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Lecture 16: Introduction to Markov Chains

This is a very brief introduction to Markov chains. To do justice to the topic takes a full quarter or
more. But it is a useful and important subject, so I feel that you should be with familiar the main ideas,
even if I will not prove very many of the results.

This material is not covered in the textbooks. These notes are still in development. Most of the
material here is covered in Chapter 1 of Norris [14].

16.1 ⋆ Stochastic Processes

A stochastic process is an indexed family

{Xt : t ∈ T}

of random variables (or random vectors) on a probability space (Ω,F,P) that take values in a
set S. The set S is called the state space of the process. Note that for stochastic processes, I
denote the probability measure by P instead of just plain P . This is traditional, in part because
we are soon going to use P to denote a transition matrix.

The set T is called the index set of the stochastic process and is interpreted as time, so T
is a typically an infinite subset of the real line. Thus the Xt’s represent a procession of random
variables, hence the term process. 1 The index set T might be the natural numbers or integers, a
discrete-time process; or an interval of the real line, a continuous-time process. Feller [9,
Chapter 3] uses the term epoch to refer to point in T .

Each random variable Xt, t ∈ T is a function on the probability space Ω. The value Xt(ω)
depends on both ω and t. Thus another way to view a stochastic process is as a random
function of T : each ω ∈ Ω defines a function t 7→ Xt(ω) from T into S. In fact, it is not
uncommon to write X(t) instead of Xt, but I personally found this usage confusing.

The Poisson arrival process is a continuous-time process that counts arrival, resulting in
discrete jumps in the state space S = {0, 1, 2, . . . }, at exponentially distributed intervals.

Other important examples of stochastic processes are the random walk and its continuous-
time counterpart, Brownian motion.

16.2 ⋆ Markov chains and transition matrices

A Markov chain is a discrete-time process X0, X1, . . . with index set T = {0, 1, 2, . . . }, with
a countable state space S. For many purposes we simply label the states 1, 2, 3, . . . , and the
value of Xt is interpreted as the label of the state. On the other hand, sometimes the state
may represent a count, a coordinate, or an amount of money, and thus have intrinsic numerical
interest.

A Markov chain works like this: The initial state X0 is chosen at random according the
initial distribution λ on S, which assign probability λi to state i. That is,

P (X0 = i) = λi.

1 There are other indexed families of random variables, where the index is not interpreted as time. For instance,
a random field, has an index set T interpreted as a region in Rm. Such models, such as the Ising model are
used to model magnetism in metals.
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Now for each state i ∈ S, there is another distribution on S, denoted pi, which assigns
probability pij to state j ∈ S. Consequently, for each i ∈ S,∑

j∈S

pij = 1.

We can think of the square array P =
[
pij

]
, where i, j ∈ S, as a matrix, called the transition

matrix. Note that we allow matrices to have countably many rows and columns. A square
matrix P is called a stochastic matrix if each pij ⩾ 0, and for each row i,∑

j∈S

pij = 1.

We think of a stochastic matrix indexed by S as a mapping from S into the set of probability
measures on S: Each state i gets mapped to the probability measure pi on S that assigns
probability pij to state j.

Now think of the chain as a dance on the state space S. At each step t the dancer finds
theirself in some state i, and makes an independent draw of the state at step t + 1 according to
the probability measure pi. This process repeats itself endlessly.

Aside: Some authors, e.g., Samuel Karlin [11, p. 27] or Joseph Doob [8, p. 170] do not require a
transition probabilities to be time-invariant, but then almost immediately restrict attention to the
time-invariant case. Other authors, e.g., Kemeny and Snell [12, Definition 2.1.3, p. 25], J. R. Norris [14,
p. 2], or Ching and Ng [5, p. 2] make time-invariance part of the definition of a Markov chain. It seems
less verbose to add time-invariance to the definition.

Ching and Ng also transpose the transition probabilities, that is, our pij is their pji.

