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Lecture 22: Significance Tests, II

Relevant textbook passages:
Larsen–Marx [14]: Chapter 7, pp. 440–442 in Chapter 8, and Sections 9.1, 9.2, 9.3.

22.1 Off-the-shelf modeling

One of the strengths of the classical likelihood-based parametric approach to significance testing
is that a number of special cases have been thoroughly analyzed, and there are convenient off-
the-shelf 1 solutions to analyzing and testing the data. There are so many of these that I can’t
possibly discuss them all in this class. I shall give you a few of the most basic tests, those that
everyone expects to be covered in an intro stats course. The point is to make sure you know
they exist.

When you get to your lab and you have real data to analyze, I recommend consulting a
book such as Calvin Dytham’s [8] Choosing and Using Statistics. It discusses many off-the-shelf
models and their subtle points. Better, yet it describes code for a number of different programs
and languages. When you are reading the results of someone else’s research, they may describe
some arcane test or procedure that I haven’t covered, or even heard of. In cases like this,
Wikipedia is often incredibly useful. It is probably possible to teach a good introductory stats
class using Wikipedia as the textbook. Even this approach will probably soon be obsolete as
AI (artificially intelligent) statisticians become commonplace. Mary Kennedy told me about a
program her lab uses that queries you about your data, then decides on a testing procedure, and
analyzes the data for you. In a world where this is common, what is the value of this course?
Well, remember the first attempt to use R’s numerical optimization function to compute the
MLE of p for the flipping coin experiment? It gave 99.99%, not 49.91%. Remember, with any
software, or any reference work, “Trust, but verify.” In this course, I hope you learn enough to
be able to read the manual for your software to have some idea of what the program is doing,
and to be able to decide if it makes sense.

The ready availability of off-the-shelf models is also a huge weakness. It tempts you to treat
your data as if they fit one of these off-the shelf models even if they don’t. This problem is
rampant in my discipline, economics, and I’m sure in others as well. In the Lecture 23, we’ll
take up specification testing, which is a step in the right direction. If you have a case where
the usual methods seem inappropriate, the notions from likelihood ratio testing can help point
you in the right direction. Plus many universities have departments of applied statistics where
really smart tooled-up statisticians are always on the lookout for new cases to add to the shelf.

I believe it is fair to say that a vast majority of users of hypothesis tests use tests that are
based on the assumption that the “error terms” in their data are normally distributed. Indeed,
the Central Limit Theorem says that if the errors are the sum of many small independent errors,
then the normality assumption is justified. Leo Breiman [7, p. 10] describes this argument as
“only a cut above a hopeful appeal to the ghost of Laplace.” 2 Nevertheless we shall start with

1 Some students have asked what the definition of an off-the-shelf model is. What I mean is a model hat
has been proposed and thoroughly analyzed, and often has techniques for estimating and testing built in to to
statistical software. Using an off-the-shelf model makes it easy to compute without thinking.

2 Here Breiman is alluding to Bishop George Berkeley’s 1734 attack [4] on the rigor of the mathematics of his
era, where he takes issue with Newton’s notion of fluxions. In paragraph 35, he writes, “And what are these
fluxions? The velocities of evanescent increments? And what are these same evanescent increments? They are
neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them the ghosts of
departed quantities?” [18, p.89]. Once again, I thank Lindsay Cleary for tracking this reference down for me.
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a discussion of tests based on normality, since you will undoubtedly employ them at some point
in the analysis of your laboratory data.

Here is a list of the off-the-shelf models and their associated hypothesis tests that we shall
discuss. They are described in terms of model equations, which are a great aid to organizing
one’s thinking.

22.1.1 One-sample models

This is the case where there is a sample from a single population and the observations are
assumed to satisfy the model equations

Xi = µX + εi, i = 1, . . . , n.

Here µX is an unknown population parameter of interest or the systematic component,
and the εi’s are often referred to as error terms. The error terms are assumed to be independent
and identically distributed Normal(0, σ2). The assumption that the errors are independent and
normally distributed is an essential part of the analysis, 3 as is the assumption that the varianceGet the cite.

of each εi is the same. The assumption that each error term has the same variance is known as
the case of homoskedasticity. (The term heteroskedasticity is used when the errors are not
homskedastic.) When I say the assumptions are essential, I do not mean that we cannot analyze
more complicated cases, only that in other cases, we should analyze the model differently. The
assumption that the mean of each error term is zero is not essential, provided the mean of each
εi is the same. If the mean of the errors is µε ̸= 0, we can add µε to µX and subtract it from
each εi to make the model fit the assumptions.

There are two subcases that have been analyzed:

1. σ2 is assumed to be known. This assumption is, in m opinion, not very realistic, but we
make it simplify the exposition, and as a launching pad for the analysis when σ2 is unknown.

2. σ2 is unknown.

Hypotheses are regarding the mean µ. The three kinds of hypotheses are

1. Two-sided alternative:
H0 : µ = µ0, H1 : µ ̸= µ0.

2. One-sided alternative:
H0 : µ ⩽ µ0, H1 : µ > µ0.

3. The other one-sided alternative:

H0 : µ ⩾ µ0, H1 : µ < µ0.

