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Lecture 18: Introduction to Estimation

Relevant textbook passages:
Larsen–Marx [12]: Section 5.1, [5.2]

18.1 Probability versus statistics

Probability theory as a branch of pure mathematics could be considered to be a subfield of
positive operator theory, but that would be misleading. The concepts of conditioning and
independence give probability theory a separate identity. While it is, in one sense, just the study
of the consequences of a few axioms and definitions, the questions addressed are motivated by
applied concerns.

Statistics, especially “mathematical statistics,” uses the tools of probability theory to study
data from experiments (both laboratory experiments and “natural” experiments) and the infor-
mation the data reveal. Probability theory investigates the properties of a particular probability
measure, while the goal of statistics is to figure which probability measure is involved in gener-
ating the data. To a statistician, the “state of the world” is the measure, not the state in the
sense that we used it earlier. Indeed, “Statistics means never having to say you’re certain.”

18.2 The subject matter of statistics
Larsen–
Marx [12]:
Chapter 5

Description. Descriptive statistics include such things as sample mean, sample medium, sam-
ple variance, interquartile range. These provide a handle to think about your data. This is
the material that is often taught in “business statistics” courses, and is perhaps the reason my
colleague David Politzer dismisses statistics as mere “counting.”
One aspect of descriptive statistics is data “exploration” or “data mining.” The ubiquity of
machines that thirty years ago would have been called supercomputers has led to an entirely
new discipline of “data science,” much of which comes under the heading of descriptive statistics.
Many of the methods of data science have been neglected by traditional statisticians. Leo
Breiman, whose credentials as a probabilist and mathematical statistician are impeccable, de-
scribes “two cultures” [1] in statistics, and says in his abstract:

There are two cultures in the use of statistical modeling to reach conclusions from
data. One assumes that the data are generated by a given stochastic data model.
The other uses algorithmic models and treats the data mechanism as unknown. The
statistical community has been committed to the almost exclusive use of data models.
This commitment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current problems. Algorith-
mic modeling, both in theory and practice, has developed rapidly in fields outside
statistics. It can be used both on large complex data sets and as a more accurate and
informative alternative to data modeling on smaller data sets. If our goal as a field is
to use data to solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.

Visualization. “Data visualization” is a hot topic these days. The idea of using diagrams
to represent data is surprisingly recent. According to Wikipedia, in 1765 Joseph Priestley
(of oxygen fame) created the first timeline charts. These inspired the Scottish engineer and
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economist William Playfair to invent the line graph and bar chart in 1786. He also invented the
pie chart in 1806. Today these tools are familiar and taught to elementary schoolchildren, but
at the time they were controversial. According to the The Economist, Dec. 19, 2007,

Playfair was already making a leap of abstraction that few of his contemporaries
could follow. Using the horizontal and vertical axes to represent time and money was
such a novelty that he had to explain it painstakingly in accompanying text. “This
method has struck several persons as being fallacious”, he wrote, “because geometrical
measurement has not any relation to money or to time; yet here it is made to represent
both.”

Another early adopter of charts and graphs was Florence Nightingale (of nursing fame). In 1858
she introduced a type of chart now known as “Nightingale’s Rose” or “Nightingale’s Coxcomb,”
in her monograph, “Notes on matters affecting the health, efficiency and hospital administration
of the British army.” (See Figure 18.1.) In the same year she became the first female fellow of

Figure 18.1. An example of Florence Nightingale’s coxcomb chart.

the Statistical Society of London (now the Royal Statistical Society). In 1861, William Farr, the
Compiler of Abstracts in the General Registry Office (who compiled the first mortality tables),
wrote to her complaining about her use of charts and graphs,

“We do not want impressions, we want facts. You complain that your report would
be dry. The dryer the better. Statistics should be the dryest of all reading.” (The
Economist, op. cit.)

In the dark ages of data science (before 2000), John Tukey [19] invented a diagram for exploring
data, called the Box Plot or the Box and Whisker Plot. 1 Box plots are still used in almost

1 Tukey is also the co-inventor of the Fast Fourier Transform [5], which was selected as one of the Top Ten
Algorithms of the 20th Century by Computing in Science & Engineering [8], a joint publication of the American
Institute of Physics and the IEEE Computer Society.
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every presentation I have seen in neuroscience.
There are several kinds of box plots: whiskers at max and min; whiskers at quartiles ± 1.5×
interquartile range. See [14] or the Wikipedia article for descriptions of other kinds of Box Plots.
Herman Chernoff [3] introduced face diagrams as a way to visualize data and identify outliers
or subgroups. Each observation consists of a vector of measurements that are then used to
determine the characteristics of a human face. Since humans are generally adept at facial
recognition (unless they suffer from prosopagnosia), this is a potentially useful technique for
data exploration. See Figure 18.2 for an example.

Figure 18.2. Chernoff faces. They represent data on fossils from the Eocene Yellow Lime-
stone Formation in northwestern Jamaica. See Chernoff [3, § 2.1] for more details.