What makes a Markov chain a tractable model is what the transition probabilities do not
depend upon. The probability distribution of the state at t + 1 depends only on the state at
time t. In this sense a Markov chain has a one-period memory.

16.3 ⋆ Examples of Markov chains

Here are some examples of Markov chains:

• A random walk is a Markov chain. Let X1, . . . , Xt, . . . be a sequence of independent
random variables where,

Xt =

{
1 with probability p

−1 with probability 1 − p

For each t, define the running sums

St = X1 + · · · + Xt.

We define S0 = 0. The sequence {St} is the random walk. The simple random walk is the
case where p = 1/2. It is discussed in greater detail in Supplement 7.

• The game of Twister can be viewed as a Markov chain, where the sate consists of a specifi-
cation of whose hands and feet are where.

• A deck of n cards is one of n! states, each state being an order of the deck. Shuffling is a
random experiment that changes the state. Assign each order an ID number, and let X0 denote
the original state, and Xt denote the state after t shuffles. Clearly this is an example where the
numerical magnitude of the state Xt is not of interest.
If you are interested in the details of card shuffling, I highly recommend the paper by Dave
Bayer and Persi Diaconis [2] and its references. Among other things they argue that it takes at
least 7 riffle shuffles to get an acceptable degree of randomness.

v. 2020.10.21::10.29 KC Border



Ma 3/103 Winter 2021
KC Border Introduction to Markov Chains 16–3

• The branching process: Suppose an organism lives one period and produces a random
number X progeny during that period, each of whom then reproduces the next period, etc. The
population Xn after n generations is a Markov chain.

• Queueing: Customers arrive for service each period according to a probability distribution,
and are served in order, which takes a random number of periods. The state of the system is
the length of the queue, which is a Markov chain.

• In information theory, see, e.g., Thomas Cover and Joy Thomas [6, p. 34], the term Markov
chain can refer to a sequence of just three random variables, X, Y , Z if the joint probability
can be written as

P (X
∣∣ Y, Z) = p(X

∣∣ Y ).

• A Markov chain can be rather degenerate. For example, if Xt = t with probability one,
then X0, X1, . . . , is a Markov chain.

• Markov chains can exhibit a more complicated dependence on history at the expense of a
larger state space. For example, consider the Fibonacci sequence as a degenerate Markov chain
with state space S = N = 0, 1, . . .. The chain F0, F1, . . . is

F0 = 0, F1 = 1, and for t > 1, Ft = Ft−1 + Ft−2.

In this description Ft+1 depends on more than Ft—it also depend on Ft−1. But if we enlarge
the state space to S = N × N, then we describe the Fibonacci sequence as

X0 = (F0, 1) = (0, 1), X1 = (F1, F0) = (1, 0), X2 = (F2, F1) = (1, 1),

X3 = (F3, F2) = (2, 1), . . . , Xt = (Ft, Ft−1) =
(
(Xt−1)1 + (Xt−1)2, (Xt−1)1

)
, . . .

That is, the first component of the state at time t is sum of the components at time t − 1, while
the second component of the state at time t is just the first component at time t − 1. The first
component at time t is the tth Fibonacci number.
In fact, if the stochastic process has the feature that the distribution of Xt depends only on the
k previous states, by enlarging the state space to Sk, we can represent the stochastic process as
a Markov process. The cost is that the state space now has dimension k. This can lead to the
curse of dimensionality.

We could even go so far as to let the state space be
∞
∪

n=1
Sn, to make any discrete-time chain

a Markov chain, but that defeats the point. A Markov process is supposed to have a simple
structure.

16.4 ⋆ The distribution of a Markov Chain

The above description of a Markov chain makes no reference to the probability space on which�
the variables are defined. Perhaps the simplest choice for the underlying probability space is as
the set of possible realizations:

Ω = S∞ = S × S × · · ·

Now define the random variables as follows:

For ω = (i0, i1, i2, . . . ), define Xt(ω) = it.

