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Lecture 27: Markov Chains and Martingales

This material is not covered in the textbooks. These notes are still in development. The first
part of the lecture will present results that are useful, but I will make no attempt to prove them
here. Still, you should know about them.

27.1 ⋆ Ergodic theorems for Markov chains

An ergodic theorem states roughly that time-series averages of a stochastic process converge to
cross-sectional probabilities. If that does not make sense, bear with me.

Recall Theorem 26.9.3:

26.9.3 Theorem (Convergence to the invariant distribution) For a Markov chain with
transition matrix P , if the chain is irreducible and aperiodic, then the invariant distribution π
is unique, and for any initial distribution λ, the sequence λP n converges to π.

In particular, for any states i and j

p
(n)
ij → πj as n → ∞.

The last part says that no matter which state i the chain starts in, the probability that it will
be in state j after a sufficiently large number n of transition is very close to πj . Does that mean
that the long-run fraction of time the chain spends in state j is also πj . An ergodic theorem
tells you when the answer is yes.

Before proceeding, I want to go back and refine the notion of recurrence. Recall that
Ti = inf{t : Xt = i} is called the first passage time to state i, and Pi(E) = P

(
E
∣∣ X0 = i

)
.

Theorem 26.13.4 says that:
For a Markov chain, either

1. Pi (Ti < ∞) = 1, in which case i is recurrent and
∑∞

n=1 p
(n)
ii = ∞, or else

2. Pi (Ti < ∞) < 1, in which case i is transient and
∑∞

n=1 p
(n)
ii < ∞.

Consequently, every state is either recurrent or transient.
But there are two ways to be recurrent, depending on the expected value of the first passage

time.

27.1.1 Definition A state i is positive recurrent if i is recurrent and Ei Ti < ∞ (where
Ei denotes the expectation taken with respect to the conditional distribution Pi). That is, the
expected time to return to i is finite.

A state i is null recurrent if i is recurrent and Ei Ti = ∞ . That is, the expected time to
return to i is infinite.

For an irreducible chain, if one state is positive recurrent, so is every state. The following
may be found in Norris [5, Theorem 1.7.7, p. 37].

27.1.2 Theorem For an irreducible transition matrix P , the following statements are equiva-
lent.

1. Every state is positive recurrent.
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2. At least one state is positive recurrent.

3. The transition matrix P has an invariant distribution π.

If these conditions hold, then for each i,

Ei Ti = 1
πi

.

27.1.3 Definition We say that a Markov chain is positive recurrent if every state is positive
recurrent.

On the face of it null recurrence is an odd phenomenon. It says that if we start in state i,
we will return to infinitely often with probability one, yet the expected time between returns
is infinite. This can only happen for a countably infinite state space. Null recurrence is just
another example of the fact that infinity is hard to comprehend.

We can now state an ergodic theorem for Markov chains. You can find this and a proof in
Norris [5, Theorem 1.10.2, pp. 53–55].

27.1.4 Theorem (Ergodic Theorem) Let P be an irreducible transition matrix, and let λ
be a distribution on the state space S. Let {Xt} be Markov(λ, P ).

For each i ∈ S define

Vi(n) =
n−1∑
t=0

1(Xt=i),

the number of visits to state i that occur before time n.
Then

P
(

Vi(n)
n

−−−−→
n→∞

1
mi

)
= 1,

where mi = E
(
Ti

∣∣ X0 = i
)

= Ei Ti. (The convention is that 1/∞ = 0.)
In addition, if i is positive recurrent (mi < ∞), we have

mi = 1
πi

,

and if f : S → R is a bounded function, then

P

(
1
n

n−1∑
t=0

f(Xt) −−−−→
n→∞

f̄

)
= 1,

where
f̄ =

∑
i∈S

f(i)πi,

where π is the unique invariant distribution for P .

So what does theorem really mean?

The random variable Vi(n)/n is the fraction time through epoch n that is spent is state i. For
an irreducible positive recurrent Markov chain, this time average converges to the stationary
probability πi of state i.
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For an irreducible positive recurrent Markov chain, the fraction of times that state i tran-
sitions to state j,

p̂ij =
∑n−1

t=0 1(Xt=i, Xt+1=j)∑n−1
t=0 1(Xt=i)

converges to pij as n → ∞ with probability one.

To understand this result a bit better, let’s consider a few examples.

27.1.5 Example Recall the two-state Markov chain in Example 26.9.1. It has with transition
matrix

P =
[
0 1
1 0

]
.

It is irreducible, but has period 2, and has the unique invariant distribution π = [1/2, 1/2]. It is
also positive recurrent.

