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Supplement 5: Stirling’s Approximation to the Factorial

S5.1 Stirling’s approximation

In this supplement, we prove Stirling’s approximation to the factorial. It is a remarkably
righteous piece of analysis. Recall that

n! = n × (n − 1) × (n − 2) × · · · × 2 × 1.

This is well approximated by

s(n) =
√

2π
√

n nn e−n =
√

2π nn+(1/2) e−n.

Stirling’s approximation is often stated as

n! ∼ s(n),

where the notation an ∼ bn simply means that limn→∞ an/bn = 1. But we can be much more
precise than this.

S5.1.1 Stirling’s approximation For n ⩾ 1,

n! =
√

2π nn+(1/2)e−n eεn (1)

where εn → 0 as n → ∞. Indeed,

1
12n + 1

< εn <
1

12n
.

The ratio n!/s(n) = eεn could also be (and usually is) written as 1 + ηn. Both expressions
have the feature that limε→0 eε = limη→0 1 + η = 1. I find the exponential form a little more
convenient. Note that s(n) is always an underestimate of n!.

Table S5.1 shows that this is a very good approximation, even for small values of n.

S5.2 Proof, Part I

This proof is based in part on that of Herbert Robbins [13]. He in turn attributes the main
geometric idea to Georges Darmois [4, pp. 315–317]. We start with the logarithm of n!:

ln n! =
n∑

k=1

ln k =
n−1∑
k=1

ln(k + 1). (2)

Think of ln(k + 1) as the area of a rectangle of height ln(k + 1) with base [k, k + 1]. Now the
logarithm function is nearly linear, so the area of this rectangle is approximately the area under
the graph of the logarithm plus a triangle. See Figure S5.1. The graph of the logarithm is
shown in red. The area Ik under the graph is composed of two pieces, the cyan quadrilateral
and the pink “crescent” designated Dk. More precisely, let

Ik =
∫ k+1

k

ln x dx,
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n n! s(n) r(n) =
n!/s(n) εn = ln r(n) ηn = r(n) − 1

1 1 0.922137 1.08444 0.0810615 0.0844376
2 2 1.919 1.04221 0.0413407 0.0422071
3 6 5.83621 1.02806 0.0276779 0.0280645
4 24 23.5062 1.02101 0.0207907 0.0210083
5 120 118.019 1.01678 0.0166447 0.016784
6 720 710.078 1.01397 0.0138761 0.0139728
7 5040 4980.4 1.01197 0.0118967 0.0119678
8 40, 320 39, 902.4 1.01047 0.0104113 0.0104657
9 362, 880 359, 537.0 1.0093 0.00925546 0.00929843

10 3, 628, 800 3, 598, 700.0 1.00837 8.33056 × 10−3 8.36536 × 10−3

100 − 9.32485 × 10157 1.00083 8.33331 × 10−4 8.33678 × 10−4

1000 − 4.02354 × 102567 1.00008 8.33333 × 10−5 8.33368 × 10−5

104 − 2.84624 × 1035,659 1.00001 8.33333 × 10−6 8.33337 × 10−6

105 − 2.82423 × 10456,573 1. 8.33333 × 10−7 8.33334 × 10−7

Table S5.1. Comparison of n! and s(n) =
√

2πn nn e−n. The ratio n!/s(n) is denoted r(n).
To save space, the values of n! have been omitted for larger n. (Computed by Mathematica
11.2.)

k k + 1

ln(k + 1)

ln k A

BC

Dk

Ik =
∫ k+1

k
ln x dx

Tk = △ABC

Figure S5.1.
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and denote the area of the triangle ABC by

Tk = (ln(k + 1) − ln k)/2.

Then the sum Ik + Tk overstates the area of the rectangle by double counting the area Dk

bounded by the graph of the logarithm and the graph of its linear interpolation, namely

Dk = Ik − Tk − ln k.

In other words,
ln(k + 1) = Ik + Tk − Dk.

So by (2),

ln n! =
n−1∑
k=1

ln(k + 1) =
n−1∑
k=1

Ik +
n−1∑
k=1

Tk −
n−1∑
k=1

Dk

=
∫ n

1
ln x dx + 1

2
ln n −

n−1∑
k=1

Dk. (3)

(Note that
∑

k Tk is a telescoping sum.) Now the indefinite integral of ln x is x ln x − x, so∫ n

1
ln x dx = n ln n − n + 1,

and (3) becomes

ln n! =
(

n + 1
2

)
ln n − n + 1 −

n−1∑
k=1

Dk. (4)

Now let’s take a break, and exponentiate this to get

n! = nn+(1/2)e−n Cn = Cn e−nnn
√

n

where Cn = exp(1 −
∑n−1

k=1 Dk). This is beginning to look like Stirling’s approximation (1), so
we might be on the right track. Let’s look more closely at each term Dk.

