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Lecture 20: Theoretical Propositions about Estimation

Relevant textbook passages:
Larsen–Marx [12]: Sections 5.2–5.7

20.1 What makes an estimator a good estimator?

Last time we discussed the problem of estimating the probability of success in a Binomial data
model, and found the maximum likelihood estimator of the probability p of success is just the
fraction of successes in the sample. This is certainly an intuitive estimator, and makes common
sense. But there are other estimators we could consider. One example is to always estimate
p = 3/4. This has the virtue that it is precise (has variance 0) and is computationally quite
tractable. It is also clearly nonsense. But can we come up with criteria that we can use to
choose among estimators when the answer is not so obvious. In this lecture, we will try to find
desiderata for estimators, and investigate when maximum likelihood satisfies these criteria.

Recall:

• A random experiment has a set X of possible outcomes.

• Θ is the set of parameters of the set of possible data generating processes for the model of
the random experiment, or effectively the set of dgps.

• Pθ is the probability measure on X corresponding to θ.
f(x; θ) is the pdf or pmf of the outcome X for the dgp θ.

• An estimator T : X → Θ.
[T cannot depend on θ.]

• So T is a random variable.

• But we want it to be related to θ, where θ is the “true” dgp.

20.1.1 Unbiasedness
Larsen–
Marx [12]:
§ 5.4

An estimator T is unbiased if E T = θ. But what do we mean by E T?
Since the datum X is a random variable with pmf or pdf f(x; θ), the expected value of T (X)

depends on θ, which is unknown.

The estimator T is an unbiased estimator of θ if for every θ ∈ Θ

Eθ T (X) = θ, where of course, Eθ T (X) =
∫

T (x)f(x, θ) dx.

Unfortunately, unbiased estimators need not exist.
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20.1.1 Example (cf. Lehmann and Hodges [10, p. 247]) There is no unbiased estimator
for the Binomial odds ratio.

Suppose Tn is an estimator of p/(1 − p).
For n = 2,

E T = T (0)(1 − p)2 + T (1)(1 − p)p + T (2)p2.

Now unbiased would require E T = p/(1 − p) → ∞ as p → 1, but E T is bounded.
The same idea works for n > 2.

E T =
n∑

k=0

T (k)
(

n

k

)
pk(1 − p)n−k

which is bounded above by max{T (k) : k = 1, . . . , n}, and so ̸= p/(1 − p) for p close to one. □

20.1.2 Consistency

• Imagine independent replications of the experiment, and let Tn be the estimator of θ based
on n replications.

• T (more properly the sequence of Tn’s) is consistent if

plim
n→∞

Tn = θ.

That is, for every θ ∈ Θ and ε > 0,

Pθ( |Tn − θ| > ε) → 0 as n → ∞.

• T is strongly consistent if
Pθ(Tn → θ) = 1.

Even if an estimator is biased, it may still be consistent. For example, we shall soon see that
the MLE of the variance of a Normal is biased (by a factor of (n − 1)/n, but is still consistent,
as the bias disappears in the limit.

20.1.3 Efficiency

Since T is a random variable, it has a variance. It would be desirable to keep that variance small.
We say that an unbiased estimator T is efficient if for θ ∈ Θ, T has the minimum variance of
any unbiased estimator,

Varθ T = min{Varθ T ′ : Eθ T ′ = θ}

20.1.4 Asymptotic normality

When X = R, it would be nice if an appropriately normalized T̃n satisfied

T̃n
D−→ N(0, 1).

This property is often used to (feebly) justify treating the estimator as a Normal random
variable for moderate sample sizes.
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20.2 Maximum Likelihood Estimators

The main reason we are interested in Maximum Likelihood Estimators is not that R. A. Fisher
thought they were a good idea, but because of the following claim.

Claim: For a wide variety of data models f(x, θ), MLEs are consistent, efficient, asymptot-
ically normal, and often unbiased.

I will discuss the efficiency claim in a moment, and then give you some references for the
consistency claim. For now, just trust me that MLES are worth investigating.

20.3 ⋆ First order conditions for an extremum

In order to find MLEs, we first need to know how to find maximizers of a function.
If f : Rn → R is differentiable, x̂ is interior to the domain of f , x̂ (locally) maximizes f ,

then
∂f(x̂1, . . . , x̂n)

∂xi
= 0 (i = 1, . . . , n).

