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Normative decision theory attempts to answer the question, “How can I make good decisions
when I don’t have good information?” It does not try to describe how real people make real
decisions, but we believe that if we do a good job of answering the question, then real decision
makers will want to behave in accordance with our theory. In fact, this is a large part of the
rationale that good business schools have for including decision theory in their curriculum.

Problem: What do we mean by “good?”
The first example of normative decision theory is the theory of probability that was de-

veloped by the Blaise Pascal, Pierre de Fermat, and Jacob and Daniel Bernoulli for games
involving randomizing devices such as cards, dice, and roulette wheels. In the 20th century,
a notion of subjective probability was developed that did not rely on notions of randomness,
but of belief and behavior (Bruno de Finetti and L. J. Savage). How, you may ask, does it
make sense to think of probability without randomness?

1 The probabilists’ model of uncertainty
The modern approach to uncertainty, as formalized by Kolmogorov, has as its fundamentals:

S, a set of states of the world.
E, a collection of events.
p, a probability on E.

The states are assumed to be exhaustive and mutually exclusive. What you choose as the
set of states is a modeling decision. For the purpose of these notes S is assumed to be finite.

The collection E of events is usually assumed to be an algebra of subsets of S. That is, E
satisfies:

i. S ∈ E, ∅ ∈ E.

ii. If E ∈ E, then Ec ∈ E.

iii. If E, F ∈ E, then E ∩ F ∈ E and E ∪ F ∈ E.

A probability p on an algebra E is a function that satisfies the following properties:

i. For each E ∈ E,
0 ⩽ p(E) ⩽ 1, p(S) = 1, and p(∅) = 0.
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ii. If E ∩ F = ∅, then
p(E ∪ F ) = p(E) + p(F ).

A probability vector p ∈ RS satisfies

pi ⩾ 0, i ∈ S and
∑
i∈S

pi = 1.

A probability vector defines a probability p on E = 2S via

p(E) =
∑
i∈E

pi.

2 The statisticians’ model of uncertainty
The statisticians’ approach to the world is sightly different. Its key ingredients are:

S, a sample space.
E ⊂ 2S , a collection of sample events.
{pθ : θ ∈ Θ}, a set of probabilities on E.

The sample space is the set of outcomes of a statistical experiment. Statisticians regard
elements of Θ as states of the world. Depending on the school of thought, one probability
pθ0 may be regarded as the true state of the world. Bayesian statisticians also put a
probability measure on Θ, which may be either a prior or posterior depending on the stage
of their analysis.

When S is a subset of Rn and each pθ has a density fθ, the likelihood function is a
mapping L : Θ × S → R+ defined by

L(θ|s) = fθ(s).

3 Subjective likelihood
The subjective relative likelihood of an individual is a binary relation on events (subsets of S).
We write

E ≽F

to mean that event E is at least as likely as event F . As usual, we write E ≻ F to mean
E ≽F & F ̸ ≽E, and E ∼ F to mean E ≽F & F ≽E. The graph of ≽ is

gr≽ = {(E, F ) : E ≽F}.

Let us say that the subjective likelihood relation ≽ is represented by a probability
measure p if

E ≽F ⇐⇒ p(E) ⩾ p(F ).

Savage [21, p. 32] calls such subjective likelihood relation a qualitative probability if it
satisfies the following obvious necessary conditions to have a representation by a probability p:
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C (Completeness) For all E, F , either E ≽F or F ≽E, or both.

T (Transitivity) For all E, F, G,

[E ≽F & F ≽G] =⇒ E ≽G.

A (Additivity) If E ∩ G = ∅ and F ∩ G = ∅, then

E ≽F ⇐⇒ E ∪ G≽F ∪ G.

N (Nontriviality) S ≻∅, and for every event E, E ≽∅.
Bruno de Finetti [7] posed the question of whether these conditions were sufficient to guarantee
that ≽ was representable by a probability. The following example due to Kraft, Pratt, and
Seidenberg [17] shows that is not the case. (There is an unfortunate typographical error on
page 414 of their paper, but it is corrected later on.)

1 Example (Qualitative probability not representable) Partially define ≽ on the finite
set {a, b, c, d, e} by

{a, b, d} ≻{c, e} ≻{a, b, c} ≻{b, e} ≻{a, d} ≻{a, c} ≻{b, c, d} ≻{e}

≻{c, d} ≻{a, b} ≻{a} ≻{b, d} ≻{b, c} ≻{d} ≻{c} ≻{b} ≻∅
(1)

This orders seventeen of the thirty-two subsets. Each of the remaining fifteen subsets is a
complement of one of these, so if we assign a probability to each of these sets, the probability
of the remainder is determined. The complements must be ordered in the reverse order. That
is, we must have

{a, b, c, d, e} ≻{a, c, d, e} ≻{a, b, d, e} ≻{a, d, e} ≻{a, c, e} ≻{b, c, d, e} ≻{a, b, e}

≻{a, b, c, d} ≻{a, e} ≻{b, d, e} ≻{b, c, e} ≻{a, c, d} ≻{d, e} ≻{a, b, d} ≻{c, e}

This specifies a linear order on all the subsets. Checking additivity is simple, but tedious.
K–P–S prove a little lemma to simplify things a bit, but I leave to you to verify that the
additivity condition A is satisfied. (Their lemma is that under a linear order, if the bottom half
of the order satisfies additivity, and the top half consists of the complements of the bottom half
ordered in reverse, then the entire order satisfies additivity.)

