
Division of the Humanities
and Social Sciences

The “Integrability Problem”
KC Border
October 2003

Revised November 2014
v. 2016.11.09::17.22

The simplest formulation of the consumer’s problem in economics is to choose a “market
basket” (a point in Rn

+) of n goods subject to a budget constraint. We usually assume that the
consumer has a utility function u : Rn

+ → R that indexes desirability and chooses a market
basket x∗(p,m) to maximize u(x) subject to the budget constraint m−p ·x ⩾ 0, where p ∈ Rn

++
is a vector of prices and m ⩾ 0 is the consumer’s money income. A problem that occupied
economic theorists for several decades was to figure out what restrictions the assumption that
utility maximization placed on demand functions.

Another way to phrase this issue is, given a demand function ξ : Rn
++×R+ → Rn

+, is it the
case that there is a utility function that generates it, and if so, how can it be recovered? Applied
mathematicians tend to call this the inverse optimization problem. What was discovered is that
under certain conditions, it is possible to solve differential equations to recover a utility function
from a demand function. The following reasonably general result is taken from Hurwicz and
Uzawa [11]. It involves the following function related to the demand function function. Given
a function ξ : Rn

++ × R+ → Rn
+ define

σi,j(p,m) = ∂ξi(p,m)
∂pj

+ ξj(p,m)∂ξi(p,m)
∂m

.

This is called the Slutsky substitution function.

1 Hurwicz–Uzawa Integrability Theorem Let ξ : Rn
++ × R+ → Rn

+. Assume

(B) The budget exhaustion condition
p · ξ(p,m) = m

is satisfied for every (p,m) ∈ Rn
++ × R+.

(D) Each component function ξi is differentiable everywhere on Rn
++ × R+.

(S) The Slutsky matrix is symmetric, that is, for every (p,m) ∈ Rn
++ × R+,

σi,j(p,m) = σj,i(p,m) i, j = 1, . . . , n.

(NSD) The Slutsky matrix is negative semidefinite, that is, for every (p,m) ∈ Rn
++ ×R+, and

every v ∈ Rn,
n∑

i=1

n∑
j=1

σi,j(p,m)vivj ⩽ 0.
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(IB) The function ξ satisfies the following boundedness condition on the partial derivative with
respect to income. For every 0 ≪ a ≪ ā ∈ Rn

++, there exists a (finite) real number Ma,ā

such that for all m ⩾ 0

a ≦ p ≦ ā =⇒
∣∣∣∣∂ξi(p,m)

∂m

∣∣∣∣ ⩽Ma,ā i = 1, . . . , n.

Let X denote the range of ξ,

X = {ξ(p,m) ∈ Rn
+ : (p,m) ∈ Rn

++ × R+}.

Then there exists a utility function u : X → R on the range X such that for each (p,m) ∈
Rn

++ × R+,

ξ(p,m) is the unique maximizer of u over the budget set {x ∈ X : p · x ⩽ m}.

The proof is rather roundabout and requires a little motivation.

1 A little motivation
Consider a demand function

x∗ : Rn
++ × R++ → Rn

+

derived by maximizing a locally nonsatiated utility function u. Let v be the indirect utility,
that is, the optimal value function

v(p,m) = u
(
x∗(p,m)

)
.

Since u is locally nonsatiated, the indirect utility function v is strictly increasing in m. The
Hicksian expenditure function e is defined by

e(p, υ) = min{p · x : u(x) ⩾ υ}.

We know from the support function theorem or the envelope theorem that

∂e(p, υ)
∂pi

= x̂i(p, υ) = x∗
i

(
p, e(p, υ)

)
.

Ignoring υ for the moment, we have the total differential equation

e′(p) = x∗(p, e(p)). (1)

What does it mean to solve such an equation? And what happened to υ?

v. 2016.11.09::17.22
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An aside on solutions of differential equations
You may recall from your calculus classes that, in general, differential equations have many
solutions, often indexed by “constants of integration.” For instance, take the simplest dif-
ferential equation,

y′ = a

for some constant a. The general form of the solution is

y(x) = ax+ C,

where C is an arbitrary constant of integration. What this means is that the differential
equation y′ = a has infinitely many solutions, one for each value of C. The parameter υ in
our problem can be likened to a constant of integration.

You should also recall that we rarely specify C directly as a condition of the problem,
since we don’t know the function y in advance. Instead we usually us an initial condition
(x0, y0). That is, we specify that

y(x0) = y0.