Advances in computer graphics have led to entirely new tools for data visualization. There is a
course, Ay 119, Methods of Computational Science that deals with data visualization and
management. Caltech hosted a conference on data visualization in 2013 (the program is here)
and may do so again.
There are number of excellent books on ideas for presenting data including Tufte [16, 17, 18]
and Cook [4]. The Caltech course BEM/Ec 150: Business Analytics devotes a session to
data visualization and the cognitive neuroscience underlying effective presentation.
It is also possible to use sound to “audibilize” data. My colleague Charlie Plott has turned data
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on double oral auctions into sounds, and you can actually hear price “bubbles” form and then
collapse. Here is a link to a QuickTime video. The horizontal axis denotes time, and the vertical
axis denotes price. Buyers and Sellers are bidding on securities with a random payout. The
bidders know the distribution. The sounds represent bids, asks, and transactions. The pitch
represents the price level. There are two sloping lines. The lower line represents the expected
value, and the upper line represents the maximum possible value. Once transactions take place
above the upper line, buyers are paying more than the security could possibly be worth. That is,
there is a price bubble. You can hear it crash. The crash is foreshadowed by some low rumbling,
caused by sellers hoping to unload their overvalued inventory.

Estimation. Statisticians usually assume there is a data generating process (dgp) that
stochastically generates the data, and typically is governed by a probability distribution governed
by a small number of parameters. The goal is to identify or estimate the parameters from
the information in the data.
Sometimes the number of parameters may not be small, and nonparametric methods may
be used.
A nice discussion of estimation and its role in data analysis can be found in Brad Efron’s [9]
1981 Wald Memorial Lecture.

Hypothesis testing. Once the parameters of the dgp have been estimated, we might ask how
much confidence should we put in these estimates. This is the object of hypothesis testing,
which may address such questions as, How confident are we that the parameter really is nonzero?
Hypothesis testing also addresses the choice of model for the data generating process. Breiman [1]
complains that most of the dgps considered by traditional statistics are too simplistic, and that
it is arrogant of statisticians to think that they can sit in their armchairs and imagine the form
of the dgp that generates real data sets.

Prediction. Once we have the parameters of the dgp, we can use it to make predictions about
future behavior of the dgp. We also care about how reliable these predictions can be expected
to be.

Classification Breiman et al. [2] start their book on regression trees by describing the following
classification problem. Given a heart attack patient admitted to the UC San Diego Medical
Center, classify them as those will not survive thirty days, and those who will. The best
classifier in this case turned out be remarkably simple, and requires answers to three questions.
Here is the classification tree.

y n

y n

y n

24-hr systolic BP > 91?

Age > 62.5?

Sinus tachycardia?

A classic use of classification techniques has been the classification of fossils and bones, according
to say species, or gender.
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18.3 Statistics and Estimation

We start with the idea that we have data generated by some dgp, which has unknown parameters.
A statistic is function of the observable data, and not of the unknown parameters.

Examples:

• The number T of Tails observed in N coin tosses. The pair (N, T ) is a statistic, since it
something we can observe, measure, and know. The probability that a Tails will occurs is not
observable, so is not a statistic.

• The list of how many World Series lasted 4, 5, 6, and 7 games is a statistic. The probability
that a given team wins is not observable.

• The number of observed arrivals in a time of a given length is a statistic, the arrival rate λ
in a Poisson process is not observable.

18.4 The Likelihood Function
Larsen–
Marx [12]:
§ 5.2A mathematical model of a data generating process has three components: X, the set

of possible observations or experimental outcomes, Θ the set of possible parameter values
indexing probability measures on X, and a function f : X × Θ → R+.

The value f(x; θ) is either the probability mass function or the probability density that x
is the observation when the parameter θ is generating the data.

18.4.1 Example

• If the experiment is to toss a coin independently N times, x might be the number of Tails.
If θ is the probability of a Tail, then

f(x; θ) =
(

N

x

)
θx(1 − θ)N−x.

• If the experiment is to select a real number from a Normal distribution with mean θ and
variance 1, then

f(x; θ) = 1√
2π

e−(x−θ)2/2.

□

These are just familiar probability mass functions and densities.
An estimator is a statistic that takes on values in the set of parameter values. That is,

if X is the set of possible values of the observed outcomes of a random experiment, that is,
the sample space, 2 and Θ is the set of possible parameter values for the dgp modeling the I need to find

better terminology.experiment, then

an estimator is a function
T : X → Θ.

2 There is an unfortunate ambiguity in the terminology here. A random variable X has been defined as
a function on an underlying sample space, and for statistical purposes the sample space of an experiment is
actually the set of values of the random variable X.
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An estimate is the value of an estimator at a particular datum.
To be a little more concrete, suppose we want to estimate the value of the mean of a distri-

bution, when we know that it is Normal(µ, 1) where µ = 0 or µ = 1. If x is the outcome of the
experiment, how do we decide whether

T (x) = 0 or T (x) = 1?

Consider Figure 18.3, which shows the probability densities of the two normals. For x = −1.5

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

������ ����������� ��������� (μ = ���� σ� = �)

Figure 18.3. A two point parameter set.

which µ would you choose? For x = 3? Intuitively, it is more believable or more likely that
when x = −1.5 that we should estimate µ to be zero, and when x = 3 we should estimate µ to
be one. R. A. Fisher formalized this intuition by introducing the likelihood function.

The likelihood function for a dgp is defined by

L(θ; x) = f(x; θ).

The method of Maximum Likelihood Estimation gives a general method for estimat-
ing θ, namely, given a datum x, choose as the estimate

θ̂MLE to maximize L(θ; x).