We want the set of events to include every event of the form (X0 = i0, X1 = i1, . . . , Xt = it),
so we take F to be the smallest σ-algebra that includes all of these events.
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Now we have to define a probability for each of these events. We start with an initial
distribution λ of the initial state X0. That is,

λi = P (X0 = i).

Now we take a transition matrix P and define the resulting measure P on Ω as follows.

16.4.1 Definition Let λ be a distribution on S, where λi denotes the probability of state
i, and let P be a stochastic matrix indexed by S. The Markov(λ, P ) chain is defined by
the probability measure P on Ω = S∞ defined by

P (X0 = i, X1 = i1, . . . , Xt = it) = λi0 · pi0i1 · pi1i2 · · · pit−1it . (1)

The distribution λ is the initial distribution of the state of the chain.

The question is, does this completely determine the probability P? The answer is yes. The�
proof is beyond the scope of this course and relies on the Kolmogorov Extension Theorem, but
you may read my on-line notes or consult [1, § 15.6, pp. 519–523].

A consequence of this definition of a Markov chain is that the transition probabilities pij

have the interpretation as conditional probabilities:

P
(
Xt+1 = j

∣∣ Xt = i
)

= pij .

This requires some elementary, but tedious computations, which I shall omit.
Another consequence of the definition is that a Markov chain has the Markov property,

namely, for every finite sequence of epochs

t1 < t2 < · · · < tn < tn+1,

we have

P
(
Xtn+1 = in+1

∣∣ Xtn = in, Xtn−1 = in−1, . . . , Xt1 = i1
)
= P

(
Xtn+1 = xn+1

∣∣ Xtn
= xn

)
.

That is, the future depends on the past only through the present. This too requires some
elementary, but tedious computations, which I shall also omit.

16.4.2 Definition The degenerate probability measure on S that assigns probability one to
state i, called the point-mass at i, is denoted δi.

The next result is straightforward from the definitions, and may be found in Norris [14,
Theorem1.1.2, pp. 3–4].

16.4.3 Theorem (Restarting a Markov chain) Let X0, X1, . . . be a Markov chain with
transition matrix P . Conditional on Xt = i, the continuation defined by

X̃s = Xt+s

is the Markov(δi, P ) chain, and is independent of X1, . . . , Xm.
Add proof

16.4.4 Definition The notation Pi is used to refer to probabilities in a chain conditional on
starting in state i,

Pi(E) = P(E
∣∣ X0 = i),

or equivalently, the distribution of the Markov(δi, P ) chain. It depends only on the transition
matrix P (and the state i).
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16.4.5 Proposition (Markov chains have independent increments) For a Markov Chain
with a state space S ⊂ R, for every 0 < t1 < t2 < · · · < tn the random variables

Xt1 − X0, Xt2 − Xt1 , . . . , Xtn
− Xtn−1

are stochastically independent.

16.5 ⋆ Two-step and n-step transition probabilities

The transition matrix tells everything about the evolution of the Markov chain from its initial
state X0. If pij is the probability of transitioning from state i to state j in one step, what is the
probability of transitioning from i to j in exactly two steps? That is, what is

p
(2)
ij = P

(
Xt+2 = j

∣∣ Xt = i
)
?

By definition this is just

P
(
Xt+2 = j

∣∣ Xt = i
)

= P (Xt+2 = j & Xt = i)
P (Xt = i)

. (2)

The intermediate state Xt+1 must take on one of the values k ∈ S. So the event

(Xt+2 = j & Xt = i)

is the disjoint union ⋃
k∈S

(Xt = i & Xt+1 = k & Xt+2 = j).

