
Division of the Humanities
and Social Sciences

The old-fashioned approach to
comparative statics of cost minimization

KC Border
Fall 1998, Revised Fall 2004

v. 2016.01.15::00.14

This is the more or less traditional approach to cost minimization, as found in say Samuel-
son [1, pp. 57–69].

1 Production functions
The economists’ somewhat lame standard approach to production is to assume that there is
production function that relates output to inputs. That is, the maximal quantity of output
y that can be produced with a list x = (x1, . . . , xn) of inputs is given by

y = f(x1, . . . , xn).

This formulation has built into it the assumption of no joint production. There is only one
output per producer. It is not that we cannot deal with joint production, I’ll cover that in a
separate note, it is merely a convenient benchmark, and it is a gentle introduction for students.
We will assume the following usually unstated assumptions.1

P.1 The production function f : Rn
+ → R is continuous, and twice continuously differentiable

on Rn
++.

P.2 At each point x ≫ 0, we have f ′(x) ≫ 0, which is a strong monotonicity condition.

P.3 The production function satisfies the following strong quasiconcavity condition. At each
x ≫ 0, the Hessian is negative definite on the subspace orthogonal to the gradient. That
is, for all v ∈ Rn,

n∑
i=1

n∑
j=1

fij(x)vivj < 0 v ̸= 0 and f ′(x) · v = 0,

1The usual (greater than or equal to) order on R is denoted ⩾. On Rn, the order x ≧ y means xi ⩾ yi,
i = 1, . . . , n, while x ≫ y means xi > yi, i = 1, . . . , n. In addition, x > y means xi ⩾ yi, i = 1, . . . , n and x ̸= y.
Define Rn

+ = {x ∈ Rn : x ≧ 0} and Rn
++ = {x ∈ Rn : x ≫ 0}, the nonnegative orthant and strictly positive

orthant of Rn respectively.
Subscripts are used to indicate partial differentiation. For instance, fi(x) is ∂f(x)/∂xi and fij(x) is

∂2f(x)/∂xi∂xj . The symbol f ′(x) denotes the vector of all partial derivatives.
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where fij(x) = ∂2f(x)
∂xi∂xj

. This is equivalent to

(−1)p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f11 . . . f1p f1

...
...

...

fp1 . . . fpp fp

f1 . . . fp 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 p = 2, . . . , n.

In particular, ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f11 . . . f1n f1

...
...

...

fn1 . . . fnn fn

f1 . . . fn 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.

P.4 If f(x) > 0, then x ≫ 0.

Under these conditions, for w ≫ 0 and y > 0,there is always a unique cost minimizing input
vector x̂ and it satisfies x̂ ≫ 0.

2 Cost minimization
Mathematically the cost minimization problem can be formulated as follows.

minimize
x

w · x subject to f(x) ⩾ y, x ≧ 0,

where w ≫ 0 and y > 0.
It is clear that we can replace the condition f(x) ⩾ y by f(x) − y = 0 without changing

the solution. Let x̂(w, y) solve this problem, and assume that x̂ ≫ 0. The Lagrangean for this
minimization problem is

w · x − λ
(
f(x) − y

)
.

The gradient of the constraint function (with respect to x) is just f ′(x̂), which is not zero.
Therefore by the Lagrange Multiplier Theorem, there is a Lagrange multiplier λ̂ (depending on
w, y) so that locally the first order conditions

wi − λ̂(w, y)fi
(
x̂(w, y)

)
= 0, i = 1, . . . , n, (1)

and the constraint
y − f

(
x̂(w, y)

)
= 0 (2)
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hold for all w, y. Note that (1) implies that λ̂ > 0.
The second order condition is that

λ̂
n∑

i=1

n∑
j=1

fij(x̂)vivj ⩽ 0, (3)

for all v ∈ Rn satisfying

f ′(x̂) · v =
n∑

i=1
fi(x̂)vi = 0.

