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Assume p > 0, w > 0, u is continuous and locally nonsatiated on R, and v is C?, u/ > 0
and strongly quasiconcave (its Hessian is negative definite on the subspace orthogonal to the
gradient) on RY .

Utility Maximization Expenditure Minimization
maximize u(x) subject tow —p-x =0 minimize p - ¢ subject to u(z) —v =0
x x
Solution
Ordinary (Walrasian) Demand Hicksian Compensated Demand
z*(p, w) (p, v)
x* is homogeneous of degree zero in (p, w). Z is homogeneous of degree zero in p.

Value function

Indirect Utility Expenditure Function
U(p)w) :U(:L'*(p,'UJ)) e(p,v) :p‘%(pav)
v is quasiconvex in p, decreasing in p, strictly e is concave in p, increasing in p, strictly in-
increasing in w, homogeneous of degree zero creasing in v, homogeneous of degree 1 in p.

in (p,w).

Statement of Equivalence

1’*(]9, w) = fj'(p, U(p,lU)) i‘(pv U) =" (p7€(pa U))
w= e(p,v(p, w)) v = U(p, e(p,v))
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Utility Maximization

Expenditure Minimization

L(x, \sp,w) =u(x) + AMw—p-x)

Lagrangean

L(x, p;p,v) = p - — p(u(z) —v)

Lagrangean partials with respect to parameters

9L(z, Aipw) 9L(z, pip,v) _
Op; ! Op;j ’
0L(x Nipw) _ 9L(z, pipv) _
ow ov
Envelope Theorem
ov(p,w) de(p,v) .
= -X(p,w)x%(p, w = Zj(p,v
o (9 10)25 7. 0) o = im0
ov(p,w) |, de(p,v) .
5 A (p,w) ER fi(p,v)

Roy’s Law

ov(p,w)

. _ Ip;
€ (p,w) = — m

ow

Hotelling/Shephard’s Lemma

de(p,v)
Op;

'ﬁj(pﬂj) =

The Slutsky equation

From the equivalence

2(p,v) = z*(p, e(p,v))

differentiating with respect to p; yields

Oip,v) _ Ori(p.ep,v))  0i(p,e(p,v)) delp,v)

Opj
But Oe(p,v) —

Ip; ow Op;

o, 2j(p,v) = 3 (p, e(p,v)). Set w = e(p,v), and write

6@1(17, U) _

Oz (p, w)

8]9]'

" Oz} (p, w)
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which implies the Slutsky equation

apj 8pj

i 9z (p, w)
-y (pvw)Ta

where v = v(p, w), which decomposes the effect of a price change into its substitution effect
and income effect.

But
O&;(p,v)  9%e(p,v)

Opj Op;Op;

so since e is concave in p, its Hessian is negative semidefinite (and symmetric), so the matrix

I

dx}(p, w)
8pj

Consequently the diagonal terms satisfy

Oz} (p, w)

+aj(pw) =5

is negative semidefinite and symmetric.

92i(p,v) _ dxi(p,w) 9z (p, w)
— ) * 7 < 07
and we have the unusual reciprocity relation
Ozi(p,w) | dzf(p,w) _ Ozj(p,w) 0z} (p,w)
Top T (pyw)—5 — = op T (py w)—7 —-

Quasiconvexity of indirect utility
Recall that a function f is quasiconvex if for every a € R the lower contour set

{z: f(z) < a} is convex . (1)
This is equivalent to the following statement: For every x and y and every 0 < A < 1,

FL =Nz +Ay) < max{f(2), f(y)}. (2)

The proof of equivalence is easy. Let a = max{f(z), f(y)} and define L = {z : f(z) < a}.
To see that (1) = (2), let z,y € L. Since L is convex, (1 — \)z + Ay € L, that is,
F(1=X)z+Ay) < a=max{f(z), f(y)}. Conversely if (2) holds, then (1—N)z+ Ay € L, so L

is convex.
To see that the indirect utility v is quasiconvex in p, let p* = (1=X\)p°+Ap!, with 0 < X < 1,
and let x satisfy the budget constraint

p’\-xgw.

This implies at least one of p° -z < w or p' -z < w must hold.! In the first case u(x) < v(p°, w)
and in the second case u(z) < v(p!, w). Therefore

v, w) = max u(z) < max{v(p’, w),v(pt, w)}.
z:pr-z<w

'Suppose not. Then p° -z > w and p' - & > w. Thus (1 — N\)p° -2 > (1 — M)w and Ap' - 2 > dw. Adding the
two gives p* - > w, contrary to our choice of x.
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