22.1.2 Paired samples

In this case there is a population of individuals that are subjected to two “treatments.” The
pair of treatments generate a pair of measurements Xi and Yi for each individual i. (Think of
before and after measurements on a patient.) We allow for unknown individual fixed effects.
The model equations are

Xi = µX + ηi + εi, Yi = µY + ηi + ε′
i, i = 1, . . . , n,

3 Larsen–Marx [14] argue that the assumption of normality is not crucial, and that the procedures described
here “work” in a variety of cases.
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where the εi and ε′
i are assumed to be independent and identically distributed Normal(0, σ2),

and σ2 is usually assumed to be unknown. The individual fixed effects ηi are also assumed to
be unknown, but not random.

Hypotheses are formulated regarding the means µX and µY . The three kinds of hypotheses
are
1. Two-sided alternative:

H0 : µX = µY , H1 : µX ̸= µY .

2. One-sided alternative:

H0 : µX = µY , H1 : µX > µY

or

H0 : µX ⩽ µY , H1 : µX > µY .

3. The other one-sided alternative:

H0 : µX = µY , H1 : µX < µY .

or

H0 : µX ⩾ µY , H1 : µX < µY .

22.1.3 Two-sample models

In this there are samples of the same measurement from two different populations The model
equations are:

Xi = µX + εXi, i = 1, . . . , n; Yj = µY + εY j , j = 1, . . . , m;

where the error terms ε are assumed to be independent and identically distributed Normal(0, σ2
X)

and Normal(0, σ2
Y ).

There are two subcases:
1. σ2

X and σ2
Y are assumed to be the same, but their value is unknown.

2. σ2
X and σ2

Y are not assumed to be the same, and their values are unknown.
Hypotheses are regarding the means µX and µY . The three kinds of hypotheses are

1. Two-sided alternative:
H0 : µX = µY , H1 : µX ̸= µY .

2. One-sided alternative:
H0 : µX ⩽ µY , H1 : µX > µY .

3. The other one-sided alternative:

H0 : µX ⩾ µY , H1 : µX < µY .

22.1.4 Test of other parameters; other models

As you can see there is a large number of models and test dealing with the mean. We can also
use this same taxonomy to discuss tests regarding variances. For instance, does on population
hav a larger variance than another?

Then there are models with three populations, etc. We shall discuss some of these cases
in Lectures 24 and 25 on the standard linear model. In Lecture 26 we discuss testing without
normality assumptions.
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22.2 One-sample models with known variance

In this section we shall make the unreasonable assumption that we are dealing with random
variables with a known standard deviation σ, but an unknown mean µ. This case is easier to
understand than the case where σ is not known, and it serves as the basis for understanding the
more realistic case.Larsen–

Marx [14]:
Chapter 7

For a sample X1, . . . , Xn of independent and identically distributed Normal N(µ, σ2) random
variables, setting

X̄ = X1 + · · · + Xn

n

we have X̄ ∼ N(µ, σ2/n), so

Z = X̄ − µ

σ/
√

n
∼ N(0, 1). (1)

We saw in Lecture 18 that even though we can’t observe Z (since µ is unknown), if we know
σ, then we can use the observed value x̄ of X̄ to get a confidence interval for µ, the

1 − α confidence interval for µ is
[
x̄ − zα/2

σ√
n

, x̄ + zα/2
σ√
n

]
(2)

where zα/2 defined by
Φ(zα/2) = 1 − α/2.

(See Section 18.13.) The width of the confidence interval depends on the sample size, so we can
use (2) to choose the sample size to fix the width of the confidence interval. The width w of the
interval is 2zα/2

σ√
n
so to get an interval of width w requires

n =
4z2

α/2σ2

w2 .

Equation (2) can also serve as a basis for testing hypotheses about µ.
There are two common classes of null hypotheses and alternative hypotheses regarding µ:

• A two-sided hypothesis/test typically deals with a null hypothesis of the form H0 : µ = µ0,
where µ0 is some fixed value that you wish to test. The alternative is H1 : µ ̸= µ0. This is called
a two-sided alternative because it allows for rejecting the null hypothesis if µ < µ0 or if µ > µ0.

• A one-sided hypothesis/test deals with a null hypothesis of the form H0 : µ = µ0 and the
alternative is that H1 : µ > µ0. (Or it could be that the null hypothesis is H0 : µ ⩾ µ0 and the
alternative is H1 : µ < µ0.) The point is that you care about only one direction that µ might
differ from µ0.

Why might you care only about one-sided alternatives? Frequently you want to find out if
some treatment has a beneficial effect. For instance, µ0 might be the death rate due to some
disease using the standard treatment. You have a new therapy that you hope works better, but
costs more. So you care if the death rate is lower than the standard treatment, but not if the
death rate is higher, since you do not plan on using the treatment unless the death rate is lower.

On the other hand if your new treatment is cheaper, then you may want to use it unless the
death rate is higher, so the other one-sided test may be of interest.

Statistics can tell you how to test a hypothesis, but not which hypothesis to test.

There is another kind of null hypothesis you might want to test in the one-sided case: Namely
instead of the null hypothesis H0 : µ = µ0 with the alternative H1 : µ > µ0, the null might be
that H0 : µ ⩽ µ0 with the alternative H1 : µ > µ0. As long as you have a case with a monotone
likelihood ratio (Section 21.11 ⋆) the likelihood ratio test will be the same in either case.