What? Why?
When we have used the term “more likely” in the past in this course, we usually meant “more�

probable.” Is that what we mean when discussing likelihood? Most statisticians would say no,
we are not talking about the probability that the θ has one value or another. Most would say
that θ is fixed but unknown. Then what interpretation are we to give to “likelihood?” R. A.
Fisher developed his ideas about statistics based on the notion of likelihood, which he insisted
was not probability. This led to a feud with Jerzy Neyman and Egon Pearson over the proper
interpretation of a number of statistical tests and methods. If it seems odd to you that in a
mathematics course there would be such foundational disputes, you are right. It is odd. But
statistics is not solely mathematics, it has elements of philosophy science embedded in it.

To make things more controversial, there is a camp of statisticians, usually referred to as�
Bayesians, who are quite willing to talk about θ as if it were random. That is, they will talk about
the probability distribution of θ. But typically, they do not believe that the value of θ is the
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outcome of a random experiment. Instead they take the position that the only way to sensible
talk about unknown values is probabilistically. They view the probabilities as representing
degrees of belief about the unknown value of θ. But the calculations they do are exactly like
those that you have done in the various two-stage urn problems you have seen, where an urn is
selected at random and ball is randomly drawn from the urn. It’s just that in the real world,
we never find out from which urn the ball has been drawn.

To make matters more obscure, your textbook, Larsen–Marx [12, Comment, p. 284], tells
you not to think of L as a function of x (even though it is).

One reason to justify thinking about the likelihood function this way is that it gives a general
method for constructing estimators that may be a good method. That is, maximum likelihood
estimators often have desirable properties. I’ll get more into the properties later on, but
frequently they include the properties of consistency, unbiasedness, efficiency, and asymptotic
normality.

But it is a bit too early to get into such abstract ideas without some grounding in a real (but
very simple) example.

18.5 An Example of Maximum Likelihood Estimation

18.5.1 Example (Binomial) Suppose we observe k successes in n independent trials. What
is the maximum likelihood estimator of p? The likelihood function is just

P (k successes in n trials) = L(p; n, k) =
(

n

k

)
pk(1 − p)n−k.

Note that the leading term
(

n
k

)
is positive and independent of p, and so it has no relevance to

MLE, and it is often convenient to omit it, and just write

L(p; k) ∝ pk(1 − p)n−k.

where the symbol ∝ is read “is proportional to.”
If k = 0, this reduces to

(
n
k

)
(1 − p)n, which is clearly maximized when p = 0. When k = n,

it reduces to
(

n
k

)
pn, which is maximized at p = 1. When 0 < k < n, the first order condition

for a maximum of this is that d/dp = 0, or(
n

k

) (
kpk−1(1 − p)n−k − (n − k)pk(1 − p)n−k−1)

= 0.

For 0 < p < 1, we may divide both sides by
(

n
k

)
pk−1(1 − p)n−k−1 to get

k(1 − p) − (n − k)p = 0 =⇒ k − pk − np − kp = 0 =⇒ k − np = 0 =⇒ p = k

n
.

Thus the maximum likelihood estimator of p when the data indicate k success in n trials is
simply

p̂MLE = k

n
.

Now one of the tricks that statisticians employ is that they will maximize the logarithm of
the likelihood function rather than the likelihood function itself. There are a few reasons for
this. The first is that theoretically it doesn’t make any difference. For if x∗ maximizes f(x),
then it also maximizes log

(
f(x)

)
. Also, likelihoods are often very small positive numbers with

lots of leading zeroes. Taking logs puts them into more manageable numerical range. Finally,
likelihood functions often involve products, and taking logs can make expressions simpler.
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For instance, in our Binomial example,

ln
(
L(p)

)
= log

(
n

k

)
+ k log p + (n − k) log(1 − p).

Differentiating with respect to p gives

d

dp
log

(
L(p)

)
= k

p
− n − k

1 − p

and setting this derivative to zero gives

k

p
− n − k

1 − p
= 0 =⇒ k(1 − p) − (n − k)p = 0 =⇒ p̂MLE = k

n
.

□

18.6 Application to the Coin Tossing Experiment

Here are the data from 2020 and all previous years combined:

Number Percent
Year Sample size Heads Tails Heads Tails
2020 25,600 12,982 12,618 50.711% 49.289%
All 212,480 106,432 106,048 50.09% 49.91%

So the likelihood function for p given the datum 106,048 Tails in 212,480 tosses is

L(p) =
(

212480
106048

)
p106048(1 − p)106432.

Figure 18.4 shows the graph of the likelihood function for x = Probability of Tails for the
pooled sample, as produced by the R command

curve(dbinom(106048,212480, x))

Actually, to save it to a .pdf file, you want to do something like this:

pdf("CoinTossTailsLikelihoodAll2020.pdf")
curve(dbinom(106048,212480, x))
dev.off()

That’s not very informative, so let’s replot it. See Figure 18.5.

pdf("CoinTossTailsLogLikelihoodAll2020.pdf")
curve( dbinom(106048,212480, x, log = TRUE), xlim = c(.498,.502),
ylab = "Log likelihood", xlab = "p" )
dev.off()

Notice that I made several changes to the R code. The first was that I added log = TRUE to
the dbinom function. This option plots the logarithm of the function instead of it actual value.
The reason for this that the likelihood function varies tremendously, so it is often easier to deal
with the log-likelihood, both numerically and visually. Just remember that since the likelihood
is ⩽ 1, its logarithm is negative.