Figure 20.1. A nicely behaved maximum: f ′ = 0 and f ′′ < 0.

Unfortunately, these are also the first order conditions for a minimizer.
If f is concave, then these conditions are also sufficient for x̂ to be a maximizer of f . One

way to tell if f is concave is to check that the matrix of second partials
...

· · · ∂2f(x)
∂xi∂xj

· · ·
...


is negative semidefinite. If this is new to you, you may want to look at Section 3 of my on-line
notes on maximization.

One of the ways that a lot of numerical optimization is done is to numerically find places
where the partial derivatives are all zero. That is, reduce the problem to finding zeros of a
function. Newton’s method and various modifications of it are frequently used for this purpose.
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20.4 Estimating functions of parameters

Suppose I don’t care about θ per se, but rather some function g(θ). E.g., suppose I want to
estimate the standard deviation of a normal, not its variance.Not in Larsen and

Marx. We first have to figure the likelihood as a function of γ = g(θ), not as a function of θ. Unless
g is one-to-one, this doesn’t make sense. For suppose g(θ) = g(θ′) = γ. What likelihood should
I assign to γ, f(x; θ) or f(x; θ′)?

But when g is a one-to-one function of θ, we can define the likelihood function for γ = g(θ).
Observe that

f(x; γ) = f(x; g−1(γ),
so the likelihood function L̃ for γ is

L̃
(
γ; x

)
= f(x; γ) = f(x; g−1(γ) = L

(
g−1(γ); x

)
.

By definition, θ̂MLE maximizes L(·; x) so that L̃
(
γ; x

)
is maximized when

g−1(γ) = θ̂MLE,

so applying g to both sides we get the following.

20.4.1 Proposition For a one-to-one function g, the maximum likelihood estimate of γ =
g(θ), that is, the value γ̂MLE that maximizes L̃(γ; x), is just g(θ̂MLE),

γ̂MLE = g(θ̂MLE).

This property is referred to as invariance.

But be warned! If θ̂MLE is an unbiased estimator of θ, then g(θ̂MLE) is not, in general, an
unbiased estimate of g(θ). Why? Usually, it’s Jensen’s Inequality. For instance, if σ̂2

MLE is an
unbiased estimator of the variance, then σ̂MLE =

√
σ̂2

MLE is not an unbiased estimator of the
standard deviation! Or if the random variable λ̂MLE is an unbiased estimator of the rate λ of
an exponential distribution, then the random variable µ̂MLE = 1/λ̂MLE is the MLE of its mean
µ = 1/λ, but by Jensen’s Inequality E µ̂MLE = E(1/λ̂MLE) > 1/ E(1/λ̂MLE) = 1/λ = µ.

20.5 Sufficient statistics
Larsen–
Marx [12]:
§ 5.6

I’ve already done things like write the likelihood function for a binomial in terms of k, the
number of successes instead of the entire sequence x1, . . . , xn of successes and failures. That’s
because k is all that matters for the likelihood function. We’ll formalize and generalize this idea.

Let X1, . . . , Xn be independent and identically distributed with common pdf f(x; θ). The
likelihood function is

L(θ; x1, . . . , xn) =
n∏

i=1
f(xi; θ).

20.5.1 Definition Let T = T (X1, . . . , Xn) be a statistic. It has a density fT (t; θ). If the
likelihood function factors as

L(θ; x1, . . . , xn) =
n∏

i=1
f(xi; θ) = fT (T (x1, . . . , xn); θ) b(x1, . . . , xn),

that is, if θ enters the likelihood function only through the distribution of T , then T is called a
sufficient statistic for θ.
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In terms of the log-likelihood, the condition for sufficiency is

ln L(θ; x1, . . . , xn) =
n∑

i=1
ln f(xi; θ) = ln fT (T (x1, . . . , xn); θ) + ln b(x1, . . . , xn), (1)

Note that in order to maximize the likelihood function with respect to θ, it suffices to
maximize fT (T (x1, . . . , xn); θ).

20.5.2 Example (Sufficient statistic for the Binomial) The Binomial(n, p) likelihood is

L(p; k) =
(

n

k

)
· pk(1 − p)n−k =

(
n

k

)
·
(

p
k
n (1 − p)1− k

n

)n

.