Now to show that this order has no probability representation. From (1) we have

{a} ≻{b, d}, {c, d} ≻{a, b}, {b, e} ≻{a, d}

so a representation p would have to satisfy

p(a) > p(b) + p(d), p(c) + p(d) > p(a) + p(b), p(b) + p(e) > p(a) + p(d).

Adding these inequalities, we would have to have

p(a) + p(b) + p(c) + p(d) + p(e) > 2p(a) + 2p(b) + 2p(d),

or
p(c) + p(e) > p(a) + p(b) + p(d),

which contradicts {a, b, d} ≻{c, e}. Thus no representation exists. □
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K–P–S give a necessary and sufficient condition for a likelihood relation (on a finite set)
to be representable by a probability, but their condition is expressed in terms of monomials
in the letters representing the elements of the set. The next result, due to Dana Scott [22,
Theorem 4.1] gives a friendlier set-theoretic statement. I have replaced Scott’s condition (4B)
with a similar condition that is perhaps more transparent. I refer to it as Condition S, but
there should be a better name. The proof is also mine.

2 Theorem Let S be a finite set and let E be an algebra of subsets of S and let ≽ be a binary
relation on E. For ≽ to be representable by a probability measure p on E, that is,

E ≽F ⇐⇒ p(E) ⩾ p(F ),

it is necessary and sufficient that ≽ satisfy the following three conditions:

N (Nontriviality) S ≻∅, and for every event E, E ≽∅.

C (Completeness) For all E, F ∈ E, either E ≽F or F ≽E, or both. (Or equivalently, for all
E, F ∈ E, exactly one of E ≻ F , F ≻ E, or E ∼ F holds.)

S (Condition S) For every finite list (E1, F1), . . . , (En, Fn) of pairs of events (where repetitions
are allowed),[

(Ei ≽Fi, i = 1, . . . , n) &
n∑

i=1
1Ei =

n∑
i=1

1Fi

]
=⇒ Ei ∼ Fi, i = 1, . . . , n.

Proof : ( =⇒ ) Assume that ≽ is representable by p. Then it is obvious that Nontriviality and
Completeness must be satisfied.

To see that Condition S is also necessary, recall that 1E is the indicator function of E. That
is, 1E(s) = 1 if s ∈ E and 1E(s) = 0 if s /∈ E. Thus ∑n

i=1 1Ei(s) is the count of the events
E1, . . . , En that contain s. Also observe that for any event E,

p(E) =
∑
s∈E

p(s) =
∑
s∈S

p(s)1E(s).

Thus for events E1, . . . , En, we have
n∑

i=1
p(Ei) =

n∑
i=1

(∑
s∈S

p(s)1Ei(s)
)

=
∑
s∈S

p(s)
(

n∑
i=1

1Ei(s)
)

. (2)

In other words, the function ∑n
i=1 1Ei is a random variable whose expected value is the sum of

probabilities ∑n
i=1 p(Ei).

Let (E1, F1), . . . , (En, Fn) be a list of pairs of events satisfying (i) Ei ≽Fi, i = 1, . . . , n and
(ii) ∑n

i=1 1Ei =
∑n

i=1 1Fi . By (ii) and (2), we have that
n∑

i=1
p(Ei) =

n∑
i=1

p(Fi).

From (i), we have p(Ei) ⩾ p(Fi) for each i. Therefore we must actually have p(Ei) = p(Fi), or
Ei ∼ Fi, for each i.
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( ⇐= ) We prove the converse by proving its contrapositive. That is, we shall show that
if ≽ is not representable, but satisfies Nontriviality and Completeness, then it must violate
Condition S.

Consider the following system of inequalities, where the rows of the first matrix are indexed
by the graph of ≻ and rows are of the second matrix are indexed by the graph of ≽, and the
columns are indexed by the states S.


s

...
E ≻ F · · · 1E(s) − 1F (s) · · ·

...




...
p(s)

...

 ≫ 0


s

...
E ≽F · · · 1E(s) − 1F (s) · · ·

...




...
p(s)

...

 ≧ 0

(3)

If the system (3) has a solution p, then the row corresponding to {s}≽∅ implies p(s) ⩾ 0. The
row corresponding to S ≻∅ implies ∑s∈S p(s) > 0. We may normalize p so that it is indeed a
probability measure on S. Thus ≽ is representable if and only if (3) has a solution. We now
show that if no solution exists, then Condition S is violated.