I also changed the axes labels (xlab, ylab), and the range (xlim) over which to plot.
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Figure 18.4. The coin tossing likelihood.
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Figure 18.5. The coin tossing log likelihood, zoomed in.
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It appears from the pictures that the maximum occurs a near 0.5, but where? We already
know that the maximum likelihood estimate is 106048/212480 ≈ 49.91%, but for many estima-
tion problems, we need to find the maximum using numerical methods. Fortunately R, Mathe-
matica, Matlab, and similar programs all have built-in commands to find maxima numerically.
Let’s try one out.

In R, the optimize command will minimize a function. To get it to maximize, use the
maximize = TRUE option. But first you have to define the function that you want to maximize:

L = function (x) dbinom(106048,212480, x)
optimize(L, interval = 0:1, maximum = TRUE)

which produces the output

$maximum
[1] 0.9999339

$objective
[1] 0

This tells you that R computed the maximizer to be p = 0.9999339 and that the resulting value
of the likelihood is 0. This as you know, is not at all correct.

What about Mathematica? If we run the equivalent Update this
annually.

l[p_] := PDF[BinomialDistribution[212480, p], 106048]
NMaximize[{l[p], 0 <= p <= 1}, p]

in Mathematica 12.0, it produces

{0., {p -> 0.641915}}

That is, Mathematica tells us the MLE estimate is p = 0.64. This is better, but still ridicu-
lously incorrect.

Welcome to the world of numerical computation.

You can’t always take the word of a computer as the truth.

Lets’ try to figure out the problem. In the case of R, it may help to know what the function
optimize really does. The help says,

The method used is a combination of golden section search and successive parabolic
interpolation, and was designed for use with continuous functions.

I personally did not find that very useful, but it had the word “search” in the description.
That suggests the algorithm is searching around for a maximum. But look at Figure 18.4. The
likelihood function is pretty flat almost everywhere except very near 0.50. Perhaps the algorithm
is getting “stuck” in a flat spot. Let’s try searching where we think the answer might be.

[The economist streetlight joke.]

optimize(L, interval = c(0.4,0.6), maximum = TRUE)

produces the output

KC Border v. 2020.10.21::10.29
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$maximum
[1] 0.499102

$objective
[1] 0.001730914

which looks pretty good.
Let’s check out Mathematica.

NMaximize[{l[p], 0.4 <= p <= 0.6}, p]

produces

{0., {p -> 0.528383}}

which is still abysmal.
Another tactic worth trying is what I mentioned earlier—take the log-likelihood function:

L = function (x) dbinom(106048, 212480, x, log = TRUE)
optimize(L, interval = 0:1, maximum = TRUE)

which produces the output

$maximum
[1] 0.4991049

$objective
[1] -6.359123

This is a tiny bit different, but it hardly matters. Note here that the value of the objective
function is negative. That’s because the objective is the logarithm of the likelihood, and the
likelihood here is less than one.

Naively taking the logarithm in Mathematica causes it to blow up:

NMaximize[{Log[l[p]], 0.4 <= p <= 0.6}, p]

produces the following error:

NMaximize::nnum: The function value Indeterminate is not a number at {p} = {0.409146}.

This is followed by a very long expression representing the number Mathematica is trying to
evaluate. But if we exercise just a little judgment and instead use

ll[p_] := 106048 Log[p] + (212480 - 106048) Log[1 - p]
NMaximize[{ll[p], 0 <= p <= 1}, p]

we get

{-147280., {p -> 0.499096}}

which is correct to six decimal places.
If all this seems ad hoc and unscientific, I apologize, but numerical methods are the sub-

ject of an entire course here, ACM 106 abc, Introductory Methods of Computational
Mathematics.
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The moral of this overkilled numerical analysis of a trivial problem is that you cannot blindly
accept what the computer tells you. You have to look at the output and see if it makes
sense.

With any numeric results from reputable software, you should follow the Russian proverb,
adopted by Ronald Reagan, a

Доверяй, но проверяй
[Trust, but verify].

aSee, e.g., http://en.wikipedia.org/wiki/Trust,_but_verify.

18.7 The likelihood function for independent experiments

Often a random experiment is actually a sequence of n independent random experiments wit
the same likelihood, or a set of n independent observations of identically distributed random
variables X1, . . . , Xn. If R denotes the range of each Xi, then the set S of experimental outcomes
is Rn, or better yet

∞
∪

n=1
Rn.

Let X1, . . . , Xn be independent and identically distributed with common pmf or pdf

f(x; θ).

Given observations X1 = x1, . . . , Xn = xn, the (joint) likelihood function is

L(θ; x1, . . . , xn) =
n∏

i=1
f(xi; θ).

Taking logarithms gives

ln L(θ; x1, . . . , xn) =
n∑

i=1
ln f(xi; θ).

18.7.1 Example (Independent and identically distributed normals) Let X1, . . . , Xn Larsen–
Marx [12]:
pp. 290–291

be independent and identically distributed N(µ, σ2) random variables. We don’t know µ and
σ2, but given the sample x1, . . . , xn, the likelihood function is

L(µ, σ2; x1, . . . , xn) =
n∏

i=1

1√
2πσ

e− 1
2 ( xi−µ

σ )2

We may ignore constants and write

L(µ, σ2; x1, . . . , xn) ∝ σ−n
n∏

i=1
e− 1

2 ( xi−µ

σ )2

or, by taking logs we would get (up to a constant)

ln L(µ, σ2; x1, . . . , xn) ∝ −n

2
ln(σ2) − 1

2
1
σ2

n∑
i=1

(xi − µ)2.