In this simple case, the way to translate an initial condition into a constant of integration
is to solve the equation

y0 = ax0 + C =⇒ C = y0 − ax0,

and rewrite the solution as

y(x) = ax+ (y0 − ax0) = y0 + a(x− x0).

In order to make it really explicit that the solution depends on the initial conditions, dif-
ferential equations texts may go so far as to write the solution as

y(x;x0, y0) = y0 + a(x− x0).

In our differential equation (1), an initial condition corresponding to the “constant of integra-
tion” υ is a pair (p0,m0) satisfying

e(p0, υ) = m0.

From the equivalence of expenditure minimization and utility maximization under a budget
constraint, this gives us the relation

υ = v(p0,m0) = u
(
x∗(p0,m0)

)
.

Following Hurwicz and Uzawa [11], define the income compensation function in terms
of the Hicksian expenditure function e via1

µ(p; p0,m0) = e
(
p, v(p0,m0)

)
.

1In terms of preferences,
µ(p; p0, m0) = inf{p · x : x ≽ x∗(p0, m0)}.

Lionel McKenzie [13] employs a similar construction to replace the expenditure function in a framework where
only preferences were used, not a utility index. He defines a slightly different function µ(p; x0) = inf{p·x : x ≽ x0}.

v. 2016.11.09::17.22
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Observe that
µ(p0; p0,m0) = m0

and
∂µ(p; p0,m0)

∂pi
= ∂e(p, υ0)

∂pi
= x̂i(p, υ0) = x∗

i

(
p, e(p, υ0)

)
= x∗

i

(
p, µ(p; p0,m0)

)
.

In other words,

The function e : Rn
++ → R defined by

e(p) = µ(p; p0,m0)

is the solution to differential equation (1),

e′(p) = x∗(p, e(p)),
that satisfies the initial condition

e(p0) = m0.

We are now going to turn the income compensation function around and treat (p0,m0) as the
variable of interest. Fix a price vector p∗ ∈ Rn

++ and define the function w : Rn
++ × R++ → R

by

w(p,m) = µ(p∗; p,m) = e
(
p∗, v(p,m)

)
.

The function w is another indirect utility. That is,

w(p,m) ⩾ w(p′,m′) ⇐⇒ v(p,m) ⩾ v(p′,m′).

To see this, observe that since e is strictly increasing in υ,

w(p,m) = e
(
p∗, v(p,m)

)
⩾ e

(
p∗, v(p′,m′)

)
= w(p′,m′) ⇐⇒ v(p,m) ⩾ v(p′,m′).

We can use w to find a utility U , at least on the range of x∗ by

U(x) = µ(p∗; p,m) where x = x∗(p,m).

2 Recovering utility from demand: The plan
The discussion above leads us to the following approach. Given a demand function x∗:

1. Somehow solve the differential equation

∂µ(p)
∂pi

= x∗
i

(
p, µ(p)

)
.

Write the solution explicitly in terms of the initial condition µ(p0) = m0 as µ(p; p0,m0).

v. 2016.11.09::17.22
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2. Fix a price vector p∗ and define an indirect utility function w by

w(p,m) = µ(p∗; p,m).

3. Invert the demand function to give (p,m) as a function of x∗.

4. Define the utility on the range of x∗ by

U(x) = µ(p∗; p,m) where x = x∗(p,m).

This is easier said than done, and there remain a few questions. For instance, how do we know
that the differential equation has a solution? If a solution exists, how do we know that the
“utility” U so derived generates the demand function x∗? We shall address these questions
presently, but I find it helps to look at some examples first.

3 Examples
In order to draw pictures, I will consider two goods x and y. By homogeneity of x∗, I may take
good y as numéraire and fix py = 1, so the price of x will simply be denoted p.

3.1 Deriving the income compensation function from a utility
For the Cobb–Douglas utility function

u(x, y) = xαyβ

where α+ β = 1, the demand functions are

x∗(p,m) = αm

p
, y∗(p,m) = βm.

The indirect utility is thus
v(p,m) = mββ

(
α

p

)α

.

The expenditure function is
e(p, υ) = υβ−β

(
p

α

)α

.

Now pick (p0,m0) and define

µ(p; p0,m0) = e
(
p; v(p0,m0)

)
=
(
m0ββ

(
α

p0

)α)
β−β

(
p

α

)α

= m0
(
p

p0

)α

.