In what follows I will consider mostly one-sided tests.
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22.2.1 One-sided alternatives

When the null hypothesis is H0 : µ ⩽ µ0 and the alternative hypothesis h1 : µ > µ0, the likelihood
ratio test takes the form: Reject H0 if x̄ > c for some appropriate cutoff c. To get a significance
level of α choose c so that Pµ0

(
X̄ > c

)
= α. (Recall Section 18.13.)

Now
Pµ0

(
X̄ > c

)
= Pµ0

(
X̄ − µ0

σ/
√

n
>

c − µ0

σ/
√

n

)
,

and since X̄−µ0
σ/

√
n

∼ N(0, 1), we need
c − µ0

σ/
√

n
= zα

or
c = µ0 + σ√

n
zα (3)

and we
Reject H0 if x̄ > µ0 + σ√

n
zα.

22.3 On one-sided versus two-sided alternative hypotheses

Here is a good question a student once asked me. If we want to test the null hypothesis H0 : µ = 0
versus the two-sided alternative H1 : µ ̸= 0, at the α level, you say to look up zα/2 and reject
the null hypothesis if ∣∣X̄∣∣ ⩾ zα/2.

But if X̄ > 0, shouldn’t we use zα rather than zα/2?
Let’s think about this for a moment. Another way to phrase this procedure is this: If X̄ > 0,

then choose the alternative H1 : µ > 0, but if X̄ < 0, then choose the alternative H1 : µ < 0, and
test the resulting alternative at the α-level of significance. But this procedure does not have
significance level (probability of Type I error) α—the probability of a Type I error is actually
2α. To see this, observe that the probability of rejecting H0 under this procedure is, when µ = 0
is, by the Law of Average Conditional Probability, Proposition 4.5.3, equal to

P0
(
X̄ ⩾ zα

∣∣ X̄ > 0
)︸ ︷︷ ︸

=2P0(X̄⩾zα)=2α

P0
(
X̄ > 0

)︸ ︷︷ ︸
= 1

2

+ P0
(
X̄ ⩽ zα

∣∣ X̄ < 0
)︸ ︷︷ ︸

=2P0(X̄⩽zα)=2α

P0
(
X̄ < 0

)︸ ︷︷ ︸
= 1

2

= 2α.

That is, looking at the test statistic X̄ and then deciding the alternative increases the probability
of rejecting the null hypothesis. This makes sense if you think about. You’ve chosen the
alternative to be the one that makes the null hypothesis more likely to be rejected.

This is an example of what econometricians call data mining, that is, deciding your hy-
potheses after exploratory data analysis. In this case data mining changes your significance
level, and potentially invalidates your test results.

22.4 Power and sample size

The power of the above test is the probability that we reject H0 when the mean is µ > µ0, which
depends on the value of µ. The graph of the power as a function of µ is called the power curve
of the test. This probability is Larsen–

Marx [14]:
pp. 372–374

Pµ

(
X̄ > c

)
= Pµ

(
X̄ − µ

σ/
√

n
>

c − µ

σ/
√

n

)
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In order for the power to be equal to γ we must have

c − µ

σ/
√

n
= zγ or in other words c = µ + σ√

n
zγ .

By (3) this entails
µ0 + σ√

n
zα = c = µ + σ√

n
zγ

or

n = σ2
(

zα − zγ

µ − µ0

)2

.

This tells us how large the sample has to be to get the power to be equal to γ for a test with
significance level α. Notice that for µ > µ0 (the case of interest) we need to have zα > zγ , which
requires α < γ. This makes sense. The probability of rejecting the null hypothesis when it is
true is α and γ is the probability of rejecting it when it is false. We want the probability of
rejecting H0 when it is false to greater than when it is true.

22.4.1 Example Larsen–Marx [14, Example 6.4.1, pp. 373–374] ask for the sample size needed
to achieve a power of γ = 0.6, for a α = 0.05 level test when σ = 14, and µ − µ0 = 3. In this
case, zα = 1.96 and zγ = −0.25, so

n =
(

142.21
3

)2

= 78.

□

22.4.2 Example Here is a numerical example for the case µ0 = 0, µ = 0.1, σ = 1, α = 0.025,
and γ = 0.975. In this case, zα = 1.96 and zγ = −1.96, µ − µ0 = 0.1, so

n =
(

3.92
.1

)2

= 1536.64,

so a sample size of 1537 is needed to get a power of 0.975 at µ = 0.1. □

22.5 ⋆ Detectability thresholds
Should this be
moved to
Lecture 21? Leo Breiman [7, Chapter 5] discusses the notion of detectability. In the context of a hypothesis

test (T, C) for the null hypothesis H0 : θ ∈ Θ0 with significance level α, we say that the parameter
value θ /∈ Θ0 can be detected at level α by the test if

Pθ(accepting H0) ⩽ α

or
Power(θ) ⩾ 1 − α.

We say that ∆ is the detectability threshold for the test if

distance(θ, Θ0) ⩾ ∆ =⇒ Power(θ) ⩾ 1 − α.

That is, the detectability is the minimum distance the parameter has to be from the null hy-
pothesis in order for the probability of a Type II error to be no greater than the probability of
a Type 1 error.
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22.5.1 Example So following the analysis of the normal case in the previous section, for a one-
sided text of significance α of the hypothesis µ = µ0 versus µ > µ0, the detectability threshold
∆µ = µ − µ0 satisfies

∆µ

σ
= z1−α − zα√

n
= 2z1−α√

n
.

