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If E and F are subsets of Rm, define the sum

E + F = {x + y : x ∈ E; y ∈ F}.

More generally the sum E1 + · · ·+En is the set of vectors of the form x1 + · · ·+xn, where
each xi ∈ Ei.

The next result may be found for instance in [4]. It relies on the simple fact that

p · (x1 + · · · + xn) = p · x1 + · · · + p · xn.

1 Lemma Let E1, . . . , En be sets in Rm, and put E = E1 + · · · + En. Let xi ∈ Ei,
i = 1, . . . , n, and x = x1 + · · · + xn. Then

x maximizes p over E ⇐⇒ (xi maximizes p over Ei for each i = 1, . . . , n).

Proof : ( =⇒ ) Suppose by way of contradiction that for some j, z ∈ Ej and p · z > p · xj.
Then x′ = x1 + · · · + xj−1 + z + xj+1 + · · · + xn ∈ E, and p · x′ > p · x, a contradiction.

(⇐=) Let z ∈ E. Then z = z1+· · ·+zn, where each zi ∈ Ei. By hypothesis, p·zi ⩽ p·xi

for each i, so summing we have p · z = p · (z1 + · · · + zn) ⩽ p · (x1 + · · · + xn) = p · x, so x
maximizes p over E.

1 Is a sum of closed sets closed?
An important question is whether the sum of closed sets is itself closed. The next example
shows that it is not automatic.

2 Example The sum E + F may fail to be closed even if E and F are closed. For
instance, set

E = {(x, y) ∈ R2 : y ⩾ 1/x and x > 0} and F = {(x, y) ∈ R2 : y ⩾ −1/x and x < 0}
∗These notes are largely based on Border [1], and provide some proofs omitted from Debreu [2].
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Then E and F are closed, but

E + F = {(x, y) ∈ R2 : y > 0}

is not closed. □

To state sufficient conditions for the sum of closed sets to be closed we must make a
fairly long digression.

2 Asymptotic cones
A cone is a nonempty subset of Rm closed under multiplication by nonnegative scalars.
That is, C is a cone if whenever x ∈ C and λ ∈ R+, then λx ∈ C. A cone is nontrivial
if it contains a point other than zero.

3 Definition Let E ⊂ Rm. The asymptotic cone of E, denoted AE is the set of all
possible limits z of sequences of the form (λnxn)n, where each xn ∈ E, each λn > 0, and
λn → 0. Let us call such a sequence a defining sequence for z.

This definition is equivalent to that in Debreu [2], and generalizes the notion of the
recession cone of a convex set. This form of the definition was chosen because it makes
most properties of asymptotic cones trivial consequences of the definition.

The recession cone 0+F of a closed convex set F is the set of all directions in which
F is unbounded, that is, 0+F = {z ∈ Rm :

(
∀x ∈ F

) (
∀α ⩾ 0

) [
x + αz ∈ F

]
}. (See

Rockafellar [5, Theorem 8.2].)

4 Lemma (a) AE is indeed a cone.

(b) If E ⊂ F , then AE ⊂ AF .

(c) A(E + x) = AE for any x ∈ Rm.

(cc) 0+E ⊂ AE.

(d) AE1 ⊂ A(E1 + E2).

(e) A
∏

i∈I Ei ⊂ ∏
i∈I AEi.

(f) AE is closed.

(g) If E is convex, then AE is convex.

(h) If E is closed and convex, then AE = 0+E. (The asymptotic cone really is a
generalization of the recession cone.)

(i) If C is a cone, then AC = C.
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(j) A
∩

i∈I Ei ⊂ ∩
i∈I AEi. The reverse inclusion need not hold.

(k) If E + F is convex, then AE + AF ⊂ A(E + F ).

(l) A set E ⊂ Rm is bounded if and only if AE = {0}.

Proof : Here are proofs of selected parts. The others are easy, and should be treated as
an exercise.

(cc) 0+E ⊂ AE.
Let z ∈ 0+E. Then for any n > 0 and any x ∈ E, we have x + nz ∈ E. But
1
n
(x + nz) → z, so z ∈ AE.

(d) AE1 ⊂ A(E1 + E2).
For x2 ∈ E2, by definition E1 + x2 ⊂ E1 + E2, so by (b), A(E1 + x2) ⊂ A(E1 + E2),
so by (c), AE1 ⊂ A(E1 + E2).

