbf{R}_{++}^{n}$. Fix any such x and again define $g \colon I \to \mathbf{R}$ (depending on x) by

$$g(\lambda) = f(\lambda x) - \lambda^k f(x)$$

and note that g(1) = 0. Then for $\lambda > 0$,

$$g'(\lambda) = \sum_{i=1}^{n} D_i f(\lambda x) x_i - k \lambda^{k-1} f(x)$$
$$= \lambda^{-1} \left(\sum_{i=1}^{n} D_i f(\lambda x) \lambda x_i \right) - k \lambda^{k-1} f(x)$$
$$= \lambda^{-1} k f(\lambda x) - k \lambda^{k-1} f(x),$$

 \mathbf{SO}

$$\lambda g'(\lambda) = k(f(\lambda x) - \lambda^k f(x))$$
$$= kg(\lambda).$$

v. 2017.10.27::16.34

Since λ is arbitrary, g satisfies the following differential equation:

$$g'(\lambda) - \frac{k}{\lambda}g(\lambda) = 0$$

and the initial condition g(1) = 0. By Theorem 7 below,

$$g(\lambda) = 0 \cdot e^{A(\lambda)} + e^{-A(\lambda)} \int_1^\lambda 0 \cdot e^{A(t)} dt = 0$$

where, irrelevantly, $A(\lambda) = -\int_{1}^{\lambda} \frac{k}{t} dt = -k \ln \lambda$. This implies g is identically zero, so f is homogeneous on \mathbf{R}_{++}^{n} . Continuity guarantees that f is homogeneous on X.

4 Corollary Let $f: \mathbb{R}^n_+ \to \mathbb{R}$ be continuous and differentiable on \mathbb{R}^n_{++} . If f is homogeneous of degree k, then $D_j f(x)$ is homogeneous of degree k-1.

Proof if f is twice differentiable: By the first half of Euler's theorem,

$$\sum_{i=1}^{n} D_i f(x) x_i = k f(x)$$

so differentiating both sides with respect to the j^{th} variable,

$$D_j\left(\sum_{i=1}^n D_i f(x) x_i\right) = k D_j f(x)$$

or

$$\sum_{i=1}^{n} D_{ij}f(x)x_i + D_jf(x) = kD_jf(x)$$

or

$$\sum_{i=1}^{n} D_{ij} f(x) x_i = (k-1) D_j f(x).$$
(1)

Thus $D_j f(x)$ is homogeneous of degree (k-1) by second half of Euler's theorem.

Proof without twice differentiability: The difference quotients satisfy

$$\frac{f(\lambda x + \lambda h) - f(\lambda x)}{\|\lambda h\|} = \frac{\lambda^k f(x+h) - \lambda^k f(x)}{\lambda \|h\|} = \lambda^{k-1} \frac{f(x+h) - f(x)}{\|h\|}$$

whenever $\lambda > 0$. Thus f is differentiable at λx if and only if it is differentiable at x and $D_i f(\lambda x) = \lambda^{k-1} D_i f(x)$ for all $i = 1, \ldots, n$.

v. 2017.10.27::16.34

5 Corollary If f is homogeneous of degree k, then

$$\frac{D_i f(\lambda x)}{D_j f(\lambda x)} = \frac{D_i f(x)}{D_j f(x)}$$

for $\lambda > 0$ and $x \in \mathbf{R}_{++}^{n}$.

Proof: By Corollary 4 each f_i satisfies $D_i f(\lambda x) = \lambda^{k-1} D_i f(x)$, so

$$\frac{D_i f(\lambda x)}{D_j f(\lambda x)} = \frac{\lambda^{k-1} D_i f(x)}{\lambda^{k-1} D_j f(x)} = \frac{D_i f(x)}{D_j f(x)}.$$

6 Corollary If f is homogeneous of degree 1 and twice differentiable, then the Hessian matrix $[D_{ij}f(x)]$ is singular for all $x \in \mathbb{R}^{n}_{++}$.

Proof: By (1),

$$\sum_{i=1}^{n} D_{ij} f(x) x_i = (k-1) D_j f(x).$$

When k = 1 this becomes $[D_{ij}f(x)]x = 0$ in matrix terms, so for $x \neq 0$ we conclude that $[D_{ij}f(x)]$ is singular.

7 Theorem (Solution of first order linear differential equations)

Assume P, Q are continuous on the open interval I. Let $a \in I, b \in \mathbf{R}$.

Then there is one and only one function y = f(x) that satisfies the initial value problem

$$y' + P(x)y = Q(x)$$

with f(a) = b. It is given by

$$f(x) = be^{-A(x)} + e^{-A(x)} \int_{a}^{x} Q(t)e^{A(t)} dt$$

where

$$A(x) = \int_{a}^{x} P(t) \, dt.$$

For a proof see [1, Theorems 8.2 and 8.3, pp. 309–310].

v. 2017.10.27::16.34

References

- [1] Apostol, T. M. 1967. *Calculus*, 2d. ed., volume 1. Waltham, Massachusetts: Blaisdell.
- [2] Apostol, T. M. 1969. *Calculus*, 2d. ed., volume 2. Waltham, Massachusetts: Blaisdell.
- [3] Cobb, C. W. and P. H. Douglas. 1928. A theory of production. American Economic Review 18(1):139–165. Supplement, Papers and Proceedings of the Fortieth Annual Meeting of the American Economic Association.