For a two-sided test with significance level α, we have
∆µ

σ
=

z1−α/2 − zα/2√
n

=
2z1−α/2√

n
.

We can use these to figure out the sample size need for a given detectability threshold. For
instance, for a two-sided test at level 0.05, we have z1−α/2 = z0.975 = 1.96, so

∆µ

σ
= 3.9√

n
.

□

22.6 What if σ is unknown?

The problem with the analysis above is that we seldom know σ. In Lecture 18, we derived the
Maximum Likelihood Estimators for µ and σ2 as

µ̂MLE = x̄ and σ̂2
MLE =

∑n
i=1(xi − x̄)2

n
,

where x̄ =
∑n

i=1 xi/n. We also showed that σ̂2
MLE is biased, so the unbiased estimator S2 is

often used instead:

S2 =
∑n

i=1(xi − x̄)2

n − 1
.

The question is, what is the distribution of
X̄ − µ

S/
√

n
?

It turns out it is not a standard Normal random variable. In order to describe the distribution
of this statistic, we first examine some related distributions.

22.7 The chi-square distribution

Recall that the chi-square(m) or χ2-distribution with m degrees of freedom is the
distribution of the sum Z2

1 + · · · + Z2
m of squares of m independent standard normal random

variables [14, Theorem 7.3.1, p. 389]. It is also a Gamma( m
2 , 1

2 ) distribution. See Figure 22.1
for the shape of the density.

The next result appears as Corollary 11.5.2. It may also be found in Larsen and Marx[14,
Theorem 7.3.2, p. 390].

22.7.1 Fact If X1, . . . , Xn are independent and identically distributed Normal N(µ, σ2) random
variables, then
1. X̄ and S2 are independent.

2. X̄ ∼ N(µ, σ2/n).

3. (n−1)S2

σ2 = 1
σ2

∑n
i=1(Xi − X̄)2 ∼ chi-square(n − 1)

(We’ll return to this in a later lecture on chi-square tests.)
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Figure 22.1. Chi-square pdfs.
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Figure 22.2. Chi-square vs Normal.
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Figure 22.3. Chi-square vs Normal.
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22.8 The F -distribution

Let U ∼ χ2(n) and V ∼ χ2(m) be independent. Then the random variable

V/m

U/n

has an Fm,n-distribution with m and n degrees of freedom. The F distribution is also
known as the Snedecor F distribution, although Larsen and Marx assert that the F is for
Fisher.

The Fm,n density is given by [14, Theorem 7.3.3, p. 390]

f(x) =
Γ( m+n

2 )
Γ( m

2 )Γ( n
2 )

mm/2nn/2 x(m/2)−1

(n + mx)(m+n)/2 (x ⩾ 0).

See Figure 22.4.
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Figure 22.4. Snedecor F pdfs.

22.9 The Student t-distribution

Let Z ∼ N(0, 1) and U ∼ χ2(n) be independent, then the random variable

Tn = Z√
U
n

has the Student t-distribution with n degrees of freedom. This distribution figures in
testing hypotheses about means for small samples, when the variance is unknown, and must be
estimated form the data.
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Aside: The t-distribution was first calculated by William Sealy Gossett (1876-1937) in 1908. He spent
his working life as an employee of Arthur Guinness, Son & Co., Ltd., brewers of stout at the St. James
Gate Brewery in Dublin. Because of his employer’s obsession with secrecy, Gossett was allowed to
publish his scientifc work only if he used a pseudonym, and he chose the nom de plume Student [26].
(See Larsen–Marx [14, pp. 386–387], and Pearson [23, pp. 5, 17].) There is a story (reported by Pearson’s
son [23, p. 73]) that Karl Pearson, when asked by Gossett for advice in dealing with small sample sizes,
jokingly remarked, “Only naughty brewers deal in small samples.”

The density is given by [14, Theorem 7.3.4, p. 390]

f(x) =
Γ( n+1

2 )
√

nπΓ( n
2 )

(
1 + x2

2

)−(n+1)/2

(x ∈ R).

Note that this is symmetric about zero. See Figure 22.5.
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Figure 22.5. Student t-pdfs and the Standard Normal. The t densities are more spread out.
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Figure 22.6. The tail of the CDF for various Student t-distributions.
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22.10 One-sample models with unknown variance

22.10.1 Theorem [14, Theorem 7.3.5, p. 393] For a sample X1, . . . , Xn of independent
and identically distributed Normal N(µ, σ2) random variables, the test statistic

Tn−1 = X̄ − µ

S/
√

n

has a Student t-distribution with n − 1 degrees of freedom.

22.10.1 Confidence interval for µ

Recall the following Definition 18.12.2. Define tα,n by

P (Tn ⩾ tα,n) = α,

where Tn has the Student t-distribution with n degrees of freedom.
Then

P

(
− tα/2,n−1 ⩽ X̄ − µ

S/
√

n
⩽ tα/2,n−1

)
= 1 − α

or equivalently

P
(
X̄ − tα/2,n−1S/

√
n ⩽ µ ⩽ X̄ + tα/2,n−1S/

√
n

)
= 1 − α.

In other words,

given the sample values x1, . . . , xn from n independent and identically distributed draws
from a normal distribution, a 1 − α confidence interval for µ is the interval(

x̄ − tα/2,n−1s/
√

n, x̄ + tα/2,n−1s/
√

n
)

.

