

WARP and the Slutsky matrix

KC Border v. 2016.01.15::00.03

1 Samuelson's Weak Axiom of Revealed Preference

The Weak Axiom of Revealed Preference asserts that if you demand x when y is in the budget set, it is because you prefer x to y. Therefore you should never demand y when x is in the budget set. (This of course implicitly assumes a unique utility maximizer, or strict quasiconcavity of the utility.) Paul Samuelson [3, 4, 5, 6] showed that this observation alone is enough to deduce the negative semidefiniteness of the matrix of Slutsky substitution terms.

1 Definition (Samuelson's Weak Axiom of Revealed Preference) Let $X \subset \mathbb{R}^n$ be the consumption set. For an ordinary demand function $x^* \colon \mathbb{R}^n_{++} \times \mathbb{R}_{++} \to X$, define the binary relation S on X by

x S y if $(\exists (p, w)) [x = x^*(p, w) \& y \neq x \& p \cdot y \leq w].$

That is, x is demanded when y is in the budget set but not demanded, so x is **revealed** preferred to y. The demand function x^* obeys **Samuelson's Weak Axiom of Revealed Preference (SWARP)** if S is an asymmetric relation. That is, if for every $x, y \in X$,

$$x S y \implies \neg y S x.$$

That is, if x is revealed preferred to y, then y is never revealed preferred to x.

The demand function x^* satisfies the **budget exhaustion condition** if for all (p, w),

$$p \cdot x^*(p, w) = w$$

Under the budget exhaustion condition, we can rewrite SWARP in the form that Samuelson used. Let x^0 and x^1 belong to the range of x^* . That is, let

$$x^{0} = x^{*}(p^{0}, w^{0}) = x^{*}(p^{0}, p^{0} \cdot x^{0})$$
 and $x^{1} = x^{*}(p^{1}, w^{1}) = x^{*}(p^{1}, p^{1} \cdot x^{1}).$

Then $p^1 \cdot x^0 \leq p^1 \cdot x^1$ and $x^0 \neq x^1$ imply $x^1 \ S \ x^0$; while $x^0 \neq x^1$ and $\neg x^0 \ S \ x^1$ imply $p^0 \cdot x^1 > p^0 \cdot x^0$. Thus, we can write SWARP in Samuelson's form:¹

$$x^0 \neq x^1$$
 and $p^1 \cdot x^0 \leqslant p^1 \cdot x^1 \implies p^0 \cdot x^1 > p^0 \cdot x^0$.

¹It may appear that this condition is weaker then than the one stated above, since it applies only to x_0 and x_1 in the range of x^* , whereas the condition above applies to all x and y in X, which may be larger than the range of x^* . However, any violation of SWARP as stated above would involve x and y with x S y and y S x, which can only happen if both x and y belong to the range of x^* . Thus the definitions are equivalent.

KC Border

2 Slutsky compensated demand

This leads us to define the **Slutsky compensated demand** s in terms of the ordinary demand function x^* via

$$s(p,\bar{x}) = x^*(p,p\cdot\bar{x})$$

where $\bar{x} \in X$ can be thought of as an initial endowment that determines the value of income w. Another interpretation is that if $\bar{x} = x^*(\bar{p}, \bar{w})$, then $s(p, \bar{x})$ is the demand $x^*(p, w)$ where w has been adjusted (compensated) so that consumption \bar{x} is still just affordable at price vector p.

Note that

$$\frac{\partial s_i(p,\bar{x})}{\partial p_j} = \frac{\partial x_i^*(p,p\cdot\bar{x})}{\partial p_j} + \bar{x}_j \frac{\partial x_i^*(p,p\cdot\bar{x})}{\partial w}.$$

In particular, by setting $\bar{x} = x^*(p, w)$ we may define the **Slutsky substitution term**

$$\sigma_{i,j}(p,w) = \frac{\partial s_i(p,x^*(p,w))}{\partial p_j}$$
$$= \frac{\partial x_i^*(p,w)}{\partial p_j} + x_j^*(p,w) \frac{\partial x_i^*(p,w)}{\partial w}.$$

The following important lemma may be found in Samuelson [6, equation (70), p. 109] or Mas-Colell, Whinston, and Green [2, Proposition 2.F.1, pp. 30–33].

2 Lemma Let x^{*} satisfy the budget exhaustion condition and SWARP. Let

$$x^{0} = x^{*}(p^{0}, w^{0})$$
 and $x^{1} = x^{*}(p^{1}, p^{1} \cdot x^{0}).$

Then

$$(p^1 - p^0) \cdot (x^1 - x^0) \leqslant 0,$$

with equality if and only if $x^1 = x^0$.