(f) AE is closed.
Let xn be a sequence in AE with xn → x. For each m there is a sequence λn,mxn,m

with limm λn,mxn,m = xn, λn,m → 0 as m → ∞, xn,m ∈ E, and each λn,m > 0.
Then for each k there is Nk such that for all n ⩾ Nk, ∥xn − x∥ < 1/k, and Mk such
that for all m ⩾ Mk, ∥λNk,mxNk,m − xNk

∥ < 1/k, and Lk such that for all m ⩾ Lk,
λNk,m < 1/k. Set Pk = max{Mk, Lk}, yk = xNk,Pk

, and λk = λNk,Pk
. Then each

λk > 0, λk → 0 and ∥λkyk − x∥ < 2/k, so x ∈ AE.

(g) If E is convex, then AE is convex.
Let x, y ∈ AE and α ∈ [0, 1]. Since AE is a cone, αx ∈ AE and (1 − α)y ∈ AE.
Thus there are defining sequences λnxn → αx and γnyn → (1 − α)y. Since E is
convex, zn = λn

γn+λn
xn + γn

γn+λn
yn ∈ E for each n. Set δn = γn + λn > 0. Then

δn → 0 and δnzn = λnxn + γnyn → αx + (1 − α)y. Thus αx + (1 − α)y ∈ AE.

(h) If E is closed and convex, then AE = 0+E.
In light of (cc), it suffices to prove that AE ⊂ 0+E, so let z ∈ AE, x ∈ E, and
α ⩾ 0. We wish to show that x + αz ∈ E. By definition of AE there is a sequence
λnzn → z with zn ∈ E, λn > 0, and λn → 0. Then for n large enough 0 ⩽ αλn < 1,
so (1 − αλn)x + αλnzn ∈ E as E is convex. But (1 − αλn)x + αλnzn → x + αz.
Since E is closed, x + αz ∈ E.

(i) If C is a cone, then AC = C.
It is easy to show that C ⊂ AC, as 1

n
nx → x is a defining sequence. Since AC is

closed by (f), we have C ⊂ AC. On the other hand if λn ⩾ 0 and xn ∈ C, then
λnxn ∈ C, as C is a cone, so AC ⊂ C.
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(j) A
∩

i∈I Ei ⊂ ∩
i∈I AEi. The reverse inclusion need not hold.

By (b), A
∩

i∈I Ei ⊂ AEj for each j, so A
∩

i∈I Ei ⊂ ∩
i∈I AEi.

For a failure of the reverse inclusion, consider the even nonnegative integers E1 =
{0, 2, 4, . . .} and the odd nonnegative integers E2 = {1, 3, 5, . . .}. Then E1∩E2 = ∅,
so A(E1 ∩ E2) = ∅, but AE1 = AE2 = AE1 ∩ AE2 = R+.

(k) If E + F is convex, then AE + AF ⊂ A(E + F ).
Let z belong to AE + AF . Then there exist defining sequences (λnxn) ⊂ E and
(αnyn) ⊂ F with λnxn + αnyn → z. Let x′ ∈ E and y′ ∈ F . (If either E or F is
empty, the result is trivial.) Then

(
λn(xn+y′)

)
⊂ E+F and

(
αn(x′+yn)

)
⊂ E+F ,

so
(λn + αn)

(
λn

λn + αn

(xn + y′) + αn

λn + αn

(x′ + yn)
)

→ z,

is a defining sequence for z in E + F .

(l) A set E ⊂ Rm is bounded if and only if AE = {0}.
If E is bounded, clearly AE = {0}. If E is not bounded, let {xn} be an unbounded
sequence in E. Then λn = ∥xn∥−1 → 0 and (λnxn) is a sequence on the unit sphere,
which is compact. Thus there is a subsequence converging to some x in the unit
sphere. Such an x is a nonzero member of AE.

5 Example The asymptotic cone of a non-convex set need not be convex. Let E =
{(x, y) ∈ R2 : y = 1

x
, x > 0}. This hyperbola is not convex and its asymptotic cone is

the union of the nonnegative x- and y-axes. But the asymptotic cone of a non-convex
set may be convex. Just think of the integers in R1. □

6 Example It need not be the case that A(E + F ) ⊂ AE + AF , even if E and F
are closed and convex. For instance, let E be the set of points lying above a standard
parabola:

E = {(x, y) : y ⩾ x2}.

The asymptotic cone of E, which is the same as its recession cone, is just the positive
y-axis:

AE = {(0, y) : y ⩾ 0}.

So AE+A(−E) is just the y-axis. Now observe that E+(−E) = R2, so A
(
E+(−E)

)
=

R2. Thus
AE + A(−E) ⊊ A

(
E + (−E)

)
.