22.10.2 t-quantiles versus z-quantiles

The values zα = 1.96, which are used to construct a (1 − α%) confidence intervals based on
knowing the standard deviation σ, can be very misleading for small sample sizes, when σ is
estimated by the unbiased version of the MLE estimate. The following Table 22.1 gives zα and
tα,n for various values of α and n. This shows how the critical value of a test changes with the
number of degrees of freedom.

22.10.3 The “t-test” for a one-sample model

This also forms the basis for a hypothesis test, called a t-test.
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degrees of freedom n
1 2 4 8 16 32 64 128 256 512

α tα,n zα

0.10 3.08 1.89 1.53 1.4 1.34 1.31 1.29 1.29 1.28 1.28 1.28
0.05 6.31 2.92 2.13 1.86 1.75 1.69 1.67 1.66 1.65 1.65 1.64
0.025 12.71 4.3 2.78 2.31 2.12 2.04 2. 1.98 1.97 1.96 1.96
0.01 31.82 6.96 3.75 2.9 2.58 2.45 2.39 2.36 2.34 2.33 2.33
0.005 63.66 9.92 4.6 3.36 2.92 2.74 2.65 2.61 2.6 2.59 2.58

Table 22.1. tα,n compared to zα for various degrees of freedom n and significance levels α.

To test the Null Hypothesis
H0 : µ = µ0

versus the one-sided alternative
H1 : µ > µ0

at the α significance level, compute the test statistic

t = x̄ − µ0

s/
√

n
.

Reject H0 if t > tα,n−1.

See [14, Theorem 7.4.2, p. 401] for the related two-sided or the other one-sided test.

With modern software, performing “t-tests” is trivial. In Mathematica, you find the p-
value of t with CDF[StudentTDistribution[n], t], where n is the degrees of freedom. Or
simpler yet, if your sample is the array data, the command TTest[data, m] returns the p-value
of t under the null hypothesis µ = m, against the two-sided alternative µ ̸= m. See the documen-
tation for more options. In R, if your sample is in the array data, the command t.test(data,
mu = µ0) returns a detailed report on the two-sided test of the hypothesis µ = 0 including a
confidence interval for µ. (To test the hypothesis µ = m, use: t.test(data-m, mu = m).

By the way, Choosing and Using Statistics: A Biologist’s Guide by Calvin Dytham [8] has
excellent sample code for a number of programs including R, SPSS, Minitab, and even Excel,
but not Mathematica.

22.10.4 ⋆ On the power of the t-test

It is not straightforward to compute the power of the t test. We start with a sample of size n of
independent random variables Xi, distributed as Normal(0, σ2), where σ is unknown. We have
the null hypothesis H0 : µ = µ0 with the alternative H1 : µ > µ0. The test statistic

t = x̄ − µ0

s/
√

n

is computed. Under the null hypothesis, the test statistic has a t distribution with n − 1 degrees
of freedom. The null hypothesis is rejected if t > tα for test with significance level α. We want
to compute the power at µ, which is just

Pµ,σ

(
X̄ − µ0

s/
√

n
> tα

)
.
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The problem is that if each Xi ∼ N(µ, σ2), then the test statistic t = x̄−µ0
s/

√
n
is not distributed

according to a t-distribution. We need to transform the problem into something we can cope
with.

To that end, let’s follow Ferris, Grubbs, and Weaver [9] and recast the problem like this. Let

ρ = µ − µ0

σ
.

Then we can rewrite the null hypothesis as H0 : ρ = 0 versus the alternative H1 : ρ > 0.
Note that for any constant c,

X̄ − µ0

s/
√

n
> c ⇐⇒

√
n(X̄ − µ0)

σ
>

s

σ
c ⇐⇒

√
n

(
X̄ − µ − (µ0 − µ)

)
σ

>
s

σ
c

⇐⇒
√

n(X̄ − µ)
σ

>
s

σ
c −

√
nρ.

Now when µ is the mean, the quantity
√

n(X̄ − µ)/σ is a Standard Normal random variable, so

Pµ,σ

(
X̄ − µ0

s/
√

n
> c

)
= Pµ,σ

(√
n(X̄ − µ)

σ
>

s

σ
c −

√
nρ

)
= Φ

( s

σ
c −

√
nρ

)
.

The problem is that s is a random variable, so this gives the probability conditional on the
value of s. But the argument of Φ depends only on the value s2/σ2, which we know has a χ2

distribution. One can compute the expected value to get the power of the test at µ. Ferris,
et. al. do this and report the operating characteristic (1 minus the power) graphically. Their
graph is reproduced in Breiman [7, p. 147].

Breiman recommends using the same rule for detectability thresholds with unknown σ as for
known σ for the t-test with moderately large sample sizes.

∆µ

σ
=

z1−α/2 − zα/2√
n

=
2z1−α/2√

n
.

Note that since this depends on the unknown standard deviation σ, we cannot use this to
compute a sample size ex ante. We first have to estimate σ, and then use that as a guide to
deciding whether to collect a larger sample to increase the power of the test.

22.11 Two-sample model, same variances
Larsen–
Marx [14]:
Section 9.2

Given X1, . . . , Xn and Y1, . . . , Ym normal with same variance, but possibly different means, there
is a t-test for the null hypothesis µX = µY . See Section 9.2 of Larsen and Marx [14].