Thus we may write

P
(
Xt+2 = j

∣∣ Xt = i
)

=
∑

k∈S P (Xt = i & Xt+1 = k & Xt+2 = j)
P (Xt = i)

. (2′)

By the multiplication rule (Section 4.8), for each k,

P (Xt = i & Xt+1 = k & Xt+2 = j)
= P (Xt = i)P

(
Xt+1 = k

∣∣ Xt = i
)
P

(
Xt+2 = j

∣∣ Xt+1 = k & Xt = i
)
. (3)

By the Markov property

P
(
Xt+2 = j

∣∣ Xt+1 = k & Xt = i
)

= P
(
Xt+2 = j

∣∣ Xt+1 = k
)
. (4)

Combining (2′), (3), and (4) gives
p

(2)
ij =

∑
k∈S

pikpkj ,

but this just
the i, j entry of the matrix ¶2.

Similarly, the probability p
(n)
ij of transitioning from i to j in n steps is the i, j entry of the

matrix P n. That is, calculating the distribution of future states is just an exercise in matrix
multiplication.

P
(
Xt+n = j

∣∣ Xt = i
)

is the (i, j) entry of the matrix P n.

This provides a powerful tool for studying the behavior of a Markov chain.
I recommend ACM/EE 116. Introduction to Stochastic Processes and Modeling if

you want to learn more about this, and CS/EE 147. Network Performance Analysis for
applications.
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16.6 ⋆ Markov chains and graphs

16.6.1 Definition We say that state j is reachable from i if p
(n)
ij > 0 for some n. If states i

and j are mutually reachable, then we say they communicate, denoted i ↔ j. The relation ↔
is an equivalence relation and partitions the states into communication classes.

The nature of reachability can be visualized by considering the set states to be a directed
graph where the set of nodes or vertexes is the set of states, and there is a directed edge
from i to j if pij > 0. An arrow from node i to node j is used to indicate that the transition
from i to j can occur (with nonzero probability) in one step. A loop at a node i indicates that
the transition from i back to i (remaining in state i) has nonzero probability. The edges of the
graph are labeled with the probability of the transition. The state j is reachable from i if there
is a path in the graph from i to j.

For instance, the transition matrix P of Example 16.7.1 below corresponds to the graph in
Figure 16.1. Figure 16.2 depicts the graph of the simple random walk.Make sure to define

this SRW.
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Figure 16.1. The graph of the 5-state Markov chain in Example 16.7.1.

16.6.2 Definition A communication class C is closed if whenever i ∈ C and j is reachable
from i, then j ∈ C. A state i is absorbing if pii = 1, that is, if {i} is a closed class.

For instance if you are gambling in a casino that does not extend credit, then a wealth level
of 0 is an absorbing state.

16.6.1 ⋆ Mathematica and Markov transition graphs

Since version 11, (and perhaps earlier versions, I don’t know) Mathematica will draw the
graph of a finite-state Markov chain for you. The first thing you have to do is create a
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Figure 16.2. The graph of the simple random walk.

DiscreteMarkovProcess object. To do this, you need to define a transition matrix p and
an initial state s0, and then

mp = DiscreteMarkovProcess[s0, p];

creates an object mp, and you can use the Graph function to create a graph like this:

mg = Graph[mp]

Then mg is a Mathematica Graphics object which displays as the transition graph. Each
communications class of vertices is given a different color. The graph can be Exporteded to a
graphics file.

But the plain vanilla graph is probably not what you wanted, since it does not label the
edges with their probabilities. I found some code on stackexchange that will do that:

mg = Graph[mp,
EdgeLabels -> {DirectedEdge[i_, j_] :>

MarkovProcessProperties[mp, "TransitionMatrix"][[i, j]]}
]

I personally find the vertex labels to need adjustment. You will probably want to fool around
with different GraphLayout specifications to rearrange the graph to your liking. The graph in
Figure 16.1 was produced with

Graph[mp,
EdgeLabels -> {DirectedEdge[i_, j_] :> p[[i, j]]},
EdgeStyle -> Directive[Black],
VertexSize -> 0.4,
VertexCoordinates -> Table[{i, 2 Mod[i, 2]}, {i, 5}],
BaseStyle -> {FractionBoxOptions -> {Beveled -> True}}
];

and then the edge labels were manually adjusted.
The MarkovProcessProperties[mp] command produces a display of many of the chain’s

properties.