(Here k plays the role of x and p is the abstract θ.) Thus T (k) = k/n is a sufficient statistic for
p since

L(p; k) = b(k)fT

(
T (k); p

)
,

where b(k) =
(

n
k

)
and fT (t; p) =

(
pt(1 − p)1−t

)n. □

20.5.3 Example (Sufficient statistic for the Normal)

In the normal case, the sample mean

x̄ =
∑n

i=1 xi

n

and the unbiased estimate of the variance

S2 =
∑n

i=1(xi − x̄)2

n − 1
.

are sufficient for the pair (µ, σ2).

To see this, write the log-likelihood function as

ln L(µ, σ2; x1, . . . , xn) = −n

2
ln(2πσ2) − 1

2
1
σ2

n∑
i=1

(xi − µ)2. (2)

Now
n∑

i=1
(xi − µ)2 =

n∑
i=1

(x2
i − 2µxi + µ2) =

n∑
i=1

x2
i − 2µ

n∑
i=1

xi︸ ︷︷ ︸
=nx̄

+nµ2 (3)

and
(n − 1)S2 =

n∑
i=1

(xi − x̄)2 =
n∑

i=1
x2

i − 2x̄

n∑
i=1

xi︸ ︷︷ ︸
=nx̄

+nx̄2 =
n∑

i=1
x2

i − nx̄2,

so
n∑

i=1
x2

i = (n − 1)S2 + nx̄2. (4)
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Substituting (4) into (3), we get
n∑

i=1
(xi − µ)2 = (n − 1)S2 + nx̄2 − 2nµx̄ + nµ2,

so (2) becomes

ln L(µ, σ2; x̄, S2) = −n

2
ln(2πσ2) − 1

2
1
σ2

(
(n − 1)S2 + nx̄2 − 2nµx̄ + nµ2)

= −n

2

[
ln(2π) + ln(σ2) + 1

σ2

(
n − 1

n
S2 − 2µx̄ + x̄2 + µ2

)]
. (5)

Not that for the purposes of MLE, the coefficient n/2 and the constant ln(2π) do not affect
the location of the maximizer, so if we wish, we can discard them and simply work with

− ln(σ2) − 1
σ2

(
n − 1

n
S2 − 2µx̄ + x̄2 + µ2

)
From this expression, we can re-derive the maximum likelihood estimators of µ and σ2. The

first order conditions for a maximum are that the partial derivatives with respect to µ and σ2

are zero. So at the point (µ, σ2) = (µ̂, σ̂2)

∂

∂µ
= − 1

σ̂2
(−2x̄ + 2µ̂) = 0,

which implies
µ̂ = x̄,

and
∂

∂σ2 = − 1
σ̂2

+ 1
(σ̂2)2

n − 1
n

S2 −2µ̂x̄ + x̄2 + µ̂2︸ ︷︷ ︸
=0

 = 0,

which, after multiplying by (σ̂2)2, implies

σ̂2 = n − 1
n

S2.

Thankfully this agrees with our previous derivation. □

A family of densities f(x; θ) of the form

f(x; θ) = a(θ)b(x) exp

 d∑
j=1

gj(θ)hj(x)

 (6)

is called an exponential family of distributions ([5, p. 161], [15, p. 195]). Some authors may
rewrite this as

f(x; θ) = exp

β(x) + α(θ) +
d∑

j=1
gj(θ)hj(x)

 (6′)

were α(θ) = ln a(θ) and β(x) = ln b(x). Larsen–Marx [12, Exercise 5.6.9, p. 330] use the term
exponential form for families of this sort.
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Suppose f has the form given by (6). Then

f(x1; θ)f(x2; θ) = a(θ)2b(x1)b(x2) exp

 d∑
j=1

gj(θ)hj(x1)

 exp

 d∑
j=1

gj(θ)hj(x2)


= a(θ)2b(x1)b(x2) exp

 d∑
j=1

gj(θ)
[
hj(x1) + hj(x2)

]
More generally, for a random experiment repeated independently n times, with outcome x =
(x1, . . . , xn) can likelihood be written

L(θ; x) =
n∏

i=1
f(xi; θ) = a(θ)n

n∏
i=1

b(xi) exp

 d∑
j=1

gj(θ)
n∑

i=1
hj(xi)

 .