The model equations are

Xi = µX + εXi, i = 1, . . . , n Yj = µY + εY j , j = 1, . . . , m,

where εX and εY are independent and identically distributed Normal(0, σ2).
The test statistic uses the pooled sample to estimate the variance for the following t-statistic:

t = x̄ − ȳ

sp

√
1
n + 1

m

,

where
sp =

∑n
i=1(xi − x̄)2 +

∑m
j=1(yj − ȳ)2

n + m − 2
.

It has a t distribution with n + m − 2 degrees of freedom under the null hypothesis.

KC Border v. 2020.10.21::10.29



Ma 3/103 Winter 2021
KC Border Significance Tests, II 22–14

22.12 Two-sample model, potentially different variances
Larsen–
Marx [14]:
Section 9.2,
p. 466

What if we don’t know that the variance is the same for each sample? This is known as the
Behrens–Fisher Problem.

The model equations are

Xi = µX + εXi, i = 1, . . . , n Yj = µY + εY j , j = 1, . . . , m,

where εX ∼ N(0, σ2
X) and εX ∼ N(0, σ2

Y ).
The typical null hypothesis is H0 : µX − µY = 0. The test statistic proposed by Welch [27] is

W = X̄ − Ȳ − (µX − µY )√
S2

X

n + S2
Y

m

The Welch statistic has a distribution that is approximately a t-distribution with ν degrees of
freedom, where ν is the integer nearest toLarsen–

Marx [14]:
p. 466

(
s2

x

s2
y

+ n
m

)2

1
(n−1)

s2
x

s2
y

+ 1
(m−1)

(
n
m

)2

But on Mathematica, TTest[data1, data2] does it all for you. In R, use t.test(data1,data2).
See Dytham [8, pp. 103–110].

22.13 Difference of means, Paired samples
Larsen–
Marx [14]:
pp. 440–442

Sometimes there is a special structure to the data that simplifies the test of differences of mean.
That is when the data are paired data. Typically one element of the pair is called the control.
Then for each pair (Xi, Yi) the model equations are

Xi = µX + ηi + εi, Yi = µY + ηi + ε′
i, i = 1, . . . , n,

where ε and ε′ are independent and identically distributed Normal(0, σ2), and σ2 is unknown.
Then

Xi − Yi = (µX − µY ) + (εi − ε′
i).

This can be tested as a simple t-test with n − 1 degrees of freedom.

22.14 Tests of Variance

Why might you care about variance? Suppose your laboratory has two microtomes. It is
important for you to slice your tissue samples as uniformly as possible. Each machine has a
tiny variation in the thicknesses it produces. You would like to use the one with the smaller
variance. Hence the desire to test the difference of two variances.

Recall ([14, Theorem 7.3.2, p. 390] discussed in Lecture 21) that

(n − 1)S2

σ2 = 1
σ2

n∑
i=1

(Xi − X̄)2

has a χ2-distribution with n − 1 degrees of freedom.
The χ2-distribution is not symmetric (see Figure 22.7), so for a two-sided test, you need two

different critical values.
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Figure 22.7. Chi-square pdfs.

22.14.1 Definition The symbol χ2
α,n represents the α quantile of the χ2-distribution with

n degrees of freedom. That is, if Q ∼ χ2(n),

P
(
Q ⩽ χ2

α,n

)
= α.

N.B. This is different from the notation for zα and tα,n. (P (Z > zα) = α.)

Confidence intervals of σ2: Larsen–
Marx [14]: p.
412P

(
χ2

α/2,n−1 ⩽ (n − 1)S2

σ2 ⩽ χ2
1−(α/2),n−1

)
= 1 − α,

so

the 1 − α confidence interval for σ2 is[
(n − 1)s2

χ2
1−(α/2),n−1

,
(n − 1)s2

χ2
α/2,n−1

]

Table 5.7.2 in Larsen–Marx [14, p. 414] gives some useful values. You can use Mathematica
or R to construct your own such table, and it serves as a useful check. (See Section 22.20.)

22.14.1 Confidence intervals and hypothesis tests

We can turn the confidence interval into a hypothesis test. The following is Theorem 7.5.2 in
Larsen–Marx [14, p. 415].

Let X1, . . . , Xn be independent and identically distributed Normal(µ, σ2). Let s2 denote the
unbiased sample variance estimate,

s2 =
∑n

i=1(xi − x̄)2

n − 1
.
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To test the null hypothesis
H0 : σ2 = σ2

0 ,

at the α-level of significance, compute the test statistic

χ2 = (n − 1)s2

σ2
0

.

a. Against the one-sided alternative H1 : σ2 > σ2
0 , reject H0 if

χ2 ⩾ χ2
1−α,n−1.

b. Against the one-sided alternative H1 : σ2 < σ2
0 , reject H0 if

χ2 ⩽ χ2
α,n−1.

c. Against the two-sided alternative H1 : σ2 ̸= σ2
0 , reject H0 if

either χ2 ⩽ χ2
α/2,n−1 or χ2 ⩾ χ2

1−(α/2),n−1.

The cutoffs are not symmetric, because the χ2 distribution is not symmetric.

22.15 Testing Difference of Variances, F tests

How do we test the hypothesis that two sets of measurements come from normals with the same
variance?Larsen–

Marx [14]:
Section 9.3

Given X1, . . . , Xn and Y1, . . . , Ym normal N(µX , σ2
X) and N(µY , σ2

Y ), then

(m−1)S2
Y

σ2
Y

(n−1)S2
X

σ2
X

∼ Fm−1,n−1.