So suppose (3) does not have a solution. Then by Motzkin’s Rational Transposition Theo-
rem 17 there exist integer-valued nonnegative vectors k≻ (indexed by the graph of ≻) and k≽

(indexed by the graph of ≽) such that for each column s ∈ S,∑
(E,F ):E ≻ F

k≻
(E,F )

(
1E(s) − 1F (s)

)
+

∑
(E,F ):E ≽F

k≽
(E,F )

(
1E(s) − 1F (s)

)
= 0. (4)

Moreover, Motzkin’s Theorem guarantees that k≻ is nonzero.
Construct a list of pairs by taking k≻

(E,F ) copies of (E, F ) for each (E, F ) with E ≻ F and
k≽

(E,F ) copies of (E, F ) for (E, F ) with E ≽F , and enumerate it as (E1, F1), . . . , (En, Fn).
By construction, for each (Ei, Fi), we have Ei ≽Fi and by (4) we have

n∑
i=1

1Ei =
n∑

i=1
1Fi .

But since k≻ is nonzero, for at least one pair we have Ei ≻ Fi, which violates Condition S.
This completes the proof.

3 Remark Note that Condition S and Completeness imply Transitivity. We proceed by con-
traposition. Assume Completeness and that Transitivity fails. That is, there are A, B, C with
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A≽B, B ≽C, and C ≻ A. Set
E1 = A, F1 = B,

E2 = B, F2 = C,

E3 = C, F3 = A.

Then Ei ≽Fi for all i and
3∑

i=1
1Ei =

3∑
i=1

1Fi = 1A + 1B + 1C .

But E3 ≻ F3, which violates Condition S.

4 Remark Now let’s see that Condition S and Completeness imply Additivity. So assume
A ∩ C = ∅ and C ∩ C = ∅, then we want to show that

A≽B ⇐⇒ A ∪ C ≽B ∪ C.

First assume A≽B, and suppose A ∪ C ≽B ∪ C fails. Then B ∪ C ≻ A ∪ C. Define
E1 = A, F1 = B,

E2 = B ∪ C, F2 = A ∪ C.

Since A ∩ C = ∅ we have that 1A ∪ C = 1A + 1C . Similarly, 1B ∪ C = 1B + 1C . So now observe
that

2∑
i=1

1Ei = 1A + 1B + 1C = 1B + 1A + 1C =
2∑

i=1
1Fi .

This violates Condition S.
For the converse, assume A ∪ C ≽B ∪ C, but that A≽B fails, so that B ≻ C and define

E1 = A ∪ C, F1 = B ∪ C,

E2 = B, F2 = C.

This violates Condition S.
This finishes the proof of Additivity.

5 Remark We now note that the Kraft–Pratt–Seidenberg example violates Condition S. The
following list of pairs will do. (These are the same pair we used above to show that the relation
was not representable.)

E1 = {a}, F1 = {b, d},

E2 = {c, d}, F2 = {a, b}.

E3 = {b, e}, F3 = {a, d}.

E4 = {a, b, d}, F4 = {c, e}.
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6 Remark I mentioned above that what I call Condition S is not Condition (4B) of his The-
orem 4.1, [22, p.246]. In the notation of this note, condition (4B) is:

For every finite list (E0, F0), . . . , (En, Fn) of pairs of events (where repetitions are allowed),[
(Ei ≽Fi, i = 1, . . . , n) &

n∑
i=0

1Ei =
n∑

i=0
1Fi

]
=⇒ F0 ≽E0.

(Pay attention to the fact that his indices run from 1 to n in one place and from 0 to n in
another place.)

My Condition S does not imply the conclusion F0 ≽E0 in the situation described—it only
implies the weaker E0 ̸ ≻ F0. But in the presence of Completeness, F0 ≽E0 is equivalent to
E0 ̸ ≻ F0.

4 Subjective probability and betting
This section is based on de Finetti [6] as exposited by Heath and Sudderth [14].

The payoffs for betting are usually described in terms of odds. If you wager an amount b
on the event E and the odds against E are given by λ(E), you receive λb if E occurs and lose b
if E fails to occur. We allow λ to take on any value in [0, ∞]. The interpretation of λ(E) = ∞
is that for any positive bet b, if E occurs, then the bettor may name any real number as his
payoff. In a frictionless betting market, the odds against Ec are given by

λ(Ec) = 1
λ(E)

,

where we use the conventions
1
∞

= 0,
1
0

= ∞.

More conveniently, instead of using λ, define

q(E) = 1
1 + λ(E)

,

q(Ec) = 1
1 + λ(Ec)

= 1
1 + 1

λ(E)
= λ(E)

1 + λ(E)
.

Note that
q(E) + q(Ec) = 1,

and that
λ(E) = q(Ec)

q(E)
.
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Moreover, if you bet q(E) = 1
1+λ(E) on E, then your payoff Π in state s is given by

Π(s) = q(E) [λ(E)1E(s) − 1Ec(s)]

= q(E)
[

q(Ec)
q(E)

1E(s) − 1Ec(s)
]

= q(Ec)1E(s) − q(E)1Ec(s)

=
(
1 − q(E)

)
1E(s) − q(E)

(
1 − 1E(s)

)
= 1E(s) − q(E).

That is, q(E) is the price of a lottery ticket that pays $1 in event E. Let’s call such a lottery
ticket an E-ticket.1

7 Subjective probability theorem Either
(i) The function q is a probability and λ(E) = q(Ec)

q(E) for each E.
Or else
(ii) The odds are incoherent, that is, there is a combination of bets that guarantees the bettor
will win a positive amount regardless of which state s occurs.