The area Dk is the discrepancy between the integral of ln x from k to k + 1 and the irregular
quadrilateral with vertexes at (k, 0), (k, ln k),

(
k + 1, ln(k + 1)

)
, (k + 1, 0). (Again refer to

Figure S5.1.) So using the integral of the logarithm, we get

Dk =
∫ k+1

k

ln x dx −
[
ln k + 1

2
(
ln(k + 1) − ln k

)]
=

[
(k + 1) ln(k + 1) − (k + 1) − k ln k + k

]
−

[
ln k + 1

2
(
ln(k + 1) − ln k

)]
= 2k + 1

2
(

ln(k + 1) − ln k
)

− 1

= 2k + 1
2

ln
(k + 1

k

)
− 1.

The next step is one that I confess would not have occurred to me. Let

xk = 1
2k + 1

, so that 1 + xk

1 − xk
= k + 1

k
,

and rewrite the above as
Dk = 1

2xk
ln

(1 + xk

1 − xk

)
− 1. (5)
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Now we use the series
ln

(1 + x

1 − x

)
= 2

(
x + x3

3
+ x5

5
+ · · ·

)
,

which is valid for |x| < 1. (This follows from the infinite Taylor series for ln(1 + x) − ln(1 − x),
see Apostol [1, equation 10.32, p. 390].) Then (6) can be written as

Dk = 1
3(2k + 1)2 + 1

5(2k + 1)4 + 1
7(2k + 1)6 + · · · . (6)

An upper bound on Dk is given by

Dk = 1
3(2k + 1)2 + 1

5(2k + 1)4 + 1
7(2k + 1)6 + · · ·

<
1

3(2k + 1)2 + 1
3(2k + 1)4 + 1

3(2k + 1)6 + · · ·

= 1
3

[
1

(2k + 1)2 + 1
(2k + 1)4 + 1

(2k + 1)6 + · · ·
]

.

The term in brackets is the geometric series θ + θ2 + θ3 + · · · , where θ = 1/(2k + 1)2 < 1. This
series has sum θ/(1 − θ), so

Dk <
1
3

1
(2k + 1)2 − 1

= 1
3

1
4k(k + 1)

= 1
12

( 1
k

− 1
k + 1

)
. (7)

This is a telescoping sequence, so it follows that the infinite sum

D =
∞∑

k=1

Dk

is convergent and its tails satisfy
∞∑

k=n

Dk <
1
12

∞∑
k=n

( 1
k

− 1
k + 1

)
= 1

12n
. (8)

Likewise we can use (6) to get a lower bound for Dk:

Dl = 1
3(2k + 1)2 + 1

5(2k + 1)4 + 1
7(2k + 1)6 + · · ·

>
1

3(2k + 1)2 + 1
9(2k + 1)4 + 1

27(2k + 1)6 + · · · .

This is another geometric series θ + θ2 + θ3 + · · · , where θ = 1/3(2k + 1)2. This series has sum
θ/(1 − θ), so

Dk >
1

3(2k + 1)2 − 1

= 1
12k2 + 12k + 2

>
1

12k2 + 12k + 2k + 1 + 1
12

= 1
12

1(
k + (1/12)

)(
k + 1 + (1/12)

)
= 1

12

( 1
k + (1/12)

− 1
k + 1 + (1/12)

)
. (9)
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Again we have found a telescoping sequence, so the tails satisfy
∞∑

k=n

Dk >
1
12

∞∑
k=n

( 1
k + (1/12)

− 1
k + 1 + (1/12)

)
= 1

12
1

n + (1/12)
= 1

12n + 1
. (10)

Now go back to equation (4) and rewrite it as

ln n! =
(

n + 1
2

)
ln n − n + 1 −

n−1∑
k=1

Dk

=
(

n + 1
2

)
ln n − n + 1 − D +

∞∑
k=n

Dk. (11)

In other words,
(

n + 1
2

)
ln n − n + 1 − D underestimates ln n! by the amount

εn =
∞∑

k=n

Dk,

where by (8) and (10) we have
1

12n + 1
< εn <

1
12n

.

Exponentiating (11) gives the following.

There is a constant C > 0 such that for each n > 1,

n! = C nn+(1/2)e−n eεn , (12)

where
C = e1−D,

so
e11/12 > C > e12/13,

and for each n,
1

12n + 1
< εn <

1
12n

. (13)

S5.2.1 Remark Inequalities (13) imply that 1 < eεn , so that s(n) = C nn+(1/2)e−n always
underestimates n!, but still n! ∼ s(n). Thus the approximation could be improved by adding a
factor e1/(1+12n), but that would destroy its simple beauty.

For many purposes, e.g., Example 3.8.1 or Proposition S6.6.4, we do not need to know the
value of the constant C. This is where Robbins left off, writing, “The constant C [...] may be
shown by one of the usual methods to have the value

√
2π.” We take this up next.

Let Cn denote the ratio
Cn = n!

nn+1/2e−n
.

That is, Cn = C eεn , so inequalities (13) imply that Cn → C.
In Lemma S5.3.1 in the next section we prove that

πn ⩽
(

22n(n!)2

(2n)!