Evaluating this at p = p0 we have

µ(p0; p0,m0) = m0.

v. 2016.11.09::17.22
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1

2

3

p

µ,m

Figure 1. Graph of µ(p; p0;m0) for Cobb–Douglas α = 2/5 utility and various values of (p0,m0).

That is, the point (p0,m0) lies on the graph of µ( · ; p0,m0). Figure 1 shows the graph of this
function for different values of (p0,m0). For each fixed (p0,m0), the function µ(p) = µ(p; p0,m0)
satisfies the (ordinary) differential equation

dµ

dp
= α

[
m0(p0)−α

]
pα−1 = αµ(p)

p
= x∗(p, µ(p)

)
.

Note that homogeneity and budget exhaustion have allowed us to reduce the dimensionality
by 1. We have n− 1 prices, as we have chosen a numéraire, and the demand for the nth good
is gotten from x∗

n = m−
∑n−1

i=1 pix
∗
i .

3.2 Examples of recovering utility from demand
Let n = 2, and set p2 = 1, so that there is effectively only one price p, and only one differential
equation (for x1)

µ′(p) = x
(
p, µ(p)

)
.

2 Example In this example
x(p,m) = αm

p
.

(This x is the demand for x1. From the budget constraint we can infer x2 = (1 − α)m.)
The corresponding differential equation is

µ′ = αµ

p
or µ′

µ
= α

p
.

v. 2016.11.09::17.22
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(For those of you more comfortable with y-x notation, this is y′ = αy/x.) Integrate both sides
of the second form to get

lnµ = α ln p+ C

so exponentiating each side gives
µ(p) = Kpα

where K = exp(C) is a constant of integration. Given the initial condition (p0,m0), we must
have

m0 = K(p0)α, so K = m0

(p0)α
,

or
µ(p; p0,m0) = m0

(p0)α
pα.

For convenience set p∗ = 1, to get

w(p,m) = µ(p∗; p,m) = m

pα
.

To recover the utility u, we need to invert the demand function, that is, we need to know
for what budget (p,m) is (x1, x2) chosen. The demand function is

x1 = αm

p
, x2 = (1 − α)m,

so solving for m and p, we have
m = x2

1 − α

x1 =
α x2

1−α

p
=⇒ p = α

1 − α

x2
x1
.

Thus

u(x1, x2) = w(p,m)

= w

(
α

1 − α

x2
x1
,
x2

1 − α

)
=

x2
1−α(

α
1−α

x2
x1

)α

=
(

x2
1 − α

)1−α (x1
α

)α

= cxα
1x

1−α
2 ,

where c = (1 − α)1−ααα, which is a Cobb–Douglas utility. □

3 Example In this example we find a utility that generates a linear demand for x. That is,

x(p,m) = β − αp.

v. 2016.11.09::17.22
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(Note the lack of m.) The differential equation is

µ′ = β − αp.

This differential equation is easy to solve:

µ(p) = βp− α

2
p2 + C

For initial condition (p0,m0) we must choose C = m0 − βp0 + α
2 p

02, so the solution becomes

µ(p; p0,m0) = βp− α

2
p2 +m0 − βp0 + α

2
p02

.

So choosing p∗ = 0 (not really allowed, but it works in this case), we have

w(p,m) = µ(p∗; p,m) = m− βp+ α

2
p2.

Given (x, y) (let’s use this rather than (x1, x2)), we need to find the (p,m) at which it is
chosen. We know

x = β − αp, y = m− px = m− βp+ αp2,

so
p = β − x

α
, m = y + βp− αp2 = y + β

β − x

α
− α

(
β − x

α

)2
.

Therefore

u(x, y) = w(p,m) = w

(
β − x

α
, y + β

β − x

α
− α

(
β − x

α

)2
)

= y + β
β − x

α
− α

(
β − x

α

)2

︸ ︷︷ ︸
m

−β β − x

α︸ ︷︷ ︸
p

+α

2

(
β − x

α

)2

︸ ︷︷ ︸
p2

= y − (β − x)2

2α
.

Note that the utility is decreasing in x for x > β. Representative indifference curves are shown
in Figure 2. The demand curve specified implies that x and y will be negative for some values
of p and m, so we can’t expect that this is a complete specification. I’ll leave it to you to figure
out when this makes sense. □

4 Existence of Solutions for Total Differential Equations
Given an open set A×B ⊂ Rn × R with typical element (p,m), and a function

ξ : A×B → Rn,

a function µ : A → B is a local solution to the total differential equation

M ′ = ξ(p,M) (∗)

v. 2016.11.09::17.22
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Figure 2. Indifference curves for Example 3 (linear demand) with β = 10, α = 5.

on U ⊂ A if
µ′(p) = ξ

(
p, µ(p)

)
for all p ∈ U. (∗∗)

The total differential equation is often written as a system of partial differential equations:

∂M

∂pi
= ξi(p,M) i = 1, . . . , n.

