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Abstract

This is an example of a pointed generating convex cone in R4 with 5
extreme rays, but whose dual cone has 6 extreme rays (and vice-versa).

Recall that a ray in a vector space is the set of nonnegative scalar mul-
tiples of a single nonzero point. A cone is a nonempty subset C of a vector
space that is closed under multiplication by nonnegative scalars. A cone
is trivial it contains only 0. A nontrivial cone is the union of the rays
generated by its nonzero points. A cone C is generating if C − C is the
entire vector space, or equivalently if it spans the space. A convex cone
is a cone that is a convex set. A set in a vector space is a convex cone if
and only if it is closed under nonnegative linear combinations. A convex
cone is pointed if it includes no lines. A ray A is an extreme ray of the
cone C if it is a subset of C and if points on A cannot be written as a linear
combination of linearly independent points in C, that is, if x ∈ A, x = y +z,
y, z ∈ C together imply that y and z are dependent. A finite cone is the
convex cone generated by finitely many nonzero points. A finite cone has
finitely many extreme rays, and a pointed finite cone is the convex hull of
its extreme rays. Finally, the dual cone C∗ of a cone C ⊂ Rm is defined
by

C∗ = {p ∈ Rm : p · y ⩽ 0 for all y ∈ C}.

For a finite cone C (actually any closed convex cone), C∗∗ = C. We shall
use the following characterization of extreme rays of C∗:

Weyl’s Facet Lemma Let C be a finite cone in Rm generated by
a1, . . . , an. Then a nonzero point p ∈ C∗ ⊂ Rm is on an extreme ray
of C∗ if and only if {ai : p · ai = 0} has rank m − 1.
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See, e.g., D. Gale [8, Theorem 2.16, p. 65] for a proof of this result.
(Warning: He omits the requirement that p be nonzero from the statement,
but not the proof.) Or see Theorems 11–12 in H. Weyl [13], which are stated
in terms of facets of cones. Note that a consequence of this is that the dual
cone of a finite cone is also a finite cone.

Example
Consider the finite convex cone C in R4 generated by the set A = {a1, . . . , a5}
where

an =


1
n
n2

n3

 .

Let A be the 4 × 5 matrix A with columns in A:

A =


a1 a2 a3 a4 a5

1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125


Then the cone C is just

C = {Ax : x ≧ 0}.

It is easy to verify that every subset of {a1, . . . , a5} of size four is linearly
independent. Thus the cone C spans R4, or in other words, it is generating.
It is also easy to see that C is pointed (that is, it contains no lines, only
half-lines), as it is a subset of the nonnegative cone.

I claim that the dual cone C∗

C∗ = {p ∈ R4 : p · y ⩽ 0 for all y ∈ C} = {p ∈ R4 : p′A ≦ 0}

is generated by the 6 points p1, . . . , p6 that make up the 6 columns of the
4 × 6 matrix

P =


p1 p2 p3 p4 p5 p6

−60 −30 −10 6 12 20
47 31 17 −11 −19 −29

−12 −10 −8 6 8 10
1 1 1 −1 −1 −1


That is, C∗ = {Pz : z ≧ 0}. Moreover, I claim that the cone C has
five extreme rays (generated by a1, . . . , a5), and C∗ has six extreme rays
(generated by p1, . . . , p6).
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Proof
The cone C∗ is the set of solutions p to the system of inequalities

p · a1 ⩽ 0
...

p · a5 ⩽ 0

We shall use Weyl’s Lemma to find the extreme rays of C∗. In our
example m = 4 and n = 5. We shall use the “brute force” approach and
look at all subsets of A = {a1, . . . , a5} of rank 3. Since any four vectors
belonging to A are linearly independent, a subset of A has rank 3 if and
only if it has three elements. Fortunately there are only

(5
3
)

= 10 of these
subsets, so it is feasible to enumerate them by hand. Each subset B of
size three determines a one-dimensional subspace in R4 (a line) consisting
of vectors orthogonal to each element of B (the orthogonal complement
of B). It is straightforward to solve for this subspace, and I have done so.
Points pi taken from each of these ten lines are used for the columns of the
4 × 10 matrix

P̂ =


p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

−60 −30 −10 6 12 20 −40 −24 −15 −8
47 31 17 −11 −19 −29 38 26 23 14

−12 −10 −8 6 8 10 −11 −9 −9 −7
1 1 1 −1 −1 −1 1 1 1 1


(Note that you have seen p1, . . . , p6 before.) Now construct the 5×10 matrix
whose elements are the inner products pj · ai:

A′P̂ =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

a1 −24 −8 0 0 0 0 −12 −6 0 0
a2 −6 0 0 0 −2 −6 0 0 3 0
a3 0 0 −4 0 0 −4 2 0 0 −2
a4 0 −2 −6 −6 0 0 0 0 −3 0
a5 0 0 0 −24 −8 0 0 6 0 12


For the first six columns, all the entries are nonpositive, so p1, . . . , p6 each
belong to C∗. However for columns 7 through 10, there are entries of both
signs. This means that for i = 7, . . . , 10, no nonzero multiple of pj belongs
to C∗.
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Further inspection shows that

{ai : p1 · ai = 0} = {a3, a4, a5}
{ai : p2 · ai = 0} = {a2, a3, a5}
{ai : p3 · ai = 0} = {a1, a2, a5}
{ai : p4 · ai = 0} = {a1, a2, a3}
{ai : p5 · ai = 0} = {a1, a3, a4}
{ai : p6 · ai = 0} = {a1, a4, a5}
{ai : p7 · ai = 0} = {a2, a4, a5}
{ai : p8 · ai = 0} = {a2, a3, a4}
{ai : p9 · ai = 0} = {a1, a3, a5}
{ai : p10 · ai = 0} = {a1, a2, a4}

This accounts for all subsets of {a1, . . . , a5} of rank 3. So by Weyl’s Facet
Lemma, it shows that C∗ is generated by p1, . . . , p6, which lie on distinct
extreme rays of C∗.

As an aside, you should verify that

{pj : pj · a1 = 0} = {p3, p4, p5, p6} has rank 3
{pj : pj · a2 = 0} = {p2, p3, p4} has rank 3
{pj : pj · a3 = 0} = {p1, p2, p4, p5} has rank 3
{pj : pj · a4 = 0} = {p1, p5, p6} has rank 3
{pj : pj · a5 = 0} = {p1, p2, p3, p6} has rank 3,

confirming that a1, . . . , a5 are on distinct extreme rays of C∗∗ = C.

Notes on the example
The points a1, . . . , a5 are multiples of five distinct nonzero points on the
moment curve in R4. The moment curve is the set of points of the form
(t, t2, t3, t4), for t ⩾ 0. G. M. Ziegler [15, Example 0.6, pp. 10–13] describes
a polytope based on the moment curve that suggested this example. I used
T. Christof and A. Loebel’s computer program PORTA [3, 4] to compute the
dual cone and the facets of C. The program uses the Fourier–Motzkin
Elimination Algorithm (see, e.g., G. M. Ziegler [15, § 1.2, pp. 32–39])
with extensions due to N. V. Chernikova [1, 2] to efficiently find the six
extreme rays of C∗. That left me with only four subsets of rank 3 to find
the orthogonal complement by hand. After finding two by hand, I used
Mathematica 5.0 to compute p7, . . . , p10 and all the inner products pj · ai,
and its MatrixRank function to double check the ranks. Feel free to check
any of these computations by hand.
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