A set of incoherent odds is also known as a Dutch book.

Proof : Let x(E) denote the number of E-tickets bought by the Bettor. Condition (ii) is equiv-
alent to the matrix inequality


E

...
s · · · 1E(s) − q(E) · · ·

...




...
x(E)

...

 ≫ 0

where rows are indexed by S and columns are indexed by E.
Gordan’s Alternative 15 asserts that the alternative to (ii) is that there is some probability

vector p ∈ RS , such that for each event E,∑
s∈S

p(s)1E(s) − q(E) = 0,

or
q(E) =

∑
s∈E

p(s) = p(E),

which is (i).
1Young people think an E-ticket is something that lets you board an airplane, but older Southern Californians

remember when it let you board the Matterhorn.
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5 The Ellsberg Paradox
Daniel Ellsberg [4] (of Pentagon Papers [5] fame) proposed the following example to test the
intuitiveness of the subjective probability model.

There are two urns.

• Urn A contains 30 red balls, 30 black balls, and 30 yellow balls.

• Urn B contains 30 red balls, 60 balls that are either black or yellow.

Ellsberg asked a number of people to respond to the following two kinds of deals.

Deal 1: You will receive $100 if a red or black ball is drawn from the urn. Which urn do you
want to draw from?

Deal 2: You will receive $100 if a red or yellow ball is drawn from the urn. Which urn do you
want to draw from?

Many subjects indicate a preference for urn A in each deal. Reportedly these included L. J.
Savage.2 But such preferences are inconsistent with reasonable subjective probability and cer-
tainly with Savage’s independence axiom: Let pA(red) denote the probability of drawing a red
ball from urn A, etc. A reasonable requirement is that

pA(red) = pB(red).

Choosing urn A in deal 1 implies

pA(red) + pA(black) > pB(red) + pB(black)

and in deal 2 implies

pA(red) + pA(yellow) > pB(red) + pB(yellow)

Assuming pA(red) = pB(red), this implies

p(red) + pA(black) + pA(yellow) > p(red) + pB(black) + pB(yellow),

when both sides are equal to 1.
Of course, if we are completely subjective, we could believe pA(red) = 1 and pB(red) = 0, but

I doubt that’s what Savage had in mind. Later on, I’ll describe more satisfactory alternatives
that allow for these sorts of preferences.

2Ellsberg presents a number of examples and it is not clear if it is this particular example or some other one
that tripped up Savage (and Jacob Marshak and Norman Dalkey, but not Paul Samuelson or Gerard Debreu),
see [4, pp. 655–656].
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6 Statisticians’ view of the world
The statistical view of the world can be caricatured as follows: Θ is a finite set of urns, each urn
θ describes a probability pθ on the finite set S of samples. A particular urn θ0 is used to choose
a sample s ∈ S according to probability pθ0 . We observe the sample s ∈ S. What information
does this convey about θ0? (Statisticians don’t call elements of Θ urns, they call them states of
the world. In other words, statisticians believe that God does nothing but play dice. Or as the
unofficial motto of the American Statistical Association puts it, “Statistics means never having
to say you’re certain.”3)

Conditional probability
The conditional probability of event E given event F is

p(E|F ) = p(E ∩ F )
p(F )

,

provided p(F ) > 0. Thus

p(E|F )p(F ) = p(E ∩ F ) = p(F |E)p(E),

Or
p(E|F ) = p(E)

p(F )
· p(F |E),

which is known as Bayes’ Law.

Bayesian updating
The Bayesian approach to statistics turns Θ into a probability space, with an algebra T of
events, and a probability measure P on T, called the prior. The prior represents our beliefs
about the urn θ0 that is used to select the sample select s according to pθ0 . Then the posterior
probability that θ0 ∈ T , given sample s, is calculated according to Bayes’ Law as

P (T |s) =
∑

θ∈T pθ(s)P (θ)∑
θ∈Θ pθ(s)P (θ)

.

P (·|s) represents our belief about θ0 after the experiment.
Should Bayes’ Law govern our betting behavior regarding θ0? That is, should we use it to

set prices for lottery tickets?

Statistical inference: the game
Freedman and Purves [11] caricature statistical inference in terms of the following game.

1. The Master of Ceremonies chooses an urn θ0 from a set Θ of urns, draws a sample s from
the urn, and exhibits the sample to the Bettor and the Bookie.

3Dave Grether often wears a T-shirt from the ASA with this motto. For those of you who are too young to
remember, the motto is a takeoff on the tag line “Love means never having to say you’re sorry,” from the movie
Love Story (1970) based on the novel of the same name by Yale professor Erich Segal.

v. 2016.05.04::13.25
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2. A Bookie posts prices for lottery tickets corresponding to subsets T ∈ T of Θ.

3. The Bettor buys a portfolio of lottery tickets.

4. The MC reveals the urn θ0, and the tickets are payed off.

The reason this is a caricature is that in the real world of statistical inference, there is never
an MC to reveal θ0.

Strategies
The Bettor and the Bookie choose their strategies for the game in advance of playing, so they
must decide what to do for each possible sample that could be observed.