□
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3 When a sum of closed sets is closed
We now turn to the question of when a sum of closed sets is closed. The following
definition may be found in Debreu [2, 1.9. m., p. 22].

7 Definition Let C1, . . . , Cn be cones in Rm. We say that they are positively semi-
independent if whenever xi ∈ Ci for each i = 1, . . . , n,

x1 + · · · + xn = 0 =⇒ x1 = · · · = xn = 0.

Clearly, any subcollection of a collection of semi-independent cones is also semi-
independent. Note that in Example 6, A(−E) = −A(E), so these nontrivial asymptotic
cones are not positively semi-independent.

8 Theorem (Closure of the sum of sets) Let E, F ⊂ Rm be closed and nonempty.
Suppose that AE and AF are positively semi-independent. (That is, x ∈ AE, y ∈ AF
and x + y = 0 together imply that x = y = 0.) Then E + F is closed, and A(E + F ) ⊂
AE + AF .

The proof relies on the following simple lemma, which is closely related to Lemma 1
in Gale and Rockwell [3].

9 Lemma Under the hypotheses of Theorem 8, if (λn) is a bounded sequence of real
numbers with each λn > 0, (xn) is a sequence in E, and (yn) is a sequence in F , and if
λn(xn + yn) converges to some point, then there is a common subsequence along which
both (λkxk) and (λkyk) converge.

Proof : It suffices to prove that both (λnxn) and (λnyn) are bounded sequences. Suppose
by way of contradiction that λn(xn + yn) converges to some point, but say (λnxn) is
unbounded. Since (λn) is bounded, it must be the case that both ∥λnxn∥ → ∞ and
∥xn∥ → ∞, so for large enough n we have ∥λxn∥ > 0. Thus for large n we may divide
by ∥λnxn∥ and define

x̂n = λn

∥λnxn∥
xn, ŷn = λn

∥λnxn∥
yn, ẑn = λn

∥λnxn∥
(xn + yn),

and observe that
ẑn = x̂n + ŷn.

But
(
λn(xn +yn)

)
is convergent, and hence bounded, so ẑn → 0. In addition the sequence

(x̂n) lies on the unit sphere, so it has a convergent subsequence, say x̂k → x̂, where
∥x̂∥ = 1. Then

ŷk = ẑk − x̂k −→ −x̂.

But ŷk = (λk/∥λkxk∥)yk, and λk/∥λkxk∥ → 0, so (λk/∥λkxk∥)yk is a defining sequence
that puts −x̂ ∈ AF. But a simialr argument shows that x̂ ∈ AE. Since AE and AF
are positively semi-independent, it follows that x̂ = 0, contradicting ∥x̂∥ = 1.
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Thus (λnxn), is a bounded sequence, and by a similar argument so is (λnyn), so they
have common subsequence on which they both converge.

Proof of Theorem 8: First, E + F is closed: Let xn + yn → z with {xn} ⊂ E, {yn} ⊂ F .
By Lemma 9 (with λn = 1 for all n) there is a common subsequence with xk → x and
yk → y. Since E and F are closed, x ∈ E and y ∈ F . Therefore z = x + y ∈ E + F , so
E + F is closed.

To see that A(E + F ) ⊂ AE + AF , let z ∈ A(E + F ). That is, z is the limit of
a defining sequence

(
λn(xn + yn)

)
, where xn ∈ E and yn ∈ F . Since λn → 0, it is a

bounded sequence. Thus by Lemma 9 there is a common convergent subsequence, and
by definition limk λkxk ∈ AE and limk λkyk ∈ AF , so z ∈ AE + AF .

10 Corollary Let Ei ⊂ Rm, i = 1, . . . , n, be closed and nonempty. If AEi, i = 1, . . . , n,
are positively semi-independent, then ∑n

i=1 Ei is closed, and A
∑n

i=1 Ei ⊂ ∑n
i=1 AEi.

Proof : This follows from Theorem 8 by induction on n.

11 Corollary Let E, F ⊂ Rm be closed and let F be compact. Then E + F is closed.

Proof : A compact set is bounded, so by Lemma 4(l) its asymptotic cone is {0}. Apply
Theorem 8.

4 When is an intersection of closed sets bounded?
12 Proposition Let Ei ⊂ Rm, i = 1, . . . , n, be nonempty. If ∩n

i=1 AEi = {0}, then∩n
i=1 Ei is bounded.

Proof : By Lemma 4(l), ∩n
i=1 Ei is bounded if and only if A (∩n

i=1 Ei) = {0}. But by
Lemma 4(j), A (∩n

i=1 Ei) ⊂ ∩n
i=1 AEi, and the proposition follows.
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