This equation is said to be completely integrable (in the sense of Clebsch) if for every
(p0,m0) ∈ A × B, there is a neighborhood U of p0 and a unique continuously differentiable
function µ : U → B (depending on (p0,m0)) satisfying (∗∗) and the initial condition

µ(p0) = m0.

The classical Frobenius Theorem tell us when such a system is completely integrable. The
following theorem is a special case translated from Dieudonné [6, Theorems 10.9.4, pp. 308–310].

4 Frobenius’s Theorem Assume ξ is continuously differentiable. The total differential
equation (∗) is completely integrable if and only if for every (p,m) ∈ A × B, the function ξ
satisfies the symmetry condition

σi,j(p,m) = σj,i(p,m) i, j = 1, . . . , n.

above

This next theorem, also taken from Dieudonné [6, Theorems 10.9.4, pp. 310–311], extends
the Frobenius theorem by asserting that the solution is also a continuously differentiable func-
tion of the initial conditions.

5 Theorem (Further properties of the solution) If ξ is continuously differentiable, then
each point (p̄, m̄) ∈ A×B has a neighborhood U × V satisfying

1. for any point (p∗,m∗) in U × V , there is a unique solution p 7→ µ(p; p∗,m∗) satisfying (∗)
and µ(p∗; p∗,m∗) = m∗, and

2. if ξ is Ck, then the mapping (p, p∗,m∗) 7→ µ(p; p∗,m∗) is Ck on U × U × V .

v. 2016.11.09::17.22
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The classical results are not adequate for our purposes, as the solution is only asserted
to exist locally. We want a theorem that asserts the existence of a global solution. Such an
extension was provided by Leonid Hurwicz and Hirofumi Uzawa [11, Existence Theorem III],
who built on the work of Hartman [8, 9], Nikliborc [14], Thomas [17], and Tsuji [18].

6 Hurwicz–Uzawa Global Existence Theorem Let ξ : Rn
++ × R+ → Rn

+. Assume

(D) Each component function ξi is differentiable everywhere on Rn
++ × R+.2

(S) The Slutsky matrix is symmetric, that is, for every (p,m) ∈ Rn
++ × R+,

σi,j(p,m) = σj,i(p,m) i, j = 1, . . . , n.

(IB) The function ξ satisfies the following boundedness condition on the partial derivative with
respect to income. For every 0 ≪ a ≪ ā ∈ Rn

++, there exists a (finite) real number Ma,ā

such that for all m ⩾ 0

a ≦ p ≦ ā =⇒
∣∣∣∣∂ξi(p,m)

∂m

∣∣∣∣ ⩽Ma,ā i = 1, . . . , n.

(0) For each i = 1, . . . , n, and each p ∈ Rn
++, we have

ξi(p, 0) = 0.

Then for every initial condition (p0,m0) ∈ Rn
++ × Rn

+, there exists a unique continuous
function µ( · ; p0,m0) : Rn

++ → R+ such that for every p ∈ Rn
++, the partial differential equation

∂µ(p; p0,m0)
∂pi

= ξi
(
p, µ(p; p0,m0)

)
i = 1, . . . , n.

is satisfied, and
m0 = µ(p0; p0,m0).

Moreover µ(p; · , · ) is also continuous with respect to the initial condition (p0,m0) for each
p.

2Note that this domain is not open. Hurwicz and Uzawa use Graves’s [7] definition of differential, which
defines the differential at accumulation points of the domain, not just interior points. Let f : X ⊂ Rn → R, and
let x be an accumulation point of X. A linear function Df(x) : v 7→ Df(x)(v) from Rn to R is the differential of
f at x if for every ε > 0 there exists some δ > 0 such that for every v with 0 < ∥v∥ < δ and x + v ∈ X, we have

|f(x + v) − f(x) − Df(x)(v)|
∥v∥ < ε.

The difference between this definition and the one in say Apostol [1, 2] or Dieudonné [6] is that they only consider
interior points, so for small enough ∥v∥, the condition that x + v ∈ X is automatic. In particular, at boundary
points (p, 0), we need only have one-sided directional derivatives with respect to m.

v. 2016.11.09::17.22
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5 “Integrability” of demand
We are now in a position to prove the main theorem.

