Robinson Crusoe Walrasian Examples

KC Border January 2001 v. 2015.11.11::14.31

Two goods: x and y. Good y is produced from good x using the production function f. Normalize so that

$$p_x = 1$$
 and $\bar{x} = 1, \ \bar{y} = 0.$

Drop the subscript on p_y and just call it p, the price of output relative to the price of input. For these examples,

$$f(x) = \gamma x^{\frac{1}{2}}.$$

Let RC have the Cobb–Douglas utility

$$u(x,y) = x^{1-\alpha}y^{\alpha},$$

where $0 < \alpha < 1$.

Profit maximization

The profit maximization problem is to maximize

$$pf(x) - x = p\gamma x^{\frac{1}{2}} - x.$$

This is a strictly concave function of x, so the first order condition determines the maximum. It is

$$\frac{1}{2}p\gamma x^{-\frac{1}{2}} - 1 = 0,$$

which implies

$$\hat{x}(p) = \frac{\gamma^2 p^2}{4} \tag{1}$$

is the factor demand function, so the supply function is

$$\hat{y}(p) = \gamma \hat{x}(p)^{\frac{1}{2}} = \frac{\gamma^2}{2}p,$$
(2)

and the optimal profit function is

$$\hat{\pi}(p) = \frac{\gamma^2 p^2}{2} - \frac{\gamma^2 p^2}{4} = \frac{\gamma^2 p^2}{4}.$$
(3)

Utility maximization

Recall that for a Cobb–Douglas utility, the expenditure on a good is proportional to the exponent. Thus demand as a function income m and price p is

$$y^{*}(p,m) = \frac{\alpha m}{p}, \qquad x^{*}(p,m) = (1-\alpha)m.$$

Market clearing

In equilibrium RC gets all the profits plus the value of the endowment, so

$$m(p) = p_x \bar{x} + \hat{\pi}(p) = 1 + \frac{\gamma^2 p^2}{4},$$

so the demands are given by

$$x^{*}(p) = (1 - \alpha)m = (1 - \alpha)\left(1 + \frac{\gamma^{2}p^{2}}{4}\right),$$
(4)

and

$$y^*(p) = \frac{\alpha m}{p} = \frac{\alpha \left(1 + \frac{\gamma^2 p^2}{4}\right)}{p}.$$
(5)

Clearing the market for y

Equating supply (2) and demand (5) for y gives

$$\frac{\gamma^2}{2}p = \frac{\alpha\left(1 + \frac{\gamma^2 p^2}{4}\right)}{p}.$$
(6)

Rewriting (6) yields

$$\frac{\gamma^2}{2}p^2 = \alpha \left(1 + \frac{\gamma^2 p^2}{4}\right)$$
$$2\gamma^2 p^2 = 4\alpha + \alpha \gamma^2 p^2$$
$$(2 - \alpha)\gamma^2 p^2 = 4\alpha$$
$$p^2 = \frac{4\alpha}{(2 - \alpha)\gamma^2},$$

 \mathbf{SO}

$$p^* = \frac{2}{\gamma} \sqrt{\frac{\alpha}{2-\alpha}}.$$
(7)

v. 2015.11.11::14.31

Clearing the market for x

Equating supply (one unit) and demand [(1)+(4)] for x gives

$$1 = \hat{x}(p) + x^*(p) = \frac{\gamma^2 p^2}{4} + (1 - \alpha) \left(1 + \frac{\gamma^2 p^2}{4}\right).$$
(8)

Rewriting (8) yields

$$4 = 4(1 - \alpha) + (2 - \alpha)\gamma^2 p^2$$
$$4\alpha = (2 - \alpha)\gamma^2 p^2$$
$$p^2 = \frac{4\alpha}{(2 - \alpha)\gamma^2}$$
$$p = \frac{2\sqrt{\alpha}}{\gamma\sqrt{2 - \alpha}}.$$

and again we get

$$p^* = \frac{2}{\gamma} \sqrt{\frac{\alpha}{2 - \alpha}}.$$
(7')

The complete equilibrium

Substituting the value for p^* given by (7) or (7') into (1)–(5) gives

$$p^* = \frac{2}{\gamma} \sqrt{\frac{\alpha}{2-\alpha}}, \quad y^* = \hat{y} = \gamma \sqrt{\frac{\alpha}{2-\alpha}},$$

$$x^* = \frac{2-2\alpha}{2-\alpha}, \qquad \hat{x} = \frac{\alpha}{2-\alpha}.$$
(9)

7

Examples

For example, setting $\gamma=1$ and $\alpha=\frac{2}{5}$ gives the equilibrium

$$p^* = 1$$
, $y^* = \hat{y} = \frac{1}{2}$, $x^* = \frac{3}{4}$, $\hat{x} = \frac{1}{4}$.

For another example, set $\alpha = \frac{1}{2}$ and $\gamma = 2$. Then

$$p^* = \frac{1}{\sqrt{3}}, \quad y^* = \hat{y} = \frac{2}{\sqrt{3}}, \quad x^* = \frac{2}{3}, \quad \hat{x} = \frac{1}{3}.$$

v. 2015.11.11::14.31

Nice values

The key to getting nice (e.g., rational) values for the equilibrium is to choose α so that $\sqrt{\alpha/(2-\alpha)}$ is nice. Now if $\sqrt{\alpha/(2-\alpha)} = x$, then $\alpha = 2x^2/(1+x^2)$. So if you want $\sqrt{\alpha/(2-\alpha)} = a/b$, then choose $\alpha = 2a^2/(a^2+b^2)$. Note that if α is between 0 and 1, then so is $\sqrt{\alpha/(2-\alpha)}$.

Optimality

Suppose Robinson simply maximized his utility subject to the resource constraint and technology. Let x denote his consumption of good x, so that 1-x is used to produce y. The amount of y produced is the $\gamma(1-x)^{1/2}$. Thus he will choose x to

maximize
$$x^{1-\alpha} \left(\gamma (1-x)^{1/2} \right)^{\alpha}$$
.

The first order condition for a maximum is

$$(1-\alpha)x^{-\alpha}\left(\gamma(1-x)^{1/2}\right)^{\alpha} + x^{1-\alpha}\alpha\left(\gamma(1-x)^{1/2}\right)^{\alpha-1}\gamma_{\frac{1}{2}}(1-x)^{-1/2}(-1) = 0.$$

Multiply by $2x^{\alpha} \left(\gamma(1-x)^{1/2}\right)^{-\alpha}$ and rearrange to get

$$2(1-\alpha) = x\alpha \left(\gamma(1-x)^{1/2}\right)^{-1} \gamma(1-x)^{-1/2}$$
$$2(1-\alpha) = \alpha x(1-x)^{-1}$$
$$2(1-\alpha)(1-x) = \alpha x$$
$$2(1-\alpha) = (2-\alpha)x$$

which implies

$$x = \frac{2 - 2\alpha}{2 - \alpha}.$$

That is, RC will choose the same consumption of x (and thus also of y) as the market equilibrium described in (9). In other words, the market equilibrium is efficient.

v. 2015.11.11::14.31