Let’s consider the time averages V1(n)/n spent in state 1. Starting in state 1, the state
alternates between state 1 and state 2, so V1(n)/n → 1/2 = π1. □

27.1.6 Example Recall the two-state Markov chain in with transition matrix

P =
[
1 0
0 1

]
.

It is not irreducible, so the Ergodic Theorem above is not applicable, but it is aperiodic. There
is no unique invariant distribution since every distribution is invariant.

The time averages Vi(n)/n are either 0 or 1 depending on which state you start in. □

27.2 ⋆ Martingales

27.2.1 Definition A martingale is a stochastic process {Xt : t ∈ T} such that

E |Xt| < ∞ ∀t ∈ T,

and for every t1 < t2 < · · · < tn < tn+1 we have

E
(
Xtn+1

∣∣ Xtn
, . . . , Xt1

)
= Xtn

.

That is, the expectation in the future conditioned on the current and any past values is
simply the current value.

Aside: The definition I gave is not as general as the standard definition. In the standard definition,��
there is also a collection {Et : t ∈ T } of σ-algebras of events that such that if s < t, then Es ⊂ Et, that
is, every event in Es is also an event in Et. Such a collection is frequently called a filtration. 1 The
random variables Xt are required to be adapted to the filtration, meaning that each event (Xt ∈ [a, b])
belongs to Et. Further, conditional expectations are defined with respect to the σ-algebra, a topic we
shall not get into. 2 My definition restricts Et to be σ({Xs : s ⩽ t}).

1 The term filtration comes from a movement by 20th century French mathematicians to name mathematical
objects with ordinary French words. They used the term filtre (meaning filter, but think of a funnel-like coffee
filter) to indicate a family indexed by a particular kind of partial order.

2 If X is a random variable and E′ is a σ-subalgebra of E, then E(X
∣∣ E′) is a random variable adapted to E′��

such that for every event E in E′, E
[
E(X

∣∣ E′)1E

]
= E[X1E ].
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For example, if Yi, i = 0, 1, 2, . . . are independent mean-zero random variables, then

Xt =
t∑

n=0
Yn

defines a martingale. Thus the Random Walk is a martingale, and so is the wealth of a gambler
during a sequence of fair bets.

Another example of a martingale pops up in learning models. Let Z and Yi, i = 0, 1, 2, . . .
be random variables with finite means (not necessarily independent or mean-zero). Then

Xn = E(Z
∣∣ Yn, . . . , Y0).

defines a martingale.
A submartingale (or semi-martingale) is a stochastic process {Xt : t ∈ T} such that

E |Xt| < ∞ ∀t ∈ T,

and for every t1 < t2 < · · · < tn < tn+1 we have

E(Xtn+1

∣∣ Xtn
, . . . , Xt1) ⩾ Xtn

.

That is, the expected value in the future is greater than the current value. A supermartingale
reverses the inequality. (You might think that since the study of these processes resulted from
studying the wealth of a gambler, that the definitions ought to be reversed, but the early
probabilists worked for the casino.) The term semimartingale refers to a process that is either
a supermartingale or submartingale.

The Markov property says that the entire distribution of Xt+s depends on the past only
through Xt.

In a martingale, only the expectation of Xt+s depends on the past only through Xt, but in
a very special way.

27.3 ⋆ Martingale Convergence Theorem

One of the most important result on martingales is this.

27.3.1 Martingale Convergence Theorem (Cf. Doob [2, Theorem 4.1, p. 319].) Let
{Xn : n = 0, 1, 2, . . . , } be a martingale. If limn→∞ E |Xn| = M < ∞, then there is a random
variable X∞ with E |X∞| ⩽ M such that

Xn
a.s.−−−−→

n→∞
X∞.

Moreover, if Xn ⩾ 0 for all n, or if Xn ⩽ 0 for all n, then M < ∞ is satisfied, so the
conclusion above follows.

Finally, if for some q > 1, we have limn→∞ E |Xn|q < ∞, then we may append ∞ to T , so
that {Xn : n = 1, 2, . . . , ∞} is a martingale, E |X∞|q < ∞, and Xn

q−−−−→
n→∞

X∞.

27.3.1 On the terminology

If you look up the word martingale in a dictionary, you will find that it may come from the
Portuguese martengau, meaning in inhabitant of Martigues (in Provence), or perhaps it comes
from French via Spanish from the Arabic al mirta‘ah, meaning rein or check.
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The first definition should refer to some kind of harness. Later definitions refer to a betting
system. For example, my office dictionary [4] gives definition 1 as “A strap fastened to a horse’s
girth, passing between his forelegs, and fastened to the bit, or now more commonly ending in
two rings, through which the reins pass. It is intended to hold down the head of the horse, and
prevent him from rearing.” It gives definition 3 as “Any system of betting which, in a series of
bets, determines the amount to be wagered after each win or loss. The term is usually applied to
dividing a specified amount desired to be won at one session into smaller unequal parts, arranged
in a vertical column. By adding together the top and bottom figures after a loss, canceling them
after a win, when all are crossed off, the desired amount is gained.”