Proof of Theorem 1: Given such a function ξ, the budget exhaustion condition (B) implies
condition (0) of the Hurwicz–Uzawa Existence Theorem. Thus all the hypotheses of that
theorem are satisfied, there is a unique function

µ : Rn
++ × Rn

++ × R+ → R

such that

for each initial condition (p0,m0), µ( · ; p0,m0) satisfies (∗∗) and µ(p0; p0,m0) = m0

and such that µ(p; · , · ) is continuous for each p.
We start by observing that while different initial conditions (p0,m0) may or may not define

different functions µ( · ; p0,m0), the graphs of these functions do not intersect each other, but
are vertically ordered. Formally we have the following lemma.

7 Lemma Consider two different initial conditions (p0,m0) and (p1,m1). Either they define
the same function µ or one always lies above the other. That is, either

µ( · ; p0,m0) = µ( · ; p1,m1),

or
µ( · ; p0,m0) > µ( · ; p1,m1),

or
µ( · ; p0,m0) < µ( · ; p1,m1).

Proof : First suppose that for some p̄ we have µ(p̄; p0,m0) = µ(p̄; p1,m1) = m̄. Consider the
initial condition (p̄, m̄). By the Global Existence Theorem, there is a unique function satisfying
the differential equation (∗∗) through the point (p̄, m̄). But µ( · ; p0,m0) and µ( · ; p1,m1) satisfy
(∗∗) and pass through (p̄, m̄), so we must have

µ( · ; p0,m0) = µ( · ; p1,m1) = µ( · ; p̄, m̄).

Now suppose that for some p̄ we have µ(p̄; p0,m0) > µ(p̄; p1,m1), but that for some p̃ we
have µ(p̃; p0,m0) < µ(p̃; p1,m1). But µ is continuous in its first variable, so by the Intermediate
Value Theorem for some 0 < λ < 1 we must have

µ
(
(1 − λ)p̄+ λp̃; p0,m0) = µ

(
(1 − λ)p̄+ λp̃; p1,m1),

which by the first paragraph implies that

µ( · ; p0,m0) = µ( · ; p1,m1).

Of course this contradicts µ(p̃; p0,m0) < µ(p̃; p1,m1). This completes the proof.

v. 2016.11.09::17.22
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Fix p∗:

1 2 3 4

1

2

3

p

µ

p∗

(p1,m1)

(p2,m2)

(p3,m3)

For each (pi,mi), find the solution µ( · ; pi,mi) of (∗∗) with initial condition (pi,mi):

1 2 3 4

1

2

3

p

µ

p∗

(p1,m1)

(p2,m2)

(p3,m3)

Evaluate µ( · ; pi,mi) at p∗ to get w(pi,mi):

1 2 3 4

1

2

3

p

µ

(p1,m1)

(p2,m2)

(p3,m3)

p∗

w(p3,m3)

w(p1,m1) = w(p2,m2)

Figure 3. Construction of the “indirect utility” w.
v. 2016.11.09::17.22
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Now fix some p∗ ∈ Rn
++, define w : Rn

++ × R+ → R by

w(p,m) = µ(p∗; p,m),

and define u : X → R by
u
(
ξ(p,m)

)
= w(p,m) = µ(p∗; p,m).

See Figure 3. It follows from Lemma 7 that the ordering of budgets (p,m) induced by w is
independent of the choice of p∗.

If indeed ξ is derived from maximizing a utility, then we know its income compensation
function satisfies the differential equation (∗∗). From the uniqueness part of the existence
theorem we will have found it, and that w is an indirect utility, and the u we have constructed
is a utility. (Different choices of p∗ give different utilities.) But we don’t know that ξ is a
bona fide demand function, so we have to prove somehow that this u satisfies the conclusion of
the theorem. There are many steps on this road. The first step makes use of the relationship
between the Weak Axiom of Revealed Preference and (NSD), cf. [16, equation (70), p. 109]
and Kihlstrom, Mas-Colell, and Sonnenschein [12].

8 Lemma (Hurwicz–Uzawa [11, Lemma 4, p. 126]) Let x0 = ξ(p0,m0) and x1 =
ξ(p1,m1) and assume x0 ̸= x1. If

m1 ⩾ µ(p1; p0,m0).

then
p0 · x1 > p0 · x0.

We shall also have occasion to use this result in a transmogrified form. Take the contrapos-
itive to get: If

p0 · x0 ⩾ p0 · x1,

then
m1 < µ(p1; p0,m0).