KC Border v. 2020.10.21::10.29
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To find the maximizer of the log-likelihood we set both partials ∂/∂µ and ∂/∂σ2 to zero.
Now

∂

∂µ
ln L(µ̂, σ̂2) = 1

σ̂2

n∑
i=1

(xi − µ̂) (1)

and (treating σ2 as a single symbol),

∂

∂σ2 ln L(µ̂, σ̂2) = −n

2
1
σ̂2

+ 1
2

(
1
σ̂2

)2 n∑
i=1

(xi − µ̂)2 (2)

Setting (1) to zero implies

µ̂MLE =
∑n

i=1 xi

n
, (3)

That is, the MLE of µ is the sample average.
Note that

E µ̂MLE =
∑n

i=1 Xi

n
= µ.

That is, if the dgp is governed by parameters µ and σ2, then the expectation of the µ̂MLE is µ.
In the case the MLE estimator of µ for normal random variable is an unbiased estimator.

Multiplying (2) by 2(σ̂2)2 and setting it to zero gives:

−nσ̂2 +
n∑

i=1
(xi − µ̂)2 = 0,

or letting

x̄ =
∑n

i=1 xi

n
(= µ̂),

we get

−nσ̂2 +
n∑

i=1
(xi − x̄)2 = 0,

so

σ̂2
MLE =

∑n
i=1(xi − x̄)2

n
(4)

Need to introduce
these concepts
earlier or not refer
to them,

While µ̂MLE is unbiased, σ̂2
MLE is biased. To see this, let’s compute its expectation. We start

with the expectation:

E σ̂2
MLE = E

∑n
i=1(Xi − X̄)2

n
.

So let’s start with E(Xi − X̄)2. First, let

Z =
∑
j ̸=i

Xj .

Then Z has mean (n − 1)µ and variance (n − 1)σ2 as the sum of n − 1 independent N(µ, σ2)
random variables. Moreover

E Z2 = (n − 1)2µ2 + (n − 1)σ2.
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since for any rv Var Y = E(Y 2) − (E Y )2. Also note that Xi and Z are independent, so

E XiZ = (E Xi)(E Z) = (n − 1)µ2.

Finally observe that
X̄ = Xi + Z

n
.

Thus

E(Xi − X̄)2 = E

(
Xi − Xi + Z

n

)2

= E

(
n − 1

n
Xi − 1

n
Z

)2

= 1
n2 E

(
(n − 1)2X2

i − 2(n − 1)XiZ + Z2)
= 1

n2

(
(n − 1)2(µ2 + σ2) − 2(n − 1)2µ2 + (n − 1)2µ2 + (n − 1)σ2)

= 1
n2

([
(n − 1)2 − 2(n − 1)2 + (n − 1)2]

µ2 +
[
(n − 1)2 + (n − 1)

]
σ2)

= 1
n2 n(n − 1)σ2

= n − 1
n

σ2.

It follows from (4) that
E σ̂2

MLE = n − 1
n

σ2.

That is, on average, σ2
MLE underestimates the variance. The reason is this. If we knew µ, we

want to use as our estimate ∑n
i=1(xi − µ)2

n
,

but we don’t know µ, so we use x̄ instead. But remember x̄ is the value of µ that minimizes the
above sum of squares, so it should be smaller on average than using the true µ.

Thus σ̂2
MLE is biased, but the bias tends to zero as n → ∞.

An unbiased estimate of σ2 is given by

S2 =
∑n

i=1(xi − x̄)2

n − 1
= n

n − 1
σ̂2

MLE.

Now go back and realize that the computation of the expectations depends only on the fact
that the Xi are independent and identically distributed with mean µ and variance σ2, not that
they are normal. □

18.8 The World Series, Once Again

I am not a fanatical baseball fan(atic) (I never even played Little League, only intramural
softball), but Frederick Mosteller’s analysis of the World Series [15] is a wonderful introduction
to parameter estimation. So much so that your homework assignment this week will be to redo
his analysis with another 60 + years of data.

Mosteller uses three methods for estimating the average probability that the better team wins
any given game in the World Series. They are the method of moments, maximum likelihood,
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and minimum chi-square estimation. Naturally, in order to apply any of these methods, one
must make certain assumptions about the nature of the process that generates the data, and
these assumptions may or may not be true. But that is true of any scientific endeavor. We are
always making assumptions about what may be neglected, and what matters.

Mosteller [15, p. 370] puts it this way (emphasis mine):

We have emphasized the binomial aspects of the model. The twin assumptions
needed by a binomial model are that throughout a World Series a given team has a
fixed chance to win each game, and that the chance is not influenced by the outcome
of other games. It seems worthwhile to examine these assumptions a little more
carefully, because any fan can readily think of good reasons why they might be
invalid. Of course, strictly speaking, all such mathematical assumptions are invalid
when we deal with data from the real world. The question of interest is the degree of
invalidity and its consequences.