Using the method of implicit differentiation with respect to each wj on (1) yields:

δij − ∂λ̂

∂wj
fi(x̂) − λ̂

n∑
k=1

fik(x̂) ∂x̂k

∂wj
= 0,

i = 1, . . . , n

j = 1, . . . , n
, (4)

where δij is the Kronecker delta,

δij =


1 if i = j

0 if i ̸= j.

Differentiating (1) with respect to y yields

− ∂λ̂

∂y
fi(x̂) − λ̂

n∑
k=1

fik(x̂)∂x̂k

∂y
= 0, i = 1, . . . , n, (5)

Now differentiate (2) with respect to each wj to get

−
n∑

k=1
fk(x̂) ∂x̂k

∂wj
= 0, j = 1, . . . , n, (6)

and with respect to y to get

−
n∑

k=1
fk(x̂)∂x̂k

∂y
+ 1 = 0. (7)

We can rearrange equations (4) through (7) into one gigantic matrix equation:

λ̂f11 . . . λ̂f1n f1

...
...

...
...

...
...

λ̂fn1 . . . λ̂fnn fn

f1 . . . fn 0





∂x̂1
∂w1

. . . ∂x̂1
∂wn

∂x̂1
∂y

...
...

...
...

...
...

∂x̂n
∂w1

. . . ∂x̂n
∂wn

∂x̂n
∂y

∂λ̂
∂w1

. . . ∂λ̂
∂wn

∂λ̂
∂y


=



1 0 . . . . . . 0 0

0 . . . ...
...

... . . . 0
...

0 . . . . . . 0 1 0

0 . . . . . . 0 1


.
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. . . ...

(4) (5)

. . . ...

. . . (6) . . . (7)


Figure 1. The blocks in the matrix version of equations (4) through (7).

To see where this comes from, break up the (n+1) × (n+1) matrix equation into four blocks.
The upper left n × n block comes from (4). The upper right n × 1 block comes from (5). The
lower left 1 × n block comes from (6), and finally the lower right 1 × 1 block is just (7). See
Figure 1. What this tells us is that

∂x̂1
∂w1

. . .
∂x̂1
∂wn

∂x̂1
∂y

...
...

...
...

...
...

∂x̂n

∂w1
. . .

∂x̂n

∂wn

∂x̂n

∂y

∂λ̂

∂w1
. . .

∂λ̂

∂wn

∂λ̂

∂y



=



λ̂f11 . . . λ̂f1n f1

...
...

...
...

...
...

λ̂fn1 . . . λ̂fnn fn

f1 . . . fn 0



−1

. (8)

Condition P.3 implies that the n × n matrix

∂x̂1
∂w1

. . .
∂x̂1
∂wn

...
...

∂x̂n

∂w1
. . .

∂x̂n

∂wn


is negative semidefinite of rank n−1, being the upper left block of the inverse of a bordered
matrix that is negative definite under constraint. (See my notes on quadratic forms.) It follows
therefore that

∂x̂i

∂wi
⩽ 0 i = 1, . . . , n.

v. 2016.01.15::00.14
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3 What the support function approach left out
Note that this approach provides us with conditions under which the cost function is twice
continuously differentiable. It follows from (8) that if the bordered Hessian is invertible, the
Implicit Function Theorem tells us that x̂ and λ̂ are C1 functions of w and y (since f is C2).
On the other hand, if x̂ and λ̂ are C1 functions of w and y, then (8) implies that the bordered
Hessian is invertible. In either case, the marginal cost ∂c

∂y = λ̂, is a C1 function of w and y, so
the cost function is C2, which is hard to establish by other means.

4 Reciprocity results
Returning now to (8), note that since the Hessian is a symmetric matrix, we have a number of
reciprocity results. Namely:

∂x̂i

∂wj
= ∂x̂j

∂wi

i = 1, . . . , n,

j = 1, . . . , n,

and
∂x̂i

∂y
= ∂λ̂

∂wi
= ∂2c

∂wi∂y
.

5 The marginal cost function
Define the cost function c by

c(w, y) =
n∑

k=1
wkx̂k(w, y).