The Bookie chooses q ≧ 0 ∈ RT×S . For each s ∈ S and T ∈ T, q(T, s) is the price he sets
for a lottery ticket that pays $1 if the urn belongs to the set T , after having seen the sample s.

Then Bettor then chooses x ∈ RT×S , and buys x(T, s) T -tickets, after having the seen the
sample s.

Under these strategies, the expected payoff to the Bettor when θ is the selected urn is just

∑
s∈S

∑
T ∈T

(
1T (θ) − q(T, s)

)
x(T, s)

 pθ(s).

8 Bayesian updating theorem Either
(i) The Bookie chooses some prior P on Θ and sets prices according to the posterior P (·|s),
Or else
(ii) There is a betting strategy that gives the Bettor a positive expected payoff regardless of which
urn θ is selected by the MC.

Note that this result does not say that the MC actually selected the urn at random according
to P—it is merely a device to calculate the prices to avoid (ii).

Proof : Condition (ii) is equivalent to the matrix inequality


(T,s)

...
θ · · ·

(
1T (θ) − q(T, s)

)
pθ(s) · · ·

...




...
x(T, s)

...

 ≫ 0,

where rows are indexed by Θ and columns are indexed by T × S.
Gordan’s Alternative 15 asserts that the alternative to (ii) is the existence of a probability

vector P ∈ RΘ such that for each column (T, s) ∈ T × S,∑
θ∈Θ

(
1T (θ) − q(T, s)

)
pθ(s)P (θ) = 0.

In other words, ∑
θ∈T

pθ(s)P (θ) =
∑
θ∈Θ

q(T, s)pθ(s)P (θ),

v. 2016.05.04::13.25
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or
q(T, s) =

∑
θ∈T pθ(s)P (θ)∑
θ∈Θ pθ(s)P (θ)

= P (T |s),

which is (i).

7 Measurable utility
A mixture space M is a set such that for each x, y ∈ M and α ∈ [0, 1] there is an element
αx + (1 − α)y in M , where

i. 1x + 0y = x,

ii. αx + (1 − α)y = (1 − α)y + αx,

iii. λ[αx + (1 − α)y] + (1 − λ)y = (λα)x + (1 − λα)y.

The set of lotteries form a mixture space under the interpretation that αx+(1−α)y is a lottery
yielding a ticket to play x with probability α and a ticket to play y with probability 1 − α.

A utility satisfies
x≽ y ⇐⇒ u(x) ⩾ u(y)

and a measurable utility or a von Neumann–Morgenstern utility additionally satisfies

u(αx + (1 − α)y) = αu(x) + (1 − α)u(y).

9 Theorem (Herstein and Milnor [15]) Let ≽ be a regular preference on the mixture
space M satisfying

i. {α : αx + (1 − α)y ≽ z} and {α : αx + (1 − α)y ≼ z} are closed.

ii. (Strong Independence) If x ∼ y, then αx + (1 − α)z ∼ αy + (1 − α)z for all z and all α.

Then ≽ has a measurable utility.

The Independence axiom is often used as a normative justification for measurable, utility,
but it is not clear why a decision maker ought to want to obey it.

8 Stochastic dominance and expected utility
In this section we consider lotteries over monetary prizes. Let me abuse notation and use S to
denote both the set and number of prizes, so S = {x1 < · · · < xS} is a finite set of money prizes.
A lottery is a probability distribution over the prizes. Lotteries thus correspond to probability
vectors in RS. We say that q stochastically dominates p if for each k = 0, . . . , S − 1,

S∑
s=S−k

qs ⩾
S∑

s=S−k

ps,

v. 2016.05.04::13.25
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and p ̸= q (so that there is strict inequality for at least one k). That is, q always assigns
higher probability than p to the set of the k largest prizes. Intuitively, one should prefer a
stochastically dominating lottery, (assuming larger prizes are better).

A utility on S can be thought of as vector u in RS, where the sth component is the utility
of xs. It is natural to demand in addition that u1 < · · · < uS .

10 Expected utility theorem Suppose p and q are distinct probability vectors. Either
(i) There are u1 < · · · < uS such that

S∑
s=1

usps >
S∑

s=1
usqs

Or else
(ii) q stochastically dominates p.

That is, as long as your choice is not dominated, you act as if you maximize the expected
utility of some strictly increasing utility.

Proof : (i) is equivalent to

p1 − q1 p2 − q2 p3 − q3 . . . . . . . . . pS−1− qS−1 pS − qS

−1 +1 0 0 0 . . . 0 0

0 −1 +1 0 . . . 0

0 0 −1 +1 0 0

... 0 . . . . . . . . . ...

... . . . . . . . . . 0
...

0 0 −1 +1 0

0 0 . . . . . . 0 0 −1 +1





u1

u2

...

...

uS−1

uS



≫ 0.

Gordan’s Alternative 15 asserts that the alternative is that there exists a vector y =
(y0, y1, . . . , yS−1) > 0 such that

y0(p1 − q1) − y1 = 0
y0(p2 − q2) + y1 − y2 = 0

...
...

y0(pS−1 − qS−1) + yS−2 − yS−1 = 0
y0(pS − qS) + yS−1 = 0.

(1)

v. 2016.05.04::13.25
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It is easy to see that y0 > 0, for if y0 = 0, then (1) implies everything unravels and the
entire vector y = 0, a contradiction.

Write xs = ys

y0
⩾ 0, i = 1, . . . , S − 1. Then

p1 − q1 − x1 = 0
p2 − q2 + x1 − x2 = 0
p3 − q3 + x2 − x3 = 0

...
...

pS−1 − qS−1 + xS−2 − xS−1 = 0
pS − qS + xS−1 = 0.

(1′)

Start from the end, and add up the last k inequalities to get

pS − qS = −xS−1 ⩽ 0
(pS−1 + pS) − (qS−1 + qS) = −xS−2 ⩽ 0

...
...

S∑
s=1

ps −
S∑

s=1
qs = −x1 ⩽ 0

which asserts that q stochastically dominates p.

9 Stochastic dominance and expected utility, deux
This generalizes the preceding result to larger collections of vectors p0, p1, . . . pm. We say that
p0 is an extreme point of this collection if it cannot be written as a convex combination of
the others. That is, it is never true that p0 =

∑m
j=1 λjpj , where the λs are convex weights. In

order to stand a chance of p0 being the unique maximizer of any vector u, we must assume that
it is an extreme point, otherwise we would have the contradiction u · p0 > u ·

∑m
j=1 λjpj = u · p0.

11 Theorem Let p0, p1, . . . pm be probability vectors on S, and assume that p0 is an extreme
point. Then either

i. there is a utility u satisfying u1 < · · · < uS such that p0 has the highest expected utility,
that is,

u · p0 > u · pj , j = 1, . . . , m;

or else

ii. there is a probability vector π ∈ Rm such that the mixture
m∑

j=1
πjpj stochastically dominates p0.

v. 2016.05.04::13.25
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Proof : (cf. Fishburn [9], Ledyard [18], and Border [3]) Condition (i) is equivalent to the fol-
lowing matrix equation, with m + S − 1 rows and S columns.

p0
1 − p1

1 p0
2 − p1

2 · · · · · · p0
S−1− p1

S−1 p0
S − p1

S

...
...

...
...

p0
1 − pj

1 p0
2 − pj

2 · · · p0
s − pj

s · · · p0
S−1− pj

S−1 p0
S − pj

S

...
...

...
...

p0
1 − pm

1 p0
2 − pm

2 · · · · · · p0
S−1− pm

S−1 · · ·

−1 +1 0 · · · · · · 0 0

0 −1 +1
. . . 0

0 0 −1
. . . 0

... . . . . . . . . . . . . ...

0
. . . −1 +1 0

0 0 · · · · · · 0 −1 +1





u1

u2

...

...

uS−1

uS



≫ 0.

Gordan’s Alternative 15 asserts that the alternative is that there is some semipositive m +
S − 1-vector

(π, y) = (π1, . . . , πm, y1, . . . , yS−1) > 0

satisfying ∑m
j=1 πj(p0

1 − pj
1) − y1 = 0∑m

j=1 πj(p0
2 − pj

2) + y1 − y2 = 0

...
...

∑m
j=1 πj(p0

S−1 − pj
S−1) + yS−2 − yS−1 = 0∑m

j=1 πj(p0
S − pi

S) + yS−1 = 0.

It is easy to see that ∑m
j=1 πj > 0, for if ∑m

j=1 πj = 0, then π = 0, and everything unravels,
so (π, y) = 0, a contradiction. Therefore we may renormalize, and assume without loss of
generality that ∑m

j=1 πj = 1.
Then just as in the proof of Theorem 10, we see that ∑m

j=1 πjpj is either equal to or
stochastically dominates ∑m

j=1 πjp0 = p0. But our extremity hypothesis rules out their equality.
That is, condition (ii) holds.

v. 2016.05.04::13.25
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10 Allais Paradox
This example is due more-or-less to Maurice Allais [1]. Consider the lotteries

A1 = [$5m, .1; $0, .9] B1 = [$1m, .11; $0, .89]

and
A2 = [$5m, .1; $1m, .89; $0, .01] B2 = [$1m, 1]

(The notation means that A1 pays $5m with probability .1, and nothing with probability .9,
etc.) Many people report B2 ≻ A2 and A1 ≻ B1, which violates EUH:

B2 ≻ A2 =⇒ u(1m) > .1u(5m) + .89u(1m) + .01u(0)

=⇒ .11u(1m) > .1u(5m) + .01u(0)
(subtract .89u(1m) from each side)

=⇒ .11u(1m) + .89u(0) > .1u(5m) + .9u(0)
(add .89u(0) to each side)

=⇒ B1 ≻ A1.

11 The Allais paradox and stochastic dominance
The Allais paradox above presented subject with two choice problems: Choose a lottery from
the pair {A1, B1} and choose a lottery from the pair {A2, B2}. The “paradoxical” choice is A1
from the first pair and B2 from the second pair.