This is one of my favorite quotations about applied science.
The first “World Series” was played in 1903. Since then there has been a World Series every

year except 1904 (when the NL champ refused to play the AL champ) and 1994 (the strike year).
That makes 115 Series. In 1903, 1919, 1920, and 1921 the Series had a best-of-9 games format,
and in 1907, 1912, and 1922 there was a tie game (?!) in each Series. We will just ignore tie
games, since they are effectively not complete games. That gives us 111 (after the 2019 Series)
best-of-7 Series. (The 1919 “Black Sox” scandal was a best-of-9 Series.)

So how do we get a handle on p, the average probability that the better team wins a game?
The answer lies in the length of the series, or equivalently, the number of games that the

series winner loses. If the better team always won, then all best-of-7 game series would last only
four games. As the probability gets closer to 1/2, one would expect more 7 game Series. The
likelihood function depends on p and on Nk where Nk is the number of Series that last 4 + k
games, k = 0, . . . , 3. It follows from your earlier homework that

L(p; N0, N1, N2, N3) = N !
N0!N1!N2!N3!

[ 3∏
k=0

(
3 + k

k

)Nk
]

︸ ︷︷ ︸
independent of p

3∏
k=0

[
p4(1 − p)k + pk(1 − p)4]Nk

.

I don’t know how to solve for the maximizer analytically, so numerical methods must be used.

18.9 Confidence intervals for Normal means if σ is known

So far we have looked at point estimates, and barely made a dent in the subject. (Erich L.
Lehmann’s classic Theory of Point Estimation [13] runs to about 500 pages.) But there is more
than just point estimation.

Interval estimates are closely related to hypothesis testing (coming up soon) and convey
more information than point estimates.

Go back to the Normal estimation case. The maximum likelihood estimator µ̂MLE of the
mean µ is just the sample mean x̄ =

∑
i xi/n, but how “good” is that estimate? If X1, . . . , Xn

are independent and identically distributed N(µ, σ2), then

µ̂MLE = X1 + · · · + Xn

n
∼ N(µ, σ2/n),

so by standardizing µ̂ we have
µ̂ − µ

σ/
√

n
∼ N(0, 1).
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Let Z be a standard normal random variable and define zα by

P (Z > zα) = α,

It is a fact that
z0.025 = 1.96.

Therefore
P

(
− 1.96 ⩽ µ̂ − µ

σ/
√

n
⩽ 1.96

)
= 0.95

But this event is also equal to the event(
µ̂ − 1.96σ√

n
⩽ µ ⩽ µ̂ + 1.96σ√

n

)
.

So another way to interpret this is

P
(
µ ∈ [µ̂ − (1.96σ/

√
n), µ̂ + (1.96σ/

√
n)]

)
= 95%

even though µ is not random. The random interval

I = [µ̂ − (1.96σ/
√

n), µ̂ + (1.96σ/
√

n)]

is called a 95% confidence interval for µ. More generally we have the following

To get a 1 − α confidence interval for µ when σ is known, set

I =
[
µ̂ −

zα/2σ
√

n
, µ̂ +

zα/2σ
√

n

]
. (5)

Then
P (µ ∈ I) = 1 − α.

18.9.1 Interpreting confidence intervals

Remember that µ is not random, rather the interval I(X) = [µ̂ − 1.96σ/
√

n, µ̂ + 1.96σ/
√

n] is
random, since it is based on the random variable µ̂. But once I calculate I, µ either belongs to
I or it doesn’t, so what am I to make of the 95% probability? I think the way to think about
it is this:

No matter what the values of µ and σ are, following the procedure “draw a sample X from
the distribution N(µ, σ2), and use (5) to calculate the interval I(X),” the interval I(X) will
then have a 95% probability of containing µ.

This is not the same as saying, I used (5) to calculate the interval I, so no matter what the
values of µ and σ are, the interval I has a 95% probability of containing µ.

It is the procedure, not the interval per se, that gives us the confidence.

Figure 18.6 shows the result of using this procedure 100 times to construct a symmetric
95% confidence interval for µ, based on (pseudo-)random samples of size 5 drawn from a standard
normal distribution. Note that in this instance, five of the 100 intervals missed the true mean 0.
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Figure 18.6. Here are one hundred 95% confidence intervals for the mean from a Monte
Carlo simulation of a sample of size 5 independent standard normals. The intervals that do
not include the true mean 0 are shown in red.
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Table 18.1. WTF?

I am putting this here, because I don’t where it belongs. The activity of estimation has
given rise to a fair amount of jargon. The definitions I give here agree with The Cambridge
Dictionary of Statistics [10].

When T is an estimator of the parameter θ (and so a random variable),

• the sampling error is the difference between T and θ.

• the sampling distribution is the distribution of T .

• the standard error of T is the standard deviation of T , or the standard deviation of
the sampling distribution.

• Error bars are graphical devices used to plot estimates and to give some idea of their
variability. There is not a universal practice on how long error bars, should be—it is field-,
and perhaps journal-specific. But usually they are the length of the standard error (one
standard deviation of the estimator) or a 95% confidence interval for the estimator.

18.10 ⋆ Another fallacy in the interpretation of confidence intervals

According to Cumming, Williams, and Fidler [7], the following statement is a common misun-
derstanding of confidence intervals, at least among psychological researchers.