Letting Hj(x1, . . . , xn) =
∑n

i=1 hj(xi), (j = 1, . . . , d), and setting H(x) =
(
H1(x), . . . , Hd(x)

)
,

we may write

L(θ; x) = f(x; θ) = a(θ)n
n∏

i=1
b(xi) exp[g(θ) · H(x)],

which shows that H is a sufficient statistic for θ.
The key point here is that even as the sample size gets arbitrarily large, the sufficient statistic

remains d-dimensional.
It can be shown, see, e.g., Darmois [4], Koopman [11, Theorem 1], or Pitman [13], 1 that for�

the case of absolutely continuous distributions, having an exponential family is necessary to have
a sufficient statistic of fixed dimension, subject to some smoothness conditions on the likelihood
function. For this reason exponential families have played a key role in statistical theory. The
key regularity properties are smoothness of f (that is, f has derivatives of all orders), and that
the support of f (that is, {x : f(x; θ) > 0}) be independent of θ. Anderson [1] has extended the
original analysis to the case of discrete distributions. Perhaps the clearest exposition is Pedersen
and Barndorff-Nielsen [2].

Note that the uniform distribution on [θ1, θ2] is not an exponential family, but it still has��
a two dimensional sufficient statistic: (mini xi, maxi xi). This does not violate the statement
above, since the support of the uniform does depend crucially on (θ1, θ2).

20.6 Mean-square error of an estimator

Suppose we want to estimate some function g of the parameter θ of an underlying probability
model f(x; θ), using the estimator T : X → Θ.

Define the Mean Square Error of the estimator T of g(θ) to be the function MSET of θ
given by Not in Larsen and

Marx.

MSET (θ) = Eθ

[(
T − g(θ)

)2
]

=
∫ (

T (x) − g(θ)
)2

f(x; θ) dx.

If T is an unbiased estimator of θ, then since Eθ T = θ, the mean square error of T is just
the variance of T .

Otherwise, define the bias of T by

bT (θ) = Eθ T − g(θ).
1 This Pitman is not your textbook author, but rather his father.
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Note that this depends on the unknown θ.
Now we may decompose the mean square error into two terms:

MSET (θ) = Eθ

[(
T − g(θ)

)2
]

= Eθ

(
T −EθT + EθT︸ ︷︷ ︸

0

−g(θ)
)2


= Eθ

[(
(T − EθT ) + bT (θ)

)2
]

= Eθ

(T − EθT )2 + 2 (T − EθT )︸ ︷︷ ︸
Eθ=0

bT (θ) + bT (θ)2


= Varθ T +

(
bT (θ)

)2
.

The mean-square error of T depends on the unknown parameter θ.

MSET (θ) = Var T +
(
bT (θ)

)2
.

There is always a tradeoff between variance and bias. A constant estimator T̄ = θ̄ has
variance zero, and MSET̄ (θ̄) = 0, but it has potentially very large bias bT̄ (θ) for θ ̸= θ̄, so
MSET̄ (θ) can be quite large for θ ̸= θ̄.

20.7 ⋆ A property of log-likelihood

I’ve already argued that taking the log of the likelihood function is a numerically reasonable
thing to do. Here is another fact that illustrates the usefulness of the log-likelihood.

If f(x; θ) is a density for x, it gives rise to the likelihood function

L(θ; x) = f(x; θ).

Then since f is a density we have

h(θ) :=
∫

L(θ; x) dx =
∫

f(x; θ) dx = 1.

Since the right-hand side does not depend on θ, we must have h′(θ) = 0 for every θ. Often we
can compute another expression for h′ by “differentiating under the integral.” (See the on-line
note for details on when this is valid.) In this case,

h′(θ) :=
∫

D1L(θ; x) dx =
∫

∂f(x; θ)
∂θ

dx = 0,

where D1 denotes the partial derivative with respect to the first argument. To simplify notation,
let f ′(x; θ) denote ∂f(x;θ)

∂θ , and let

L(θ; x) = ln L(θ; x).

v. 2020.10.21::10.29 KC Border
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Multiplying both the numerator and denominator of the last term by f(x; θ) gives

h′(θ) =
∫

f ′(x; θ)
f(x; θ)

f(x; θ) dx = Eθ
∂L

∂θ
= 0,

where Eθ means that the expectation is taken with respect to the density f(·, θ). To repeat:

Eθ
∂L

∂θ
= 0.

20.8 The Cramér–Rao Lower Bound

The following result is known the Cramér–Rao Lower Bound, even though it may have first been
proven by Maurice Fréchet. It is sometimes known as the information inequality.

