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Assume p ≫ 0, w > 0, u is continuous and locally nonsatiated on Rn
+, and u is C2, u′ ≫ 0

and strongly quasiconcave (its Hessian is negative definite on the subspace orthogonal to the
gradient) on Rn

++.

Utility Maximization Expenditure Minimization

maximize
x

u(x) subject to w − p · x = 0 minimize
x

p · x subject to u(x) − υ = 0

Solution
Ordinary (Walrasian) Demand Hicksian Compensated Demand

x∗(p, w) x̂(p, υ)

x∗ is homogeneous of degree zero in (p, w). x̂ is homogeneous of degree zero in p.

Value function
Indirect Utility Expenditure Function

v(p, w) = u
(
x∗(p, w)

)
e(p, υ) = p · x̂(p, υ)

v is quasiconvex in p, decreasing in p, strictly
increasing in w, homogeneous of degree zero
in (p, w).

e is concave in p, increasing in p, strictly in-
creasing in υ, homogeneous of degree 1 in p.

Statement of Equivalence

x∗(p, w) = x̂
(
p, v(p, w)

)
w = e

(
p, v(p, w)

) x̂(p, υ) = x∗(
p, e(p, υ)

)
υ = v

(
p, e(p, υ)

)
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Utility Maximization Expenditure Minimization

Lagrangean

L(x, λ; p, w) = u(x) + λ(w − p · x) L(x, µ; p, υ) = p · x − µ
(
u(x) − υ

)

Lagrangean partials with respect to parameters

∂L(x, λ; p, w)
∂pj

= −λxj
∂L(x, µ; p, υ)

∂pj
= xj

∂L(x, λ; p, w)
∂w

= λ
∂L(x, µ; p, υ)

∂υ
= µ

Envelope Theorem

∂v(p, w)
∂pj

= −λ∗(p, w)x∗
j (p, w) ∂e(p, υ)

∂pj
= x̂j(p, υ)

∂v(p, w)
∂w

= λ∗(p, w) ∂e(p, υ)
∂υ

= µ̂(p, υ)

Roy’s Law Hotelling/Shephard’s Lemma

x∗
j (p, w) = −

∂v(p, w)
∂pj

∂v(p, w)
∂w

x̂j(p, υ) = ∂e(p, υ)
∂pj

The Slutsky equation
From the equivalence

x̂(p, υ) = x∗(
p, e(p, υ)

)
differentiating with respect to pj yields

∂x̂i(p, υ)
∂pj

=
∂x∗

i

(
p, e(p, υ)

)
∂pj

+
∂x∗

i

(
p, e(p, υ)

)
∂w

∂e(p, υ)
∂pj

.

But ∂e(p,υ)
∂pj

= x̂j(p, υ) = x∗
j

(
p, e(p, υ)

)
. Set w = e(p, υ), and write

∂x̂i(p, υ)
∂pj

= ∂x∗
i (p, w)
∂pj

+ x∗
j (p, w)∂x∗

i (p, w)
∂w
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which implies the Slutsky equation

∂x∗
i (p, w)
∂pj

= ∂x̂i(p, υ)
∂pj

− x∗
j (p, w)∂x∗

i (p, w)
∂w

,

where υ = v(p, w), which decomposes the effect of a price change into its substitution effect
and income effect.

But
∂x̂i(p, υ)

∂pj
= ∂2e(p, υ)

∂pi∂pj
,

so since e is concave in p, its Hessian is negative semidefinite (and symmetric), so the matrix[
∂x∗

i (p, w)
∂pj

+ x∗
j (p, w)∂x∗

i (p, w)
∂w

]
is negative semidefinite and symmetric.

Consequently the diagonal terms satisfy
∂x̂i(p, υ)

∂pi
= ∂x∗

i (p, w)
∂pi

+ x∗
i (p, w)∂x∗

i (p, w)
∂w

⩽ 0,

and we have the unusual reciprocity relation

∂x∗
i (p, w)
∂pj

+ x∗
j (p, w)∂x∗

i (p, w)
∂w

=
∂x∗

j (p, w)
∂pi

+ x∗
i (p, w)

∂x∗
j (p, w)
∂w

.

Quasiconvexity of indirect utility
Recall that a function f is quasiconvex if for every α ∈ R the lower contour set

{x : f(x) ⩽ α} is convex . (1)

This is equivalent to the following statement: For every x and y and every 0 < λ < 1,

f
(
(1 − λ)z + λy

)
⩽ max{f(z), f(y)}. (2)

The proof of equivalence is easy. Let α = max{f(z), f(y)} and define L = {x : f(x) ⩽ α}.
To see that (1) =⇒ (2), let x, y ∈ L. Since L is convex, (1 − λ)z + λy ∈ L, that is,
f

(
(1 − λ)z + λy

)
⩽ α = max{f(z), f(y)}. Conversely if (2) holds, then (1 − λ)z + λy ∈ L, so L

is convex.
To see that the indirect utility v is quasiconvex in p, let pλ = (1−λ)p0 +λp1, with 0 < λ < 1,

and let x satisfy the budget constraint

pλ · x ⩽ w.

This implies at least one of p0 · x ⩽ w or p1 · x ⩽ w must hold.1 In the first case u(x) ⩽ v(p0, w)
and in the second case u(x) ⩽ v(p1, w). Therefore

v(pλ, w) = max
x:pλ·x⩽w

u(x) ⩽ max{v(p0, w), v(p1, w)}.

1Suppose not. Then p0 · x > w and p1 · x > w. Thus (1 − λ)p0 · x > (1 − λ)w and λp1 · x > λw. Adding the
two gives pλ · x > w, contrary to our choice of x.
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