22.15.1 Definition The symbol Fα,m,n represents the α quantile of the F (m, n)-
distribution. That is, if X ∼ F (m, n),

P (X ⩽ Fα,m,n) = α.

N.B. This agrees with the convention for χ2
α,n, but is different from the notation for zα

and tα,n. (P (Z > zα) = α.)
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Larsen–Marx [14, Theorem 9.3.1, pp. 471–472]

22.15.2 Theorem (F -test) To test

H0 : σ2
X = σ2

Y

at the α level of significance,

1. versus H1 : σ2
X > σ2

Y , reject H0 if

s2
Y

s2
X

⩽ Fα,m−1,n−1.

2. versus H1 : σ2
X < σ2

Y , reject H0 if

s2
Y

s2
X

⩾ F1−α,m−1,n−1.

3. versus H1 : σ2
X ̸= σ2

Y , reject H0 if

s2
Y

s2
X

⩽ F(α/2),m−1,n−1 or s2
Y

s2
X

⩾ F1−(α/2),m−1,n−1.
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△ df = 15,7

Figure 22.8. F -pdfs.
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22.16 Some recent developments

In 2012, Zhang, Xu, and Chen [28] developed a test for the difference of two Normal samples.
Let x1, . . . , xn and y1, . . . , ym be independent samples from normal population N(µ1, σ2

1)
and N(µ2, σ2

2). To test

H0 : µ1 = µ1 and σ2
1 = σ2

2

versus
H1 : µ1 ̸= µ1 and/or σ2

1 ̸= σ2
2 ,

form the likelihood ratio test statisticWrite out the
derivation.

λ =

[∑n

i=1
(xi−x̄)2

n

]n/2 [∑m

j=1
(yj−ȳ)2

m

]m/2

[∑n

i=1
(xi−ū)2+

∑m

j=1
(yj−ū)2

m+n

](m+n)/2

where ū is the overall sample average. The Null hypothesis is rejected if this likelihood ratio is
too small.

Earlier, Pearson and Neyman [20] showed that as n, m → ∞, then the distribution of λ
under the null hypothesis is approximately Uniform(0, 1). Zhang et al find the exact distribution
(depending on n and m) and give an implementation of their test in R.

They recommend the following procedure:

1. First test the null hypothesis that the x and y samples come from the same distribution,
using their test. If the null hypothesis is not rejected, you’re done.

2. If H0 is rejected, you should next test the null hypothesis

Hσ
0 : σ2

1 = σ2
2

versus
Hσ

1 : σ2
1 ̸= σ2

2 ,

using the F -test (Theorem 22.15.2).
If Hσ

0 is not rejected, use the pooled t-test (Section 22.11) to test the null hypothesis

Hµ
0 : µ1 = µ1

versus
Hµ

1 : µ1 ̸= µ1.

3. If Hσ
0 is rejected, use the Welch approximate t-test of Section 22.12 to test the null hypoth-

esis

Hµ
0 : µ1 = µ1

versus
Hµ

1 : µ1 ̸= µ1.

4. Finally, you should test the hypothesis that the data are normal. We will get to that in a
couple of lectures.
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22.17 A caveat on hypothesis testing

Consider the coin tossing experiment. We want to test the Null Hypothesis that the probability
p of Tails is 1/2, H0 : p = 0.5. Now real coins are manufactured, and so subject to various
imperfections, so it is hardly likely that the probability is exactly 1/2. In fact, it is reasonable to
suppose the probability of a value exactly 1/2 is zero. The Strong Law of Large Numbers says
that the MLE of #Tails/#Tosses will converge with probability one to the true value, which
is not 1/2, as the sample size gets large. Since the critical region is shrinking to zero with the
sample size, with probability one we shall reject the Null Hypothesis if we get enough data. And
we know this before we start! So why bother? Ask Richard Roll

for the name of this
paradox.There are two responses to this question. The first is that if the coin is grossly biased, a

hypothesis test with even a small sample size may reveal it. That is, hypothesis testing is an
important part of data exploration.

The second response is that we are naïve to formulate such a restrictive hypothesis. We
should restrict attention to null hypotheses such as the probability of Tails line in an interval
(0.5 − ε, 0.5 + ε), H0 : p ∈ (0.5 − ε, 0.5 + ε), where ε is chose small enough so that we don’t care.

22.18 Abuses of p-values

Significance versus insignificance

Gelman and Stern [10] and Nieuwenhuis et al. [22], among others, point out that many published
studies use the following sort of logic. Two different treatments are tested. Treatment A is
effective at a stringent level of significance and Treatment B is not. Therefore Treatment A is
more effective than Treatment B. Gelman and Stern [10] give the following simple example that
shows that this argument may not be valid. (And it is not because the p-values are close but
on opposite sides of significance, e.g., 4.9% versus 5.1%.)