20.8.1 The Fréchet–Cramér–Rao Lower Bound Assume f is continuously differentiable
with respect to θ and assume that the support {x : f(x; θ) > 0} does not depend on θ. Let T be
an estimator of θ, with differentiable bias function b(θ). Then Varθ T is bounded below, and:

Varθ T ⩾
[
1 + b′(θ)

]2

n Eθ

[(
∂

∂θ log f(X; θ)
)2

] .

When θ is a parameter vector, there is a matrix interpretation of the latter.
For a proof of the Fréchet–Cramér–Rao Lower Bound see Supplement 9. For unbiased

estimators this reduces to the following.

20.8.2 Corollary (Unbiased Fréchet–Cramér–Rao Lower Bound) Assume f is contin- Larsen–
Marx [12]:
§ 5.5

uously differentiable with respect to θ and assume that the support {x : f(x; θ) > 0} does not
depend on θ. Let T be an unbiased estimator of θ. Then Varθ T is bounded below, and:

Varθ T ⩾ 1

n Eθ

[(
∂

∂θ log f(X; θ)
)2

] .

20.8.1 Special cases of the lower bound

The quantity

I = Eθ

[(
∂

∂θ
log f(X; θ)

)2
]

that appears in the denominator of the Fréchet–Cramér–Rao lower bound has an interesting
interpretation. The log-likelihood function L(θ; x) = ln L(θ; x) regarded as a function of the
random variable X is a random variable, and so is its derivative (with respect to θ) L′(θ; X).
We saw in section 20.7 ⋆ that Eθ L

′(θ; X) = 0 for each θ. Thus

I = Eθ

(
L′(θ; X)

)2 = VarL′(θ; X).

R. A. Fisher [6, pp. 338ff], [7, pp. 709–710], [8, pp. 305–306] interpreted this as the “intrinsic
accuracy” of the estimator. The quantity I has since become known as the Fisher information.
Distributions with low Fisher information or intrinsic accuracy must have high variance unbiased
estimators of their parameters, but the lower bound theorem was not proven until over a decade
after Fisher focused attention on I.
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20.8.3 Example (The lower bound and the Normal case) The Normal density with
variance σ2 is

f(x; µ) = (2πσ2)−1/2e− 1
2 ( x−µ

σ )2

,

so we can write the log likelihood for µ as

L(µ; x) = −1
2

[
ln(2πσ2) + (x − µ)2/σ2]

.

so
L′(µ; x) = 1

σ2 (x − µ).

You can see directly that Eµ L′(µ; X) = 1
σ2 E(X − µ) = 0, and

I = E(L′(µ; X))2 = E

(
X − µ

σ2

)2

= E(X − µ)2

(σ2)2 = 1
σ2 .

So for an unbiased estimator µ̂ of µ the lower bound reduces to

Varµ µ̂ ⩾ 1
n/σ2 = σ2

n
= Var X̄.

That is, any unbiased estimator has variance at least as large as the variance of the sufficient
statistic X̄. □

20.8.4 Example (The lower bound and the Binomial case) The probability mass func-
tion of a Bernoulli(p) random variable X is

f(k; p) =
(

n

k

)
pk(1 − p)n−k,

so the log likelihood is

L(p; k) = ln
(

n

k

)
k ln p + (n − k) ln(1 − p).

Thus the first partial is
L′(p; k) = k

p
− n − k

1 − p
= k − np

p(1 − p)
.

Again it is easy to see why Ep L
′(p; X) = E X−np

p(1−p) = 0, and that

I = Ep

(
L′(p; X)

)2 = E

(
X − np

p(1 − p)

)2

= 1
p(1 − p)

.

So for a sample of n independent Bernoulli random variables, the bound on the variance of an
unbiased estimator p̂ reduces to

Varp p̂ ⩾ 1
n/p(1 − p)

= p(1 − p)
n

= Var X̄.

Again, any unbiased estimator has variance at least as large as the variance of the sufficient
statistic X̄. □

In these examples, the bound is hardly mysterious. And it is not surprising that the sample
mean (the maximum likelihood estimator) achieves that minimum variance.
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20.9 MLE and Lower Bound

For the next result see, e.g., van der Waerden [16, §38, pp.162–165]. It shows that for exponential
families, the Maximum Likelihood Estimator achieves the Cramér–Rao lower bound.