)2

⩽ π
(
n + (1/2)

)
, (14)
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which Apostol refers to as Wallis’ inequality. Following Apostol [2, p. 616], substitute

Cnnn+1/2e−n = n!

in (14) to get

πn ⩽
(

22nn2n+1e−2nC2
n

(2n)2n+1e−2nC2n

)2

⩽ π
(
n + (1/2)

)
.

Dividing by n, this is equivalent to

π ⩽ C4
n

2C2
2n

⩽ π
(
1 + (1/2n)

)
.

Letting n → ∞, since Cn → C we see that

π ⩽ C2

2
⩽ π,

or
C =

√
2π.

This completes the proof of Stirling’s approximation, except for Wallis’ inequality.

S5.3 Wallis’ Inequality

S5.3.1 Lemma (Wallis’ inequality) For n ⩾ 1,

πn ⩽
(

22n(n!)2

(2n)!

)2

⩽ π
(
n + (1/2)

)
.

Proof : (Cf. Apostol [2, pp. 617–618].) For n = 0, 1, . . . , define

In =
∫ π/2

0
sinn t dt.

Note that
I0 = π

2
, and I1 = 1.

Note that the integral denoted by Ik in this section is not the same as the integral denoted by
Ik in the previous section. My bad.

Now we evaluate In recursively. Start by cleverly using the identity

d

dt
(cos t sinn+1 t) = − sinn+2 t + cos2 t (n + 1) sinn t (chain rule)

= − sinn+2 +(1 − sin2 t)(n + 1) sinn t (cos2 + sin2 = 1)
= (n + 1) sinn t − (n + 2) sinn+2 t (regroup)

Integrating this over the interval [0, π/2] gives

0 = cos t sinn+1 t
∣∣∣π/2

0
= (n + 1)In − (n + 2)In+2,

so
In+2 = n + 1

n + 2
In. (15)

Since we know I0 and I1, we can use (15) to compute each In. For even n, say n = 2k − 2,
equation (15) becomes

I2k

I2k−2
= 2k − 1

2k
= 2k(2k − 1)

(2k)2 ,
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so
n∏

k=1

I2k

I2k−2
=

n∏
k=1

(2k − 1)2k

(2k)2 = (1 · 2)(3 · 4) · · · (2n − 1) · 2n

22nn!n!
= (2n)!

22n(n!)2 .

Now the left-hand side telescopes to I2n/I0, so since I0 = π/2 we get

I2n = (2n)!
22n(n!)2

π

2
. (16)

For odd n, say n = 2k − 1, equation (15) becomes

I2k+1

I2k−1
= 2k

2k + 1
= (2k)2

2k(2k − 1)
,

so
n∏

k=1

I2k+1

I2k−1
=

n∏
k=1

(2k)2

2k(2k − 1)
= 22n(n!)2

(2n)!
= 1

2n + 1
π

2
1

I2n
,

where the last equality uses (16). This left-hand side telescopes to I2n+1/I1, so since I1 = 1 we
get

I2nI2n+1 = 1
2n + 1

π

2
. (17)

From (15), we have
I2n−1 = I2n+1

2n + 1
2n

.

Substitute this into (17) to get

I2nI2n−1 = I2nI2n+1
2n + 1

2n
= π

2(2n + 1)
2n + 1

2n
= π

4n
. (18)

Observe that for 0 ⩽ t ⩽ π/2, we have 0 ⩽ sin t ⩽ 1 so sinn t is decreasing in n for each t.
Thus I0 > I1 > I2 > · · · > 0. As a result, for each n ⩾ 1,

1
I2n−1

<
1

I2n
<

1
I2n+1

.

Multiplying by the positive quantity 1/I2n above yields

1
I2nI2n−1

<
1

I2
2n

<
1

I2nI2n+1
.

Using equations (18), (16) and (17), this becomes

4n

π
<

(
22n(n!)2

(2n)!

)2 4
π2 <

2(2n + 1)
π

.

Now multiply these inequalities π2/4 to get Wallis’ inequality. Whew!

S5.4 Historical notes

Abraham De Moivre published his Miscellanea Analytica in 1730. According to Karl Pear-
son [11], the rare 1733 edition had an extra supplement, which included equation (12), and
Pearson had access to the later edition. De Moivre calculated C to be approximately 2.5074. It
remained for James Stirling to show that C =

√
2π ≈ 2.50663. Stirling based his argument on

John Wallis’ infinite product for π, which Wallis discovered in 1655 while working on
∫ π

0 sinn t dt.
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Pearson believed that Stirling’s contribution was not sufficient to warrant naming the result af-
ter him. Oh, well. Apostol’s derivation uses what he term’s Wallis’ inequality, rather than an
infinite product. Apostol comes to (12) via Euler’s summation formula. The Robbins approach
has the advantage of a tighter bound on the error terms εn. Apostol’s approach shows only
0 < εn < 1/(8n).

You may find other proofs in Feller [8, p. 52] or [6, 7] or Ash [3, pp.43–45], or Diaconis
and Freedman [5], or the exercises in Pitman [12, p. 136]. Flajolet and Sedgewick [9] offer five
different proofs. I thank Jim Tao for this last reference.
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