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The graph of a real-valued function f on [0, 1] is a curve in the plane,
and we shall also refer to the curve itself as f . Given a one-dimensional
parametrized family fα : [0, 1] → R of such curves, where α runs over some
interval, the curve h : [0, 1] → R is the envelope of the family if each point
on the curve h is tangent to the graph of one of the curves fα and each curve
fα is tangent to h. (See, e.g., Apostol [1, p. 342] for this definition.) That
is, for each α, there is some t and also for each t, there is some α, satisfying

fα(t) = h(t) and f ′
α(t) = h′(t).

If the correspondence between curves and points on the envelope is one-to-
one, then we may regard h as a function of α.

Consider now an unconstrained parametrized maximization problem.
Let x∗(p) be the value of the control variable x that maximizes f(x, p),
where p is our parameter of interest. For fixed x, the function

φx(p) = f(x, p)

defines a curve (or more generally a surface). The value function V (p)
satisfies

V (p) = f
(
x∗(p), p

)
= max

x
φx(p).

Under appropriate conditions, the graph of the value function V will be the
envelope of the curves (surfaces) φx. “Envelope theorems” in maximization
theory are concerned with the tangency conditions this entails.

To get a picture of this result, imagine a plot of the graph of f . It is the
surface z = f(x, p) in (x, p, z)-space. Orient the graph so that the x-axis is
perpendicular to the page and the p-axis runs horizontally across the page,
and the z-axis is vertical. The high points of the surface (minus perspective
effects) determine the graph of the value function V . Here is an example:

1 Example Let

f(x, p) = p − (x − p)2 + 1, 0 ⩽ x, p ⩽ 2.
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Figure 1. Graph of f(x, p) = p − (x − p)2 + 1.
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Figure 2. Graph of f(x, p) = p − (x − p)2 + 1 viewed from the side.
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See Figure 1. Then given p, the maximizing x is given by x∗(p) = p, and
V (p) = p + 1. The side-view of this graph in Figure 2 shows that the high
points do indeed lie on the line z = 1 + p. For each x, the function φx is
given by

φx(p) = p − (x − p)2 + 1.

The graphs of these functions and of V are shown for selected values of x in
Figure 3. Note that the graph of V is the envelope of the family of graphs
of the functions φx. Consequently the slope of V is the slope of the φx to
which it is tangent, that is,

V ′(p) = ∂f

∂p

∣∣∣
x=x∗(p)=p

= 1 + 2(x − p)
∣∣∣
x=p

= 1.

This last observation is one version of the Envelope Theorem. □

1 An envelope theorem for unconstrained maxi-
mization

The following theorem is proven in my on-line notes on maximization.

2 Envelope theorem for unconstrained maximization Let X be a
metric space and P an open subset of Rn. Let w : X × P → R and assume
∂w
∂p exists and is continuous in X × P . For each p ∈ P , let x∗(p) maximize
w(x, p) over X. Set

V (p) = w
(
x∗(p), p

)
.

Assume that x∗ : P → X is a continuous function. Then V is continuously
differentiable and

DV (p) = ∂w

∂p

(
x∗(p), p

)
.

2 Constrained Maxima
3 Theorem Let X ⊂ Rn and P ⊂ Rℓ be open, and assume that the
functions f, g1, . . . , gm : X × P → R are C1. For each p ∈ P , let x∗(p) be an
interior constrained local maximizer of f(x, p) subject to g(x, p) = 0. Define
the Lagrangean

L(x, λ; p) = f(x, p) +
m∑

i=1
λigi(x, p),

v. 2015.11.11::14.20
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Figure 3. Graph of V (p) = p + 1 as the envelope of the family of curves
{φx(p) : x = 0.0, 0.2, . . . , 2.0}, where φx(p) = p − (x − p)2 + 1 = f(x, p).

v. 2015.11.11::14.20



KC Border Classical Envelope Theorem 6

and assume that the conclusion of the Lagrange Multiplier Theorem holds
for each p, that is, there exist real numbers λ∗

1(p), . . . , λ∗
m(p), such that the

first order conditions

∂L
(
x∗(p), λ∗(p), p

)
∂x

= ∇xf
(
x∗(p), p

)
+

m∑
i=1

λ∗
i (p)∇xgi

(
x∗(p), p

)
= 0

are satisfied. Assume that x∗ : P → X and λ∗ : P → Rm are C1. Set

V (p) = f (x∗(p), p) .

Then V is C1 and

∂V (p)
∂pj

=
∂L
(
x∗(p), λ∗(p), p

)
∂pj

= ∂f(x∗, p)
∂pj

+
m∑

i=1
λ∗

i

∂gi(x∗, p)
∂pj

.

Proof : Clearly V is C1 as the composition of C1 functions. Since x∗ satisfies
the constraints, we have

V (p) = f
(
x∗(p), p

)
= f

(
x∗(p), p

)
+

m∑
i=1

λ∗
i (p)gi

(
x∗(p), p

)
.

