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The constrained maximization problem is

maximize u(x) subject to m − p · x = 0.

We assume there is a unique interior maximizer. The Lagrangean for this problem is

L(x, λ; p, m) = u(x) + λ(m − p · x).

The gradient of the constraint is −p ̸= 0, so the Lagrange Multiplier Theorem applies. Let
x∗(p, m) be the solution with Lagrange multiplier λ∗(p, m). The first-order conditions are

ui(x∗) − λ∗pi = 0 i = 1, . . . , n.

Since p ≫ 0 and each ui > 0 by assumption U.2, we have

λ∗ > 0.

Define the indirect utility function v to be the value function for this problem, that is,

v(p, m) = u
(
x∗(p, m)

)
.

Then by the Envelope Theorem,

∂v(p, m)
∂m

= ∂L

∂m
= λ∗(p, m) and ∂v(p, m)

∂pj
= ∂L

∂pj
= −λ∗(p, m)x∗

j (p, m).

Together these imply Roy’s Identity, namely:

x∗
j (p, m) = −

∂v(p, m)
∂pj

∂v(p, m)
∂m

.

Compare this with the expenditure minimization problem:

minimize
x

p · x subject to u(x) − υ ⩾ 0.

The Lagrangean for this problem is:

p · x − µ
(
u(x) − υ

)
.
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Let x̂(p, υ) solve the problem and let µ̂(p, υ) be the Lagrange multiplier. The function x̂ is
also known as the Hicksian compensated demand function. Define the expenditure
function e to be the value function for this problem, that is,

e(p, υ) = p · x̂(p, υ).

Then by the Envelope Theorem,

∂e(p, υ)
∂υ

= µ̂(p, υ) and ∂e(p, υ)
∂pj

= x̂j(p, υ).

Moreover, by the Support Function Theorem, e is concave in p. Thus e is twice differentiable
in p almost everywhere, and where it is differentiable, then

∂2e(p, υ)
∂2p1

· · · ∂2e(p, υ)
∂pn∂p1

...
...

∂2e(p, υ)
∂p1∂pn

· · · ∂e(p, υ)
∂2pn


=



∂x̂1

∂p1
· · · ∂x̂1

∂pn

...
...

∂x̂n

∂p1
· · · ∂x̂n

∂pn


is symmetric and negative semidefinite. In particular then,

∂x̂j

∂pj
⩽ 0

and
∂x̂j

∂pi
= ∂x̂i

∂pj

for i, j = 1, . . . , n,
What is the relationship between this and ordinary demand? From the equivalence of

expenditure minimization and utility maximization we have

x∗i(p, e(p, υ)
)

= x̂i(p, υ),

which implies
∂x∗i

∂pj
+ ∂x∗i

∂m

∂e

∂pj
= ∂x̂i

∂pj
.

Rearranging,
∂x∗i

∂pj
= ∂x̂i

∂pj
− ∂x∗i

m

∂e

∂pj
.

Now use ∂e
∂pj

= x̂j and x̂j(p, υ) = x∗j(p, m) where m = e(p, υ) to conclude

∂x∗i(p, m)
∂pj

=
∂x̂i

(
p, v(p, m)

)
∂pj

− x∗j(p, m)∂x∗i(p, m)
∂m

.
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This is the famous Slutsky equation. Or rearranging another way we find

∂2e

∂2p1
· · · ∂2e

∂pn∂p1
...

...

∂2e

∂p1∂pn
· · · ∂e

∂2pn


=



∂x̂1

∂p1
· · · ∂x̂1

∂pn

...
...

∂x̂n

∂p1
· · · ∂x̂n

∂pn



=



∂x∗1

∂p1
+ x∗1 ∂x∗1

∂m
· · · ∂x∗1

∂pn
+ x∗n ∂x∗1

∂m
...

...

∂x∗n

∂p1
+ x∗1 ∂x∗n

∂m
· · · ∂x∗n

∂pj
+ x∗n ∂x∗n

∂m


is symmetric and negative semidefinite.

The problem with Hicksian compensated demand is that the utility level υ is in principle not
observable. This problem can be solved by considering the Slutsky compensated demand,
which solves the following problem.

maximize
x

u(x) subject to p · x ⩽ p · ω.

These demands are also called offer curves. Let x̃(p, ω) denote the solution to this problem.
These demands are in prinicple observable. Note that

x̃(p, ω) = x∗(p, p · ω).

Thus
∂x̃i(p, ω)

∂pj
= ∂x∗i(p, p · ω)

∂pj
+ ∂x∗i(p, p · ω)

∂m
ωj .

Thus, fixing (p̄, m̄) and setting x̄ = x∗(p̄, m̄), and ῡ = u(x̄), we have

∂x̃i(p̄, x̄)
∂pj

= ∂x∗i(p̄, m̄)
∂pj

+ ∂x∗i(p̄, m̄)
∂m

x̄j = ∂x̂i(p̄, ῡ)
∂pj

.
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