Proof of Lemma 8: Define

p(t) = (1 − t)p0 + tp1, m(t) = µ(p(t); p0,m0), and x(t) = ξ
(
p(t),m(t)

)
.

Note that p(0) = p0 and p(1) = p1, so

x(0) = ξ
(
p(0), µ(p(0); p0,m0)

)
= ξ

(
p0, µ(p0; p0,m0)

)
= ξ(p0,m0) = x0,

and
x(1) = ξ

(
p1, µ(p1; p0,m0)

)
.

Let
ψ(t) = p0 · x(t) =

n∑
i=1

p0
i ξi
(
p(t), µ(p(t); p0,m0)

)
.

v. 2016.11.09::17.22
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Then by the chain rule,

ψ′(t) =
n∑

i=1
p0

i

d

dt
ξi
(
p(t), µ(p(t); p0,m0)

)
=

n∑
i=1

p0
i

n∑
j=1

(
∂ξi

∂pj
+ ∂ξi

∂m

∂µ

∂pj

)
(p1

j − p0
j )

=
n∑

i=1

n∑
j=1

(
∂ξi

∂pj
+ ∂ξi

∂m
ξj

)
(p1

j − p0
j )p0

i . (2)

By the budget exhaustion condition (B) we have

m(t) = p(t) · x(t) =
n∑

i=1
pi(t)ξi

(
p(t), µ(p(t); p0,m0)

)
for all t. Differentiating the left hand side with respect to t yields

d

dt
m(t) =

n∑
i=1

∂µ

∂pi

d

dt
p(t) =

n∑
i=1

ξi
(
p(t),m(t)

)
(p1

i − p0
i ).

Differentiating the right hand side with respect to t yields

n∑
i=1

(p1
i − p0

i )ξi
(
p(t), µ(p(t); p0,m0)

)
+ pi(t)

n∑
j=1

(
∂ξi

∂pj
+ ∂ξi

∂m
ξj

)
(p1

j − p0
j )

 .
Equating the two implies after some cancellation that

n∑
i=1

n∑
j=1

(
∂ξi

∂pj
+ ∂ξi

∂m
ξj

)
(p1

j − p0
j )pi(t) = 0.

Subtracting this from (2) gives

ψ′(t) =
n∑

i=1

n∑
j=1

(
∂ξi

∂pj
+ ∂ξi

∂m
ξj

)
(p1

j − p0
j )
(
p0

i − pi(t)
)

= −t
n∑

i=1

n∑
j=1

(− − −) (p1
i − p0

i )(p1
j − p0

j )

= −t
n∑

i=1

n∑
j=1

σi,j
(
p(t),m(t)

)
(p1

i − p0
i )(p1

j − p0
j ).

Thus by (NSD) we have ψ′(t) ⩾ 0, so ψ(1) ⩾ ψ(0), or

p0 · x(1) ⩾ p0 · x0 = m0.

*******
************************
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9 Lemma (Weak Axiom of Revealed Preference) Letting x0 = ξ(p0,m0) and x1 =
ξ(p1,m1),

x0 ̸= x1 and p0 · x0 ⩾ p0 · x1 =⇒ p1 · x0 > p1 · x1.

Proof : Assume x0 ̸= x1 and x0 is revealed preferred to x1, that is, p0 · x0 ⩾ p0 · x1. By the
contrapositive form of Lemma 8,

µ(p1; p1,m1) = m1 < µ(p1; p0,m0).

Therefore by Lemma 7
µ(p0; p1,m1) < µ(p0; p0,m0) = m0,

so a fortiori, m0 ⩾ µ(p0; p1,m1). Applying Lemma 8 to this inequality (and interchanging the
roles of 0 and 1), we conclude p1 · x0 > p1 · x1.

************************
We first need to show that u is well defined. That is,

10 Proposition Assume ξ satisfies (NSD). If ξ(p,m) = ξ(p′,m′), then µ(p∗; p,m) = µ(p∗; p′,m′).

Proof : (Hurwicz and Uzawa [11, Lemma 7, p. 129].)

We are finally in a position to prove that u is a utility that generates the demand ξ. That
is,

11 Lemma Under the hypotheses of the theorem, for any (p,m) ∈ Rn
++ × R+,

u
(
ξ(p,m)

)
> u(x) for all x ∈ X such that p · x ⩽ m,x ̸= ξ(p,m).

This completes the proof of the integrability theorem.
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