Proof: If $x^1 = x^0$, then the conclusion is true as an equality. So assume $x^1 \neq x^0$.

By budget exhaustion

$$p^1 \cdot x^1 = p^1 \cdot x^0. \tag{1}$$

Since $x^1 \neq x^0$, this says that $x^1 S x^0$. So by SWARP, we have $\neg x^0 S x^1$, that is,

$$p^{0} \cdot x^{1} > w^{0} = p^{0} \cdot x^{0}, \tag{2}$$

where the second equality follows from budget exhaustion. Subtracting inequality (2) from equality (1) gives

$$(p^1 - p^0) \cdot x^1 < (p^1 - p^0) \cdot x^0$$

which proves the conclusion of the lemma.

3 Theorem Let $x^* \colon \mathbf{R}_{++}^n \times \mathbf{R}_{++} \to \mathbf{R}_{+}^n$ be differentiable and satisfy the budget exhaustion condition and SWARP. Then for every $(p, w) \in \mathbf{R}_{++}^n \times \mathbf{R}_{++}$, and every $v \in \mathbf{R}^n$,

$$\sum_{i=1}^{n}\sum_{j=1}^{n}\sigma_{i,j}(p,w)v_{i}v_{j}\leqslant0.$$

v. 2016.01.15::00.03

KC Border

That is, the matrix of Slutsky substitution terms is negative semidefinite.²

Proof: Fix $(p, w) \in \mathbf{R}_{++}^{n} \times \mathbf{R}_{++}$ and $v \in \mathbf{R}^{n}$. By homogeneity of degree 2 of the quadratic form in v, without loss of generality we may scale v so that $p \pm v \gg 0$.

Define the function x on [-1, 1] via

$$x(t) = s(p + tv, x^*(p, w)).$$
(3)

Note that this is differentiable, and $x(0) = x^*(p, w)$.

By Lemma 2 (with p + tv playing the rôle of p^1 and p playing the rôle of p^0),

$$(p + tv - p) \cdot (x(t) - x(0)) = tv \cdot (x(t) - x(0)) \leq 0.$$

For nonzero t, dividing by $t^2 > 0$ gives

$$v \cdot \frac{x(t) - x(0)}{t} \leqslant 0$$

Taking limits as $t \to 0$ gives

$$v \cdot x'(0) \leqslant 0. \tag{4}$$

By the Chain Rule applied to (3),

$$x_i'(t) = \sum_{j=1}^n \frac{\partial s_i(p+tv, x^*(p, w))}{\partial p_j} v_j.$$
(5)

Evaluating (5) at t = 0 yields

$$\begin{aligned} x_i'(0) &= \sum_{j=1}^n \frac{\partial s_i(p, x^*(p, w))}{\partial p_j} v_j \\ &= \sum_{j=1}^n \sigma_{i,j}(p, w) v_j, \end{aligned}$$

where the second equality is just the definition of $\sigma_{i,j}(p, w)$. Combining this with (4) gives

$$0 \ge v \cdot x'(0) = \sum_{i=1}^n \sum_{j=1}^n \sigma_{i,j}(p,w) v_i v_j,$$

which completes the proof.

This proof is Kihlstrom, Mas-Colell, and Sonnenschein's [1] more modern rewriting of Samuelson's argument.

 $^{^{2}}$ Most authors, myself included, usually reserve the term "negative semidefinite" for *symmetric* matrices. In this instance, I won't insist on it.

References

- [1] R. Kihlstrom, A. Mas-Colell, and H. F. Sonnenschein. 1976. The demand theory of the weak axiom of revealed preference. *Econometrica* 44(5):971–978. www.jstor.org/stable/1911539
- [2] A. Mas-Colell, M. D. Whinston, and J. R. Green. 1995. Microeconomic theory. Oxford: Oxford University Press.
- [3] P. A. Samuelson. 1938. The empirical implications of utility analysis. *Econometrica* 6:344–356. www.jstor.org/stable/1905411
- [4] . 1938. A note on the pure theory of consumer's behavior. *Economica N.S.* 5(17):61– 71. www.jstor.org/stable/2548836
- [5] . 1938. A note on the pure theory of consumer's behavior: An addendum. *Economica* N.S. 5(19):353–354.
 www.jstor.org/stable/2548634
- [6] . 1965. Foundations of economic analysis. New York: Athenaeum. Reprint of the 1947 edition published by Harvard University Press.