22.18.1 Example (Significance versus insignificance) For simplicity, let’s assume nor-
mality and equal sample sizes, and the null hypothesis is that the data have mean 0, the
one-sided alternative is that the mean is greater than 0. Data for Treatment A have mean 25
and standard error 10, while data for Treatment B have mean 10 and standard error 10. The
one-sided p-value for A is 0.6% (highly significant) while that for B is 15.9%. The difference in
p-values is nowhere near to being close. Yet, if we test the difference, the difference has mean 15
and standard error =

√
102 + 102 ≈ 14.1, so the difference is 15/14.1 = 1.06 standard deviations

away from zero, which has a two-sided p-value equal to 28.9%, and would be judged insignificant
by almost any standard. □

Selection on the basis of p-values

Many of the statistical tests that are performed are designed to examine either a correlation
or the difference of two means. For example, does a particular treatment decrease the mean
severity of a disease or increase the average longevity? Is there a correlation between certain
seismic readings and the presence of oil? Is the measured velocity of light different when the
measurement apparatus is moving with the aether drift or against it?

A typical null hypothesis is that two means are the same (or equivalently that their difference
is zero), or perhaps that two variables have zero correlation. So the typical null hypothesis is of
the form θ = 0. Data are gathered and a test statistic T is computed, and the null hypothesis
is rejected if T > tα, where tα is chosen so that if indeed θ = 0, then P (T > tα) = α. That is,
you reject the null hypothesis if the test statistic is “significantly different from zero.”

The point is that usually you want to reject the null hypothesis. You set things up so that
your experiment is a success if it rejects the null hypothesis. Rejecting the null hypothesis means
you have found something that significantly improves the mean, or is significantly correlated.
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Hypothesis tests are predicated on the assumption that you already have in mind a hypothesis
that you want to test, you set α, gather your data, and then test for significance.

But this is rarely the way science is done. There may be hundreds of different drug-disease
combinations that you want to test for efficacy. If you have computed your tests properly, and
perform a hundred different experiments, then even if the null hypothesis is always true, 5% of
your test statistics will be significantly different from zero at the 5% level of significance.

Or maybe you look over the data to decide which correlations to test, or which variables to
include in your analysis, and you discard those for which no correlations are found.

In other words, if there is “exploratory data analysis,” or worse yet “data mining,” then the
fact that a significant test statistic is found is not significant. It is not clear what to do about
this, but Ed Leamer [15, 16] has some suggestions that seem to have failed to catch on. Simmons
et al. [25] have some concrete suggestions as well.

An important counter-example is in neuroscience, where a typical fMRI brain-imaging study
divides the brain into about 60,000 “voxels,” and looks for differences in the BOLD signal 4 in two
different circumstances at different times. Deciding whether two brains are different involves
literally millions of t-tests. Competent neuroscientists often apply the so-called Bonferroni
correction (see below) and use a significance level on the order of α = 1.5 × 10−6 for each
stand-alone t test.)

But this approach seems wrong too. It is quite likely that voxels are spatially correlated,
not independent and we are throwing away valuable information that is in the data. New
techniques, based on random field theory are being explored. See, for example, Adler, Bartz,
Kou, and Monod [1, 2]. (Bartz is a recent Caltech alumnus.)

Aside: Craig Bennet, et al. [3] report on what can happen if a multiple comparison correction is not
performed. They analyzed the effect of showing photos of humans in various kinds of social situations
to a salmon, and found an area of the salmon brain and an area of the spinal column that responded.
See Figure 22.9. (Incidentally, the salmon was dead.)

Publication bias

*******************

22.19 The Bonferroni correction

Carlo Bonferroni [5] proposed the following crude antidote for the multiple comparisons
problem. Suppose you have n measurements, and want to test a hypothesis H0 about each
one. If each test is conducted at the significance level α/n, then the probability that at least
one of the n tests rejects the null is no more than α. This crude upper bound is based on the
very crude Boole’s Inequality: P

(
n
∪

i=1
Ai

)
⩽

∑n
i=1 P (Ai). The paper by Naiman and Wynn [19]

offers more details.

22.20 Quantile cutoffs for classic tests

Here is a summary the various quantiles used as critical values for the classic tests described in
this lecture.

Recall the definitions:
4 This stands for blood-oxygen-level-dependent signal [17].
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Figure 22.9. fMRI results for a postmortem Atlantic salmon.
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Definition 18.13.1 zα is defined by

P (Z > zα) = α, ,

where Z ∼ N(0, 1).

Definition 18.12.2 tα,n is defined by

P (Tn > tα,n) = α,

where Tn has the Student t-distribution with n degrees of freedom.

Definition 22.14.1 χ2
α,n is defined by

P
(
Q ⩽ χ2

α,n

)
= α,

where Q ∼ χ2(n). Note that the inequality is different from the case of zα and tα,n.

Definition 22.15.1 Fα,m,n is defined by

P (X ⩽ Fα,m,n) = α.

where X ∼ F (m, n). This agrees with the convention for χ2
α,n, but is different from the notation

for zα and tα,n.

And here is how to look them up with Mathematica or R. Be sure to replace α, m, and n
in the code by their appropriate numeric values.

Mathematica
zα InverseCDF[NormalDistribution[], 1 - α]
tα,n InverseCDF[StudentTDistribution[n], 1 - α]
χ2

α,n InverseCDF[ChiSquareDistribution[n], α]
Fα,m,n InverseCDF[FRatioDistribution[m,n], α]

R
zα qnorm(α, lower.tail = FALSE)
tα,n qt(α, n, lower.tail = FALSE)
χ2

α,n qchisq(α, n)
Fα,m,n qf(α, m, n)
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