20.9.1 Theorem Let θ be one-dimensional, and let T (x) be the MLE estimator of θ.
Assume the likelihood function factors as

L(θ; x) = f(x; θ) = b(x)fT (T (x); θ),

so that T is a sufficient statistic. If fT is of the exponential form

fT (t; θ) = eg(θ)t+b(θ),

and if T is unbiased, then its variance achieves the Cramér–Rao lower bound, so T is the
minimum variance unbiased estimator of θ.

20.9.2 Example We’ve already seen that for the Normal case,

L(µ; σ2, x1, . . . , xn) ∝ σ−ne− 1
2σ2

∑
i

x2
i · e

n
σ2 (µx̄− 1

2 µ2)

which is of the desired form for T = x̄ as an estimator of µ. In other words, µ̂MLE = x̄ is the
minimum variance unbiased estimator of µ. □

20.10 ⋆ Consistency of MLE

The classic papers on the consistency of Maximum Likelihood Estimators are by Abraham
Wald [17], who proves strong consistency, and his colleague Jacob Wolfowitz [18], who simplifies
Wald’s arguments to show convergence in probability.

20.10.1 Proposition (Maximum Likelihood Estimators are consistent) Under mild
technical conditions described in Supplement 10, Maximum Likelihood Estimators are consistent
and strongly consistent.

The intuition of why this happens is straightforward. Given a sample x1, . . . , xn, for each θ
the likelihood is

L(θ; x1, . . . , xn) =
n∏

i=1
f(xi; θ),

so the log-likelihood is

ln L(θ; x1, . . . , xn) =
n∑

i=1
ln f(xi; θ).

If we divide this by n, we get the sample average log-likelihood, which by the Law of Large
Numbers, should converge to its expected value,∑n

i=1 ln f(xi; θ)
n

plim−−−−→
n→∞

Eθ0 ln f(X; θ),

where θ0 is the “true” value of θ. Of course, we need to make enough assumptions to guarantee
that this expectation exists.

Now we make an additional identification assumption, namely that for different θ’s, we get
different densities with positive probability. Or in, other words, for each θ ̸= θ0,

Pθ0(f(X; θ) ̸= f(X; θ0)) > 0. (7)

This enables us to show that if θ0 is the parameter governing the data generating process, then
θ0 uniquely maximizes the expected log-likelihood. That is the next lemma.

KC Border v. 2020.10.21::10.29



Ma 3/103 Winter 2021
KC Border Theoretical Propositions about Estimation 20–12

20.10.2 Lemma For θ ̸= θ0,

Eθ0 ln f(X; θ) < Eθ0 ln f(X; θ0),

assuming these expectations exist.

Proof : Since f(x; θ) is a pdf for each θ, we have
∫

f(x; θ) dx = 1. Define 10 to be the indicator
function of the support of θ0. That is,

10(x) =

{
1 if f(x; θ0) > 0
0 if f(x; θ0) = 0.

Then

1 =
∫

f(x; θ) dx ⩾
∫

f(x; θ)10(x) dx

=
∫

{x:f(x;θ0)>0}

f(x; θ)
f(x; θ0)

f(x; θ0) dx = Eθ0

f(X; θ)
f(X; θ0)

. (8)

By Jensen’s Inequality, since ln is a strictly concave function, for any nondegenerate random
variable Y ,

E ln(Y ) < ln(E Y ).

So for Y = eU , where U is nondegenerate, we have

E U < ln(E eU ).

Letting U = ln f(X; θ) − ln f(X; θ0). By Assumption (7), U is nondegenerate, so

Eθ0

(
ln f(X; θ) − ln f(X; θ0)

)
< ln

(
Eθ0

f(X; θ)
f(X; θ0)

)
⩽ ln 1 = 0.

This proves the lemma.

So the idea is the sample-average likelihood converges for each θ to its expected value by the
Law of Large Numbers. By Lemma 20.10.2, the true θ0 maximizes the expected log-likelihood,
which is continuous in θ, so for every θ ̸= θ0 and every ε > 0, there is a large enough n (depending
on θ and ε) so that with probability ⩾ 1 − ε

n∑
i=1

ln f(xi; θ) <

n∑
i=1

ln f(xi; θ0).

This means θ cannot be the MLE. Now we need a few technical conditions to show that as
n → ∞ that the MLE actually does converge to something as opposed to drifting off to infinity.
I hope this gives you enough guidance to understand the roles of the assumptions in [17].
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