Fallacy: “A 95% confidence interval I is constructed for the mean µ of a normal dis-
tribution. Thus there is a 95% probability that the estimate µ̂ from an independent
replication will fall into the interval I.”

I don’t know how common this fallacy is in the general research population, but here is an
example. Gilbert, King, Pettigrew, and Wilson [11] writing in the prestigious journal Science
argue: 3

If all 100 of the original studies examined by OSC had reported true effects, then
sampling error alone should cause 5% of the replication studies to “fail” by producing
results that fall outside the 95% confidence interval of the original study [...]

But here is why it is a fallacy. Let’s take a really simple case so we can see what is goin on.
Imagine that we are drawing a sample X of size one from a standard Normal(0, 1) distribution.
The MLE estimate of the mean is then just the sample value x. The 95% confidence interval is
then [x − 1.09, x + 1.96]. If we take an independent second sample, Y , the question is, what is

P (Y ∈ [x − 1.96, x + 1.96])?

The answer clearly depends on x. If by some fortunate stroke of luck x = 0, then 1.96 was
chosen so that for a standard normal random variable Y , we have P (Y ∈ [−1.96, 1.96]) = 0.95.
But if x is not zero, then the probability will be smaller than 0.95.

So what we want to know is

P ( |Y − X| ⩽ 1.96), where X and Y are independent standard normals.
3 Just so you don’t think I only pick on psychologists, while Gilbert and Wilson are social psychologists, King

and Pettigrew are political scientists.
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This is given by the double integral of the joint density f(x, y) over the strip of height (and
depth) 1.96 around the diagonal in (x, y) space:∫ ∞

−∞

∫ x+1.96

x−1.96

1
2π

e− 1
2 (x2+y2) dy dx = 0.834.

(We cannot evaluate this integral in closed form, but it is tractable numerically. The numerical
value above was computed by Mathematica 12.) Cumming and Maillardet [6] refer to this as
the capture probability of the 95% confidence interval.

Now observe that when σ is known, if the experiment is to take a sample of size n, construct
a 95% confidence interval based on the sample, then take another independent sample of size
n, then the probability of capture is unchanged: Let X be the mean of a sample of size n. The
95% confidence interval is X ± 1.96σ/

√
n. If Y is another independent sample mean (of size n),

then
P

(
|Y − X| ⩽ 1.96σ/

√
n

)
= P

( ∣∣∣∣√
n

σ
Y −

√
n

σ
X

∣∣∣∣ ⩽ 1.96
)

,

but (
√

n/σ)Y and (
√

n/σ)X are independent standard normals, and we have just computed this
probability as 83.4%.

If σ is unknown, then we have to estimate it, and our estimate will have a χ2 distribution
(and will be independent of our estimate of the mean, (see Corollary 11.5.2 below). This means
(see Proposition 18.12.3 below) the length of the confidence interval follows a χ2 distribution, so
we need to add a third dimension to the integral above. This will either make a good exercise,
or I will add the result to these notes at a later time.

18.11 Considerations in constructing confidence intervals

There are two more points worth noting.

• Suppose we know µ, and we want to choose an interval I so that the standard normal
random variable Z = µ̂−µ

σ/
√

n
lies in I with probability 1 − α. Any interval [a, b] satisfying∫ b

a
1

2π e−z2/2 dz = 1 − α has this property.

Because of the shape (symmetric and unimodal) of the normal distribution, the symmetric
interval [− zα/2σ√

n
,

zα/2σ√
n

] is the shortest such interval.

• Because of the properties of the standard normal distribution, the length of the interval[
µ̂ − zα/2σ√

n
, µ̂ + zα/2σ√

n

]
does not depend on µ.

• For distributions that are not symmetric, you may want to construct asymmetric confidence
intervals. I can think of at least two principles you could use.

1. Choose the shortest interval [a, b] containing your point MLE θ̂ that has Pθ̂

(
[a, b]

)
= 1 − α.

This would be the interval where the likelihood ( = density) is highest. Since θ̂ maximizes the
likelihood, we know it will be in the interval.
Oops. How do we know that an interval is the shortest set? Maybe we would be better off
taking two short intervals instead one long one. For unimodal (single-peaked) densities, this
won’t happen.
2. The other principle you might consider is to choose an interval [a, b] so that P (θ < a) =
P (θ > b) = α/2, bearing in mind the above interpretation of the probability.

In the normal case, these two principles are not in conflict and procedure for constructing the
interval described above is consistent with both.
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18.12 Confidence intervals for Normal means if σ is not known

The confidence interval given by (5) depends on the standard deviation σ. You might ask, when
might I know σ, but not know µ? Maybe in a case like this: I can imagine the variance in
a measurement of weight using a balance beam scale depends on the friction in the balance
bearing. I can also imagine that the mean measurement of a sample’s mass depends on the
sample’s actual mass. I might have a lot of experience with this particular of scale, so that I
know the variance σ2, but the mean of the measurement depends on which sample I am weighing.
To get a good estimate of the weight, I might make several measurements, 4 and I could then use
this procedure to generate a confidence interval. (I just made this up, and it sounds plausible,
but do any of you chemists or engineers have any real information on such scales?)

So what do we do if we don’t know σ? We can use an MLE estimate σ̂ of σ to calculate a
confidence interval. The catch is that µ̂−µ

σ̂/
√

n
is not a Standard Normal random variable.

