

Crib Sheet on Demand Theory

KC Border October 20, 2003 corrected October 22, 2013 v. 2016.01.15::00.04

Assume $p \gg 0$, w > 0, u is continuous and locally nonsatiated on \mathbb{R}^{n}_{+} , and u is C^{2} , $u' \gg 0$ and strongly quasiconcave (its Hessian is negative definite on the subspace orthogonal to the gradient) on \mathbb{R}^{n}_{++} .

Utility Maximization	Expenditure Minimization
$\underset{x}{\text{maximize } u(x) \text{ subject to } w - p \cdot x = 0}$	$\underset{x}{\text{minimize}} p \cdot x \text{ subject to } u(x) - v = 0$
Solu	tion
Ordinary (Walrasian) Demand	Hicksian Compensated Demand
$x^*(p,w)$	$\hat{x}(p, \upsilon)$
x^* is homogeneous of degree zero in (p, w) .	\hat{x} is homogeneous of degree zero in p .
Value function	
Indirect Utility	Expenditure Function
$v(p,w) = u\big(x^*(p,w)\big)$	$e(p,\upsilon) = p \cdot \hat{x}(p,\upsilon)$
v is quasiconvex in p , decreasing in p , strictly increasing in w , homogeneous of degree zero in (p, w) .	e is concave in p , increasing in p , strictly increasing in v , homogeneous of degree 1 in p .
Statement of Equivalence	

$x^*(p,w) = \hat{x}\big(p,v(p,w)\big)$	$\hat{x}(p,v) = x^* \big(p, e(p,v) \big)$
w = e(p, v(p, w))	$\upsilon = \upsilon \bigl(p, e(p, \upsilon) \bigr)$

Expenditure Minimization

Lagrangean

$$\mathcal{L}(x,\lambda;p,w) = u(x) + \lambda(w - p \cdot x)$$

$$\mathcal{L}(x,\mu;p,\upsilon) = p \cdot x - \mu(u(x) - \upsilon)$$

Lagrangean partials with respect to parameters

$$\begin{split} \frac{\partial \mathcal{L}(x,\lambda;p,w)}{\partial p_j} &= -\lambda x_j \\ \frac{\partial \mathcal{L}(x,\lambda;p,w)}{\partial w} &= \lambda \\ \frac{\partial \mathcal{L}(x,\lambda;p,w)}{\partial v} &= \lambda \\ \end{split}$$

Envelope Theorem

$$\frac{\partial v(p,w)}{\partial p_j} = -\lambda^*(p,w)x_j^*(p,w)$$

$$\frac{\partial v(p,w)}{\partial w} = \lambda^*(p,w)$$

Roy's Law

$$x_j^*(p,w) = -\frac{\frac{\partial v(p,w)}{\partial p_j}}{\frac{\partial v(p,w)}{\partial w}}$$

 $\frac{\partial e(p,v)}{\partial v} = \hat{\mu}(p,v)$

 $\frac{\partial e(p,v)}{\partial p_j} = \hat{x}_j(p,v)$

Hotelling/Shephard's Lemma

$$\hat{x}_j(p,v) = \frac{\partial e(p,v)}{\partial p_j}$$

The Slutsky equation

From the equivalence

$$\hat{x}(p,\upsilon) = x^*(p,e(p,\upsilon))$$

differentiating with respect to p_{j} yields

$$\frac{\partial \hat{x}_i(p,\upsilon)}{\partial p_j} = \frac{\partial x_i^*(p,e(p,\upsilon))}{\partial p_j} + \frac{\partial x_i^*(p,e(p,\upsilon))}{\partial w} \frac{\partial e(p,\upsilon)}{\partial p_j}$$

But $\frac{\partial e(p,v)}{\partial p_j} = \hat{x}_j(p,v) = x_j^*(p,e(p,v))$. Set w = e(p,v), and write

$$\frac{\partial \hat{x}_i(p,v)}{\partial p_j} = \frac{\partial x_i^*(p,w)}{\partial p_j} + x_j^*(p,w) \frac{\partial x_i^*(p,w)}{\partial w}$$

v. 2016.01.15::00.04

which implies the Slutsky equation

$$\frac{\partial x_i^*(p,w)}{\partial p_j} = \frac{\partial \hat{x}_i(p,v)}{\partial p_j} - x_j^*(p,w) \frac{\partial x_i^*(p,w)}{\partial w},$$

where v = v(p, w), which decomposes the effect of a price change into its substitution effect and income effect.

But

$$\frac{\partial \hat{x}_i(p,v)}{\partial p_j} = \frac{\partial^2 e(p,v)}{\partial p_i \partial p_j},$$

so since e is concave in p, its Hessian is negative semidefinite (and symmetric), so the matrix

$$\left[\frac{\partial x_i^*(p,w)}{\partial p_j} + x_j^*(p,w)\frac{\partial x_i^*(p,w)}{\partial w}\right]$$
 is negative semidefinite and symmetric.

Consequently the diagonal terms satisfy

$$\frac{\partial \hat{x}_i(p,v)}{\partial p_i} = \frac{\partial x_i^*(p,w)}{\partial p_i} + x_i^*(p,w) \frac{\partial x_i^*(p,w)}{\partial w} \leqslant 0,$$

and we have the unusual **reciprocity** relation

$$\frac{\partial x_i^*(p,w)}{\partial p_j} + x_j^*(p,w) \frac{\partial x_i^*(p,w)}{\partial w} = \frac{\partial x_j^*(p,w)}{\partial p_i} + x_i^*(p,w) \frac{\partial x_j^*(p,w)}{\partial w}$$

Quasiconvexity of indirect utility

Recall that a function f is **quasiconvex** if for every $\alpha \in \mathbf{R}$ the lower contour set

$$\{x : f(x) \leq \alpha\} \text{ is convex }. \tag{1}$$

This is equivalent to the following statement: For every x and y and every $0 < \lambda < 1$,

$$f((1-\lambda)z + \lambda y) \leq \max\{f(z), f(y)\}.$$
(2)

The proof of equivalence is easy. Let $\alpha = \max\{f(z), f(y)\}$ and define $L = \{x : f(x) \leq \alpha\}$. To see that (1) \implies (2), let $x, y \in L$. Since L is convex, $(1 - \lambda)z + \lambda y \in L$, that is, $f((1 - \lambda)z + \lambda y) \leq \alpha = \max\{f(z), f(y)\}$. Conversely if (2) holds, then $(1 - \lambda)z + \lambda y \in L$, so L is convex.

To see that the indirect utility v is quasiconvex in p, let $p^{\lambda} = (1-\lambda)p^0 + \lambda p^1$, with $0 < \lambda < 1$, and let x satisfy the budget constraint

$$p^{\lambda} \cdot x \leqslant w.$$

This implies at least one of $p^0 \cdot x \leq w$ or $p^1 \cdot x \leq w$ must hold.¹ In the first case $u(x) \leq v(p^0, w)$ and in the second case $u(x) \leq v(p^1, w)$. Therefore

$$v(p^{\lambda}, w) = \max_{x: p^{\lambda} \cdot x \leqslant w} u(x) \leqslant \max\{v(p^0, w), v(p^1, w)\}.$$

¹Suppose not. Then $p^0 \cdot x > w$ and $p^1 \cdot x > w$. Thus $(1 - \lambda)p^0 \cdot x > (1 - \lambda)w$ and $\lambda p^1 \cdot x > \lambda w$. Adding the two gives $p^{\lambda} \cdot x > w$, contrary to our choice of x.