16.7 ⋆ Irreducible Markov chains

When every state communicates with every other state, the chain is called irreducible. 2

2 This is the definition of irreducibility in Karlin [11, p. 42]. Mathematica’s documentation uses the term to
refer to a Markov chain with a single recurrent class (see Section 16.10 ⋆).
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16.7.1 Example Here is an example of an irreducible 5-state transition matrix. Its graph is
given in Figure 16.1.

P =



1
2

1
2 0 0 0

1
3 0 2

3 0 0
0 1

3 0 2
3 0

0 0 2
3 0 1

3

0 0 0 1
2

1
2


And here are a few successive powers (n-step transitions)

P 2 =



5
12

1
4

1
3 0 0

1
6

7
18 0 4

9 0
1
9 0 2

3 0 2
9

0 2
9 0 11

18
1
6

0 0 1
3

1
4

5
12


P 3 =



7
24

23
72

1
6

2
9 0

23
108

1
12

5
9 0 4

27
1

18
5

18 0 5
9

1
9

2
27 0 5

9
1

12
31

108

0 1
9

1
6

31
72

7
24



P 100 =



0.0952381 0.142857 0.285715 0.285714 0.190476
0.0952380 0.142858 0.285713 0.285715 0.190476
0.0952382 0.142857 0.285715 0.285713 0.190476
0.0952380 0.142858 0.285713 0.285715 0.190476
0.0952381 0.142857 0.285715 0.285714 0.190476



P 200 =



0.0952381 0.142857 0.285714 0.285714 0.190476
0.0952381 0.142857 0.285714 0.285714 0.190476
0.0952381 0.142857 0.285714 0.285714 0.190476
0.0952381 0.142857 0.285714 0.285714 0.190476
0.0952381 0.142857 0.285714 0.285714 0.190476


This last matrix has the following interesting property: for any i, i′, j, we have

p
(200)
ij ≈ p

(200)
i′j .

In other words, the initial state has no effect on the long-run distribution of states. □

In the example above, it looks as though the powers of P are converging to a limiting
matrix. Indeed they are. In fact, you can express each p(n)(i, j) as a linear combination of nth

powers of the characteristic roots of P . Every stochastic matrix has an eigenvalue equal to 1
(corresponding to the vector [1, . . . , 1] and all the characteristic roots of a matrix are ⩽ 1 in
absolute value. If the eigenspace of the eigenvalue 1 has dimension 1, then P (n) necessarily has
a limit. For details, see, e.g., Debreu and Herstein [7].

16.8 ⋆ Invariant distributions

Suppose I have a Markov chain and choose the initial state (X0) according to some probability
measure λ on S. Then

λP =
[∑

i∈S λipij

]
gives the probability distribution of states at time t = 1,

P (X1 = j) =
∑
k∈S

P
(
X1 = j

∣∣ X0 = i
)
P (X0 = i) =

∑
i∈S

λipij = (λP )j .

v. 2020.10.21::10.29 KC Border



Ma 3/103 Winter 2021
KC Border Introduction to Markov Chains 16–9

Likewise λP 2 is the distribution of states at time t = 2, etc.
A probability distribution π on the state space is an invariant or stationary or equilibrium

distribution if
πP = π.

That is, the unconditional distribution of states at time 1 is the same as the initial distribution π.
This also says that π is a left eigenvector of P corresponding to the eigenvalue 1.

16.8.1 Proposition Every m-state Markov chain has an invariant distribution.

Proof : The complete proof is beyond the scope of this course, but here’s my favorite proof,
taken from Debreu and Herstein [7]. Let ∆ denote the set of probability vectors in Rm. Note
that it is a closed, bounded, and convex set. If x is a probability vector, then so is xP . Thus the
mapping x 7→ xP maps ∆ into itself. It is also a continuous function. The Brouