Calt Division of the Humanities and Social Sciences

Robinson Crusoe Walrasian Examples

KC Border
January 2001
v. 2015.11.11::14.31

Two goods: x and y. Good y is produced from good x using the production function f. Normalize so that

$$
p_{x}=1 \quad \text { and } \quad \bar{x}=1, \bar{y}=0 .
$$

Drop the subscript on p_{y} and just call it p, the price of output relative to the price of input. For these examples,

$$
f(x)=\gamma x^{\frac{1}{2}}
$$

Let RC have the Cobb-Douglas utility

$$
u(x, y)=x^{1-\alpha} y^{\alpha},
$$

where $0<\alpha<1$.

Profit maximization

The profit maximization problem is to maximize

$$
p f(x)-x=p \gamma x^{\frac{1}{2}}-x .
$$

This is a strictly concave function of x, so the first order condition determines the maximum. It is

$$
\frac{1}{2} p \gamma x^{-\frac{1}{2}}-1=0
$$

which implies

$$
\begin{equation*}
\hat{x}(p)=\frac{\gamma^{2} p^{2}}{4} \tag{1}
\end{equation*}
$$

is the factor demand function, so the supply function is

$$
\begin{equation*}
\hat{y}(p)=\gamma \hat{x}(p)^{\frac{1}{2}}=\frac{\gamma^{2}}{2} p \tag{2}
\end{equation*}
$$

and the optimal profit function is

$$
\begin{equation*}
\hat{\pi}(p)=\frac{\gamma^{2} p^{2}}{2}-\frac{\gamma^{2} p^{2}}{4}=\frac{\gamma^{2} p^{2}}{4} . \tag{3}
\end{equation*}
$$

Utility maximization

Recall that for a Cobb-Douglas utility, the expenditure on a good is proportional to the exponent. Thus demand as a function income m and price p is

$$
y^{*}(p, m)=\frac{\alpha m}{p}, \quad x^{*}(p, m)=(1-\alpha) m .
$$

Market clearing

In equilibrium RC gets all the profits plus the value of the endowment, so

$$
m(p)=p_{x} \bar{x}+\hat{\pi}(p)=1+\frac{\gamma^{2} p^{2}}{4}
$$

so the demands are given by

$$
\begin{equation*}
x^{*}(p)=(1-\alpha) m=(1-\alpha)\left(1+\frac{\gamma^{2} p^{2}}{4}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{*}(p)=\frac{\alpha m}{p}=\frac{\alpha\left(1+\frac{\gamma^{2} p^{2}}{4}\right)}{p} . \tag{5}
\end{equation*}
$$

Clearing the market for y

Equating supply (2) and demand (5) for y gives

$$
\begin{equation*}
\frac{\gamma^{2}}{2} p=\frac{\alpha\left(1+\frac{\gamma^{2} p^{2}}{4}\right)}{p} . \tag{6}
\end{equation*}
$$

Rewriting (6) yields

$$
\begin{aligned}
\frac{\gamma^{2}}{2} p^{2} & =\alpha\left(1+\frac{\gamma^{2} p^{2}}{4}\right) \\
2 \gamma^{2} p^{2} & =4 \alpha+\alpha \gamma^{2} p^{2} \\
(2-\alpha) \gamma^{2} p^{2} & =4 \alpha \\
p^{2} & =\frac{4 \alpha}{(2-\alpha) \gamma^{2}},
\end{aligned}
$$

so

$$
\begin{equation*}
p^{*}=\frac{2}{\gamma} \sqrt{\frac{\alpha}{2-\alpha}} . \tag{7}
\end{equation*}
$$

Clearing the market for x

Equating supply (one unit) and demand $[(1)+(4)]$ for x gives

$$
\begin{equation*}
1=\hat{x}(p)+x^{*}(p)=\frac{\gamma^{2} p^{2}}{4}+(1-\alpha)\left(1+\frac{\gamma^{2} p^{2}}{4}\right) . \tag{8}
\end{equation*}
$$