Therefore by the chain rule,

∂V (p)
∂pj

=
(

n∑
k=1

∂f(x∗, p)
∂xk

∂x∗
k

∂pj

)
+ ∂f(x∗, p)

∂pj

+
m∑

i=1

{
∂λ∗

i

∂pj
gi(x∗, p) + λ∗

[(
n∑

k=1

∂gi(x∗, p)
∂xk

∂x∗
k

∂pj

)
+ ∂gi(x∗, p)

∂pj

]}

= ∂f(x∗, p)
∂pj

+
m∑

i=1
λ∗

i

∂gi(x∗, p)
∂pj

+
m∑

i=1

∂λ∗
i

∂pj
gi(x∗, p) (1)

+
n∑

k=1

(
∂f(x∗, p)

∂xk
+

m∑
i=1

λ∗ ∂gi(x∗, p)
∂xk

)
∂x∗

k

∂pj
. (2)

The theorem now follows from the fact that both terms (1) and (2) are zero.
Term (1) is zero since x∗ satisfies the constraints, and term (2) is zero, since
the first order conditions imply that each ∂f(x∗,p)

∂xk
+
∑m

i=1 λ∗ ∂gi(x∗,p)
∂xk

= 0.
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2.1 Another Envelope Theorem
The previous theorem assume only that the conclusion of Lagrange Multi-
plier Theorem held. This version requires the assumptions of the Lagrange
Multiplier Theorem to hold, but dispenses with the assumption that the
multipliers are a C1 function of the parameters. At the moment, there is an
uncomfortable gap in the proof, so label it a conjecture.

4 Conjecture Let X ⊂ Rn and P ⊂ Rℓ be open, and assume that the
functions f, g1, . . . , gm : X × P → R are C1. For each p ∈ P , let x∗(p) be
an interior constrained local maximizer of f(x, p) subject to g(x, p) = 0.
Assume that for each p, the gradients (with respect to x) gi

′
x are linearly

independent at
(
x∗(p), p

)
. Assume that x∗ : P → X is C1.

Define the Lagrangean

L(x, λ; p) = f(x, p) +
m∑

i=1
λigi(x, p).

Then for each p there exist real numbers λ∗
1(p), . . . , λ∗

m(p), such that the
first order conditions Notation!!!!

∂L
(
x∗(p), λ∗(p), p

)
∂x

= f ′
x

(
x∗(p), p

)
+

m∑
i=1

λ∗
i (p)gi

′
x

(
x∗(p), p

)
= 0

are satisfied. Set
V (p) = f (x∗(p), p) .

Then V is C1 and

∂V (p)
∂pj

=
∂L
(
x∗(p), λ∗(p), p

)
∂pj

= ∂f(x∗, p)
∂pj

+
m∑

i=1
λ∗

i (p)∂gi(x∗, p)
∂pj

.

The main idea of this proof appears in many places, e.g., Silberberg [4,
5], Clarke et. al. [2], and Diamond and McFadden [3] (who attribute it to
Gorman).

Proof : As in the proof of Theorem 3, the function V is clearly C1. Now
observe that we can embed our maximization in the family of problems

maximize f(x, p) subject to g(x, p) − α = 0 (P(α))

where α ranges over a neighborhood 0 in Rm. The first thing we have to
show is that for each α, there is some (x, p) satisfying g(x, p) + α = 0. We

v. 2015.11.11::14.20
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have already assumed that for each p there is some xp satisfying g(xp, p) = 0.
Indeed xp = x∗(p) works. Now consider the function

hp(x, α) = g(x, p) − α.

By hypothesis hp(xp, 0) = 0. The Jacobian of h with respect to x is just the
Jacobian of g, which is of full rank by our linear independence hypothesis.
Therefore by the Implicit Function Theorem, there is a neighborhood U of
0 in Rm such that α ∈ U implies the existence of some x̂p(α) such that
hp
(
x̂p(α), α

)
= 0. Thus each problem P(α) is feasible.

One gap in the proof is to show that in fact each P(α) has an optimal
solution. Assume for now that this is so, and let x∗(p, α) = x̂p(α) be the
optimum. Another gap is to show that x∗ is a differentiable function of both
p and α. (This is another application of the Implicit Function Theorem, but
I’ll leave it out for now.) Modify the definition of V so that

V (p, α) = f
(
x∗(p, α), p).

Now for any x and p, if we set α = g(x, p), then x satisfies g(x, p) + α = 0.
In particular, the value f(x, p) is less than or equal to the optimal value
V
(
p, g(x, p)

)
. In other words,

h(x, p) = V
(
p, g(x, p)

)
− f(x, p) ⩾ 0,

and is equal to zero for x = x∗(p, g(x, p)
)
. Thus minima of h occur whenever

x = x∗(p, 0). The first order conditions for this minimum are that

∂h

∂xj
= 0 j = 1, . . . , n,

∂h

∂pi
= 0 i = 1, . . . , m.

The first group of first order conditions imply

∂h

∂xj
=

m∑
k=1

∂V

∂αi

∂gk

∂xj
− ∂f

∂xj
= 0,

which tells us that
λ∗

i = − ∂V

∂αi

are the desired Lagrange multipliers. The second group of first order condi-
tions imply

∂h

∂pi
= ∂V

∂pi
+

m∑
k=1

∂V

∂αi

∂gk

∂pi
− ∂f

∂pi
= 0,

v. 2015.11.11::14.20
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or using the Lagrange multipliers defined above

∂V

∂pi
= ∂f

∂pi
+

m∑
k=1

λ∗ ∂gk

∂pi
,

where of course the partials are evaluated at the optimizers.
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