18.12.1 Theorem [12, Theorem 7.3.5, p. 393] For a sample X1, . . . , Xn of independent
and identically distributed Normal N(µ, σ2) random variables, the statistic

Tn−1 = X̄ − µ

S/
√

n

has a Student t-distribution with n − 1 degrees of freedom.

We will discuss the t-distribution in more detail later. For now, we discuss the mechanics of
constructing confidence intervals based on the t-distribution..

18.12.2 Definition (t-distribution cutoffs) Larsen–Marx [12, p. 395] define tα,n by

P (Tn ⩾ tα,n) = α,

where Tn has the Student t-distribution with n degrees of freedom.

Then
P

(
− tα/2,n−1 ⩽ X̄ − µ

S/
√

n
⩽ tα/2,n−1

)
= 1 − α

or we can turn the inequality “inside out” to get the equivalent statement

P
(
X̄ − tα/2,n−1S/

√
n ⩽ µ ⩽ X̄ + tα/2,n−1S/

√
n

)
= 1 − α.

In other words,

18.12.3 Proposition Given the sample values x1, . . . , xn from n independent and identi-
cally distributed draws from a normal distribution, a 1 − α confidence interval for µ is the
interval (

x̄ −
s tα/2,n−1√

n
, x̄ +

s tα/2,n−1√
n

)
.

Figure 18.7 shows the result of using this procedure 100 times to construct a symmetric
95% confidence interval for µ, based on (pseudo-)random samples of size 5 drawn from a standard
normal distribution. Note that in this instance, 7 of the 100 intervals missed the true mean 0.

4 My grandfather was a carpenter, so I am quite familiar with the old saw, “Measure twice, cut once.” (Sorry,
I couldn’t help myself.)
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Compare this figure to Figure 18.6, where the variance was known. In that case, all the
confidence intervals had the same width. When the variance is estimated from the sample, this
is no longer the case. We shall show later that the sample mean and the sample variance are
stochastically independent, so a short confidence interval is not necessarily a “better” confidence
interval.
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18.13 Digression: The quantiles zα

We already covered
this in Section 10.7.Statisticians have adopted the following special notation. Let Z be a Standard Normal random

variable, with cumulative distribution function denoted Φ.

18.13.1 Definition For 0 < α < 1, define zα by Larsen–
Marx [12]:
p. 307P (Z > zα) = α,

see Figure 18.8, or equivalently

P (Z ⩽ zα) = 1 − α.

Then

zα = Φ−1(1 − α)

This is something you can look up with R or Mathematica’s built-in quantile functions.
(Remember the quantile function is Φ−1.) By symmetry,

P (Z < −zα) = α and P ( |Z| > zα) = 2α

so

P ( − zα ⩽ Z ⩽ zα) = 1 − 2α.

The last inequality is often expressed as

P
(

− zα/2 ⩽ Z ⩽ zα/2
)

= 1 − α.

Here are some commonly used values of α and the corresponding zα to two decimal places.

α zα 1 − 2α
0.1 1.28 0.80
0.05 1.64 0.90
0.025 1.96 0.95
0.01 2.33 0.98
0.005 2.58 0.99

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

This shaded area is the probability of the event (|Z| > 1.96), which is equal to 0.05.
Values outside the interval (−1.96, 1.96) are often regarded as unlikely to have occurred

“by chance.”

KC Border v. 2020.10.21::10.29



Ma 3/103 Winter 2021
KC Border Introduction to Estimation 18–24

-3 -2 -1 0 1 2

Figure 18.7. Here are one hundred Monte Carlo simulations of a 95% confidence interval
for the mean of a standard normal, based on a sample of size five for each simulation. The
confidence interval depends on the estimated standard deviation, so not all intervals are the
same length. The intervals that do not include 0 are shown in red. There are seven of them.

Notice that the third red interval from the top is relatively short, so the estimate appears
to be relatively precise. Nevertheless, it is wrong in the sense that the true parameter is
not in the confidence interval. This is a case of what is technically known as “bad luck.”
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zα

shaded region
has area α

Figure 18.8. Given α, zα is chosen so that the shaded region has area = α.

18.13.1 t-quantiles versus z-quantiles

The values zα, which are used to construct a (1 − α%) confidence intervals based on knowing
the standard deviation σ, can be very misleading for small sample sizes, when σ is estimated
by the unbiased version of the MLE estimate. The following Table 18.2 gives zα and tα,n for
various values of α and n. This shows how the critical value of a test changes with the number
of degrees of freedom.

degrees of freedom n
1 2 4 8 16 32 64 128 256 512

α tα,n zα

0.10 3.08 1.89 1.53 1.4 1.34 1.31 1.29 1.29 1.28 1.28 1.28
0.05 6.31 2.92 2.13 1.86 1.75 1.69 1.67 1.66 1.65 1.65 1.64
0.025 12.71 4.3 2.78 2.31 2.12 2.04 2. 1.98 1.97 1.96 1.96
0.01 31.82 6.96 3.75 2.9 2.58 2.45 2.39 2.36 2.34 2.33 2.33
0.005 63.66 9.92 4.6 3.36 2.92 2.74 2.65 2.61 2.6 2.59 2.58

Table 18.2. tα,n compared to zα for various degrees of freedom n and significance levels α.

Section 22.20 describes the commands in R and Mathematica that can be used to compute
these quantiles.
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