Consider the following two-stage procedure: choose a pair, where each pair is equally likely,
and then play the lottery chosen. Compare that to the two-stage lottery involving the lotteries
not chosen. This amounts to the choice problem of choosing a compound lottery from the pair
of compound lotteries

C1 =
[
A1, 1

2 ; B2, 1
2

]
C2 =

[
B1, 1

2 ; A2, 1
2

]
The compound lotteries reduce to

C1 = [$5m, .05; $1m, .50; $0, .45] C2 = [$5m, .05; $1m, .50; $0, .45].

That is, the compound lotteries reduce to the identical single-stage lottery, yet the para-
doxical choices indicate a strict preference for the first.

We could alter say A2 to be A′
2 = [$5m, .1; $1m, .89 + 2ε; $0, .01 − 2ε] for some tiny

ε > 0. Then if B2 remained the choice, the compound lottery [B1, 1
2 ; A′

2, 1
2 ] reduces to C ′

2 =
[$5m, .05; $1m, .50 + ε; $0, .45 − ε], which strictly stochastically dominates C1.

The next section shows that this is not an isolated case. It is based on Border [3] and
Ledyard [18].

v. 2016.05.04::13.25
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12 Stochastic dominance and expected utility, trois
Let S = {x1 < · · · < xS} be a finite set of money prizes. Let B1, . . . , BK be lottery budgets.
That is, each Bk is a finite set {pk0, . . . , pkmk} of mk + 1 lotteries on S. A choice function
c assigns to each budget B a single lottery c(B) from the budget. Since the choice function
selects a single element from budget we shall assume that it is the unique best element. So we
shall say that the choice function is EU-rational if there is a strictly increasing utility function
u1 < u2 < · · · < uS on S such that for each k = 1, . . . , K,

c(Bk) · u > p · u for all p ∈ Bk \ c(Bk).

The paradoxical choices in the Allais example were not EU-rational, and we showed the exis-
tence of a probability measure over the budgets and an alternative choice function such that
compound procedure of drawing a budget at random and then making the paradoxical choice
is stochastically dominated.

A mixed choice assigns to a budget Bk a mixture (convex combination) ∑mk
j=0 λkjpkj of

the elements of Bk. (For each k, we have ∑mk
j=0 λkj = 1.)

12 Theorem i. The choice c is EU-rational, or else

ii. there is a probability vector π ∈ Rm, and a mixed choice d, where d(Bk) does not put
any weight on c(Bk) for each k, such that the mixture

K∑
k=1

πkd(Bk) stochastically dominates or equals
K∑

k=1
πkc(Bk).

Proof : (cf. Ledyard [18] and Border [3]) Assume without loss of generality that pk0 is the choice
for Bk. Create the matrix A with ∑K

k=1 mk + S − 1 rows and S columns defined as follows.

v. 2016.05.04::13.25
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

p10
1 − p11

1 p10
2 − p11

2 p10
3 − p11

3 . . . . . . . . . p10
S−1 − p11

S−1 p10
S − p11

S

p10
1 − p12

1 p10
2 − p12

2 p10
3 − p12

3 . . . . . . . . . p10
S−1 − p12

S−1 p10
S − p20

S

...
...

...
...

...

p10
1 − p1m1

1 p10
2 − p1m1

2 p10
3 − p1m1

3 . . . . . . . . . p10
S−1 − p1m1

S−1 p10
S − p1m1

S

...
...

...
...

...
...

...
...

...
...

pK0
1 − pK1

1 pK0
2 − pK1

2 pK0
3 − pK1

3 . . . . . . . . . pK0
S−1 − pK1

S−1 pK0
S − pK1

S

pK0
1 − pK2

1 pK0
2 − pK2

2 pK0
3 − pK2

3 . . . . . . . . . pK0
S−1 − pK2

S−1 pK0
S − p20

S

...
...

...
...

...

pK0
1 − pKmK

1 pK0
2 − pKmK

2 pK0
3 − pKmK

3 . . . . . . . . . pK0
S−1 − pKmK

S−1 pK0
S − pKmK

S

−1 +1 0 0 0 . . . 0 0

0 −1 +1 0
. . . 0

0 0 −1 +1 0 0
... 0

. . . . . . . . .
...

...
. . . . . . . . . 0

...

0 0 −1 +1 0

0 0 . . . . . . 0 0 −1 +1


Condition (i) is equivalent to the existence of a utility vector u ∈ RS satisfying Au ≫ 0.

Gordan’s Alternative 15 asserts that the alternative is that there is some semipositive∑K
k=1 mk + S − 1-vector

(z, y) = (z11, . . . , z1m1 , . . . , zK1, . . . , zKmK
, y1, . . . , yS−1) > 0

satisfying ∑K
k=1

∑mk
j=1 zkj(pk0

1 − pkj
1 ) − y1 = 0∑K

k=1
∑mk

j=1 zkj(pk0
2 − pkj

2 ) + y1 − y2 = 0

...
...