J. M. Hammersley [3], in a paper on a multidimensional generalization of martingales, offers
this explanation of why the equestrian terminology may have been used to describe a stochastic
process:

The idea behind the terminology is the following. In gaming, a martingale is a fair
gambling system, and this is probably the immediate source of the stochastic sense of
“martingale.’’ But in turn, the gaming term seems to have its origin in the equestrian sense
of the word “martingale.’’ In that sense, a martingale is a strap that prevents a horse from
throwing up his head. If the horse is proceeding in the positive sense of the parameter i,
and his mouth and breast are at heights yi and zi, respectively, above the ground at time
i, then he will be moving in a steady horizontal fashion when his breast is now at the same
height as his mouth was at the previous moment; thus, yi = zi = yi−1 in conformity with
(2.1). Since the strap checks upward but not downward movements of the head, it comes
closer to what a mathematician would call a submartingale. If there are constraints from
several different directions, as in (2.4), we may imagine them caused by several different
straps, or by a harness.

The history of martingales goes back a long way, and there are elaborate reliefs in
the British Museum depicting martingales in the reigns of Tiglath-Pileser III (745-727
B.C.), Sennacherib (705-681 B.C.), and Assurbanipal (668-626 B.C.). Anderson [1] writes
of the Assyrians: “They manage their horses with bit and bridle, and later reliefs show a
remarkable anticipation of the modern martingale (not used as far as I know by any other
ancient people). The reins are attached to a large tassel hanging below the horse’s neck,
which continues to provide a certain check on the horse’s mouth. The rider is thus enabled
to use both hands for his weapons, and can shoot the bow at full gallop.” Müseler [8] and
Hitchcock [4] give information about the various types of modern martingale (the standing,
running, and Irish martingales), and the latter author has a colorful passage in which
he says: “The standing martingale, which is used as a check to prevent the horse from
throwing up his head and hitting the rider in the face, or carrying it too high, is a good
remedy for stargazing, or for horses which have ewe-necks. ... This type of martingale is
used universally on the polo ground.”

[Note: The reference numbers in the above passage refer to Hammersley’s bibliography, not
this one.]

27.4 ⋆ Bayesian updated beliefs as a martingale

Here is the experiment, which is a model of Bayesian statistical inference. There is a finite set Θ
of urns. Each urn has a number of balls of different colors. The (finite) set of colors is denoted
X. The probability of color x in urn θ is denoted pθ(x). At stage 0, an urn is chosen at random
according to the prior probability distribution P0 on Θ. At each time t, a sample Xt is drawn
at random the urn and then replaced. See Figure 27.1 for a partial tree diagram for the case
where Θ = {1, 2, 3} and X = {B, W}. Observing the color X1 tells me something about the
urn from which it is drawn. I can use this information to recompute the probability that the
urn is urn θ0 by using Bayes’s Law: the posterior

P (θ0
∣∣ x) = pθ0(x)P0(θ0)∑

θ∈Θ pθ(x)P0(θ)
.
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P0(1)
P0(2) P0(3)

1 2 3

p1(B) p1(W ) p2(B) p2(W ) p3(B) p3(W )
t = 0

t = 1

t = 2

Figure 27.1. Partial tree diagram for updating urns.

(See Theorem 4.5.4.) This new probability on Θ is called the posterior probability on Θ
given the sample x. For each θ ∈ Θ, define the random variable

P̃1(θ) = P (θ
∣∣ X1).

The question is, what is the expected the expected value of the posterior probability

E P̃1(θ) = E P (θ
∣∣ X1)?

Now

E P̃1(θ0) = E P (θ0
∣∣ X1) =

∑
x∈X

P (θ0
∣∣ X1 = x) P (X1 = x)

=
∑
x∈X

(
pθ0(x)P0(θ0)∑
θ∈Θ pθ(x)P0(θ)

)(∑
θ∈Θ

pθ(x)P0(θ)

)
=
∑
x∈X

pθ0(x)P0(θ0)

= P0(θ0).

27.4.1 Remark Note that I do not say that my posterior probability will be the same as my
prior probability. I am saying that my posterior probability is a random variable that depends
on X1, but the ex ante expected value of the posterior probability on Θ is the same as my prior
probability.

The same argument applies into the future. For each t, define the random variables

P̃t(θ) = P (θ
∣∣ X1, X2, . . . Xt).

We can use the Multiplication Rule for Conditional Probabilities, Theorem 4.8.1, to concludeExpand on this?

that the posterior probability P̃t(θ0) I attach to urn θ0 as a function of t independent samples
(with replacement) is a martingale:

E
(
P̃t+s(θ0)

∣∣ P̃t(θ0)
)

= P̃t(θ0).

Since probabilities are bounded, the Martingale Convergence Theorem implies that my beliefs
will converge with probability one as t → ∞.

But to what do the posteriors converge? If the urn that was drawn is urn θ∗, then each Xi

has distribution p(x
∣∣ θ∗), and the Xi’s are independent. Then under mild regularity conditions

(akin to those for conditions of maximum likelihood estimators),

P̃t
D−−→ δθ∗ ,
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where δθ∗ assigns probability one to θ∗. The proof of this is beyond the scope of this course,
but see, e.g., Degroot [1, Chapter 10].

The arguments I have just given work with densities on an infinite Θ as well as the finite
case, but require a bit more care in the arguments.

27.5 ⋆ Stopping times

Given a discrete-time stochastic process X1, . . . , Xn . . . , a stopping time is an integer-valued
random variable N such that

P (N < ∞) = 1,

and
the event (N = k) belongs to σ(X1, X2, . . . , Xk),

This mean that the indicator function 1(N=k) can be written as some function h of X1, . . . , Xn.
In other words, you can’t “peek ahead” to decide whether to stop.

27.6 ⋆ Stopped martingales

If Z1, Z2, . . . is a martingale and N is a stopping time for this martingale, then the stopped
martingale is

Z̄n = Zmin{N,n}.

27.6.1 Theorem The stopped martingale is a martingale.

The proof is taken from Sheldon Ross and Erol Peköz [6, Lemma 3.13, p. 88].

Proof : Given n and ω ∈ Ω, there are two cases:

1. N(ω) ⩾ n. In this case, min{N, n} = n, so

Z̄n(ω) = Zn(ω), Z̄n−1(ω) = Zn−1(ω), and 1(N⩾n)(ω) = 1. (1)

Thus,

Z̄n(ω) = Zn(ω) by (1),
= Zn−1(ω) +

(
Zn(ω) − Zn−1(ω)

)
= Z̄n−1(ω) + 1(N⩾n)(ω) ·

(
Zn(ω) − Zn−1(ω)

)
by (1)

2. N(ω) < n. In this case, min{N, n} = N(ω), so

Z̄n(ω) = Z̄n−1(ω) = ZN(ω)(ω), and 1(N⩾n)(ω) = 0. (2)

Thus,

Z̄n(ω) = Z̄n−1(ω) by (2),
= Z̄n−1(ω) + 1(N⩾n)(ω)︸ ︷︷ ︸

=0

·
(
Zn(ω) − Zn−1(ω)

)
by (2)

In either case, we have

Z̄n = Z̄n−1 + 1(N⩾n) · (Zn − Zn−1).
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Since conditional expectation is a positive linear operator,

E[Z̄n

∣∣ Z1, . . . , Zn−1] = E[Z̄n−1
∣∣ Z1, . . . , Zn−1] + E[1(N⩾n) · (Zn − Zn−1)

∣∣ Z1, . . . , Zn−1]
= Z̄n−1 + 1(N⩾n) · E[Zn − Zn−1

∣∣ Z1, . . . , Zn−1]
= Z̄n−1.

A proof of the next result may be found in Ross and Peköz [6, Theorem 3.14, pp. 88–89].

27.6.2 Theorem (Martingale Stopping Theorem)

E ZN = E Z1

if any one of the following sufficient conditions hold:

1. Z̄n are uniformly bounded.

2. N is bounded.

3. E N < ∞ and there is some M < ∞ such that for all n,

E
(
Zn+1 − Zn

∣∣ Zn

)
< M.

Some of the consequences of this theorem are:

• There are no gambling “systems” that guarantee positive winnings for gamblers in a fair
casino who face a maximum bet limit (Condition 3).

• If there is an upper bound on family size (Condition 2), then no parental stopping rule can
account for Sen’s missing women.

27.7 ⋆ The Strong Markov Property: Stopped Markov chains

The Strong Markov Property asserts that if a Markov Chain is restarted after a stopping time,
the continuation is also a Markov chain. The next Theorem may be found in Norris [5, Theo-
rem 1.4.3, p. 20], and generalizes Theorem 26.4.3.

27.7.1 Theorem (Strong Markov Property) Let {Xt : t = 0, 1, 2, . . . } be a Markov(λ, P )
chain, and let T be a stopping time for the chain. Then conditional on T < ∞ and XT = i, the
stochastic process {X̃s : s = 0, 1, . . . } defined by

X̃s = XT +s

is Markov(δi, P ) and independent of {X0, . . . , XT }.
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