Then
∂c(w, y)

∂y
=

n∑
i=k

wk
∂x̂k(w, y)

∂y
,

and
∂2c(w, y)

∂y2 =
n∑

i=k

wk
∂2x̂k(w, y)

∂y2 . (9)

From (1), we have wk = λ̂fk(x̂), so

∂c(w, y)
∂y

= λ̂
n∑

k=1
fi(x̂)∂x̂k(w, y)

∂y
= λ̂, (10)

where the second equality is just (7). That is, the Lagrange multiplier λ̂ is the marginal cost.
Now let’s see whether the marginal cost is increasing or decreasing as a function of y.

Differentiating (7) with respect to y yields

n∑
j=1

(
∂x̂j

∂y

n∑
i=1

fij(x̂)∂x̂i

∂y
+ fj(x̂)∂2x̂j

∂y2

)
= 0,
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or rearranging,
n∑

j=1
fj(x̂)∂2x̂j

∂y2 = −
n∑

i=1

n∑
j=1

fij(x̂)∂x̂i

∂y

∂x̂j

∂y
. (11)

From (9) and (1) we have that the left-hand side of (11) is 1
λ̂

∂2c

∂y2 . What is the right-hand
side?

Fix w and consider the curve y 7→ x̂(y). This is called an expansion path. It traces out
the optimal input combination as a function of the level of output. The tangent line to this
curve at x̂ is just {x̂ + αv : α ∈ R}, where

vi = ∂x̂i

∂y
.

Write the output along this tangent line, f(x̂ + αv), as a function f̂ of α. That is, f̂(α) =
f(x̂ + αv). By the chain rule,

f̂ ′(α) =
n∑

j=1
fj(x̂ + αv)vj ,

and
f̂ ′′(α) =

n∑
i=1

n∑
j=1

fij(x̂ + αv)vivj ,

so
f̂ ′′(0) =

n∑
i=1

n∑
j=1

fij(x̂)∂x̂i

∂y

∂x̂j

∂y
.

Thus (11) can be written as
∂2c

∂y2 = −λ̂f̂ ′′(0).

In other words (11) asserts that the slope of the marginal cost curve is increasing (that is, the
cost function is a locally convex function of y) when the production function is locally concave
on the line tangent to the expansion path, and vice-versa.

6 Average cost and elasticity of scale
Recall that a production function f exhibits constant returns to scale if f(αx) = αf(x)
for all α > 0. It exhibits increasing returns to scale if f(αx) > αf(x) for α > 1, and
decreasing returns to scale if f(αx) < αf(x) for α > 1. If f is homogeneous of degree
k, that is, if

f(αx) = αkf(x),

then the returns to scale are decreasing, constant, or increasing, as k < 1, k = 1, or k > 1.
Define

h(α, x) = f(αx).

v. 2016.01.15::00.14
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The elasticity of scale e(x) of the production function at x is defined to be

D1h(1, x) 1
f(x)

= f ′(x) · x/f(x),

where D1 denotes the partial derivative with respect to the first argument α, and which Var-
ian [2] writes as

df(αx)
dα

α

f(x)

∣∣∣∣
α=1

.

If f is homogeneous of degree k, then e(x) = k, as

D1h(α, x) = kαk−1f(x).

Even if f is not homogeneous, following Varian, we can express the elasticity of scale in terms
of the marginal and average cost functions, at least for points x that minimize cost uniquely
for some (y, w):

e
(
x̂(y, w)

)
= f ′(x̂) · x̂/f(x̂)

= f ′(x̂) · x̂/y as y = f
(
x̂(y, w)

)
= w

λ̂
· x̂/y by the first order condition w = λ̂f ′(x̂)

= c(y, w)/y

Dyc(y, w)
as c(y, w) = w · x̂(y, w), and by (10) λ̂ = Dyc(y, w)

= AC(y)/ MC(y).

Holding w fixed, and writing the cost simply as a function of y,

d

dy
AC(y) = d

dy

c(y)
y

= c′(y)y − c(y)
y2 = 1

y

(
c′(y) − c(y)

y

)
= 1

y
(MC(y) − AC(y)) .

Thus
AC′(y) > 0 ⇐⇒ MC(y) > AC(y) ⇐⇒ e(x̂) < 1.
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