Rewriting (8) yields

$$
\begin{aligned}
4 & =4(1-\alpha)+(2-\alpha) \gamma^{2} p^{2} \\
4 \alpha & =(2-\alpha) \gamma^{2} p^{2} \\
p^{2} & =\frac{4 \alpha}{(2-\alpha) \gamma^{2}} \\
p & =\frac{2 \sqrt{\alpha}}{\gamma \sqrt{2-\alpha}} .
\end{aligned}
$$

and again we get

$$
p^{*}=\frac{2}{\gamma} \sqrt{\frac{\alpha}{2-\alpha}} .
$$

The complete equilibrium

Substituting the value for p^{*} given by (7) or (7^{\prime}) into (1)-(5) gives

$$
\begin{array}{cc}
p^{*}=\frac{2}{\gamma} \sqrt{\frac{\alpha}{2-\alpha}}, \quad y^{*}=\hat{y}=\gamma \sqrt{\frac{\alpha}{2-\alpha}}, \tag{9}\\
x^{*}=\frac{2-2 \alpha}{2-\alpha}, & \hat{x}=\frac{\alpha}{2-\alpha} .
\end{array}
$$

Examples

For example, setting $\gamma=1$ and $\alpha=\frac{2}{5}$ gives the equilibrium

$$
p^{*}=1, \quad y^{*}=\hat{y}=\frac{1}{2}, \quad x^{*}=\frac{3}{4}, \quad \hat{x}=\frac{1}{4} .
$$

For another example, set $\alpha=\frac{1}{2}$ and $\gamma=2$. Then

$$
p^{*}=\frac{1}{\sqrt{3}}, \quad y^{*}=\hat{y}=\frac{2}{\sqrt{3}}, \quad x^{*}=\frac{2}{3}, \quad \hat{x}=\frac{1}{3} .
$$

Nice values

The key to getting nice (e.g., rational) values for the equilibrium is to choose α so that $\sqrt{\alpha /(2-\alpha)}$ is nice. Now if $\sqrt{\alpha /(2-\alpha)}=x$, then $\alpha=2 x^{2} /\left(1+x^{2}\right)$. So if you want $\sqrt{\alpha /(2-\alpha)}=a / b$, then choose $\alpha=2 a^{2} /\left(a^{2}+b^{2}\right)$. Note that if α is between 0 and 1 , then so is $\sqrt{\alpha /(2-\alpha)}$.

Optimality

Suppose Robinson simply maximized his utility subject to the resource constraint and technology. Let x denote his consumption of good x, so that $1-x$ is used to produce y. The amount of y produced is the $\gamma(1-x)^{1 / 2}$. Thus he will choose x to

$$
\operatorname{maximize} x^{1-\alpha}\left(\gamma(1-x)^{1 / 2}\right)^{\alpha} .
$$

The first order condition for a maximum is $(1-\alpha) x^{-\alpha}\left(\gamma(1-x)^{1 / 2}\right)^{\alpha}+x^{1-\alpha} \alpha\left(\gamma(1-x)^{1 / 2}\right)^{\alpha-1} \gamma \frac{1}{2}(1-x)^{-1 / 2}(-1)=0$.

Multiply by $2 x^{\alpha}\left(\gamma(1-x)^{1 / 2}\right)^{-\alpha}$ and rearrange to get

$$
\begin{aligned}
2(1-\alpha) & =x \alpha\left(\gamma(1-x)^{1 / 2}\right)^{-1} \gamma(1-x)^{-1 / 2} \\
2(1-\alpha) & =\alpha x(1-x)^{-1} \\
2(1-\alpha)(1-x) & =\alpha x \\
2(1-\alpha) & =(2-\alpha) x
\end{aligned}
$$

which implies

$$
x=\frac{2-2 \alpha}{2-\alpha} .
$$

That is, RC will choose the same consumption of x (and thus also of y) as the market equilibrium described in (9). In other words, the market equilibrium is efficient.