∑K
k=1

∑mk
j=1 zkj(pk0

S−1 − pkj
S−1) + yS−2 − yS−1 = 0∑K

k=1
∑mk

j=1 zkj(pk0
S − pkj

S ) + yS−1 = 0.
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It is easy to see that ∑K
k=1

∑mk
j=1 zkj > 0, otherwise everything unravels, so (z, y) = 0, a

contradiction. Therefore we may renormalize and assume that ∑K
k=1

∑mk
j=1 zkj = 1. Now for

each k set
πk =

mk∑
j=1

zkj k = 1, . . . , K

and

λkj =


zkj

πk
πk > 0

0 πk = 0,

so ∑K
k=1

∑mk
j=1 zkj =

∑K
k=1 πk

∑mk
j=1 λkj and for each k with πk > 0, we have ∑mk

j=1 λkj = 1.
Define the random choice d by

d(Bk) =
mk∑
j=1

λkjpkj , k = 1, . . . , K.

Then just as in the proof of Theorem 11, we see that ∑K
k=1 πkd(Bk) stochastically dominates

or equals ∑K
k=1 πkpk0 =

∑K
k=1 πkc(Bk).

I assert without proof that if ∑K
k=1 πkd(Bk) =

∑K
k=1 πkc(Bk), then an arbitrarily small

perturbation of the pkjs will lead to ∑K
k=1 πkd(Bk) strictly dominating ∑K

k=1 πkc(Bk).
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A Theorems of the Alternative
The mathematical tools we shall use are presented here without proof. See Gale [12, Chapter 2]
or my on-line notes for proofs. Here is the notation I use for vector orders.

x ≧ y ⇐⇒ xi ⩾ yi, i = 1, . . . , n
x > y ⇐⇒ xi ⩾ yi, i = 1, . . . , n and x ̸= y
x ≫ y ⇐⇒ xi > yi, i = 1, . . . , n

I call the next result Fredholm’s Alternative, as Fredholm [10] contains a version of it.

13 Fredholm Alternative Let A be an m × n matrix and let b ∈ Rm. Exactly one of the
following alternatives holds. Either there exists an x ∈ Rn satisfying

Ax = b (1)

or else there exists p ∈ Rm satisfying

pA = 0
p · b > 0.

(2)

The next result is due to Stiemke [23].

14 Stiemke’s Alternative Let A be an m×n matrix. Exactly one of the following alternatives
holds. Either there exists x ∈ Rn satisfying

Ax > 0 (3)

or else there exists p ∈ Rm satisfying

pA = 0
p ≫ 0.

(4)

A different version of the alternative is due to Gordan [13].

15 Gordan’s Alternative Let A be an m×n matrix. Exactly one of the following alternatives
holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0. (5)

or else there exists p ∈ Rm satisfying

pA = 0
p > 0.

(6)

Another alternative is Motzkin’s Transposition Theorem [19], proven in his 1934 Ph.D.
thesis. This statement is taken from his 1951 paper [20].4

4Motzkin [20] contains an unfortunate typo. The condition Ax ≫ 0 is erroneously given as Ax ≪ 0.
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column space of A

A1

A2

b

p

Figure 1. Geometry of the Fredholm Alternative

column space of A

A1

A2

y

Rn
+

Figure 2. Geometry of the Stiemke Alternative
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column space of A
A1A2

p

Rn
++

Figure 3. Geometry of the Gordan Alternative

16 Motzkin’s Transposition Theorem Let A be an m×n matrix, let B be an ℓ×n matrix,
and let C be an r × n matrix, where B or C may be omitted (but not A). Exactly one of the
following alternatives holds. Either there exists x ∈ Rn satisfying

Ax ≫ 0
Bx ≧ 0
Cx = 0

(7)

or else there exist pA ∈ Rm, pB ∈ Rℓ, and pC ∈ Rr satisfying

pAA + pBB + pCC = 0
pA > 0
pB ≧ 0.

(8)

Motzkin expressed (8) in terms of the transpositions of A, B, and C. The reason the
matrix A may not be omitted is that without A, the vectors x = 0, pB = 0, pC = 0 solve both
systems (7) and (8). Note that Gordan’s Alternative is the case of Motzkin’s Theorem where
B and C are both omitted. Stoer and Witzgall [24, Theorem 1.4.4, p. 18] and Fishburn [8,
Theorem 3.2, pp. 31–32] also provide a rational version of Motzkin’s theorem, which can be
used to prove the following result.5

17 Motzkin’s Rational Transposition Theorem Let A be an m × n rational matrix, let
B be an ℓ × n rational matrix, and let C be an r × n rational matrix, where B or C may be
omitted (but not A). Exactly one of the following alternatives holds. Either there exists x ∈ Rn

5Stoer and Witzgall [24] use terminology that makes it difficult to realize that Theorem 1.4.4 implies what
follows. It is also stated for a general commutative ordered field, which they denote by R, which is not to
be confused with the real numbers R. Both the real field and the rational field are covered by their results.
Fishburn [8] presents an all-integer version of Motzkin’s Theorem. The integer version can derived from the
rational version by multiplying by a common denominator.
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satisfying

Ax ≫ 0
Bx ≧ 0
Cx = 0

(9)

or else there exist pA ∈ Zm, pB ∈ Zℓ, and pC ∈ Zr satisfying

pAA + pBB + pCC = 0
pA > 0
pB ≧ 0.

(10)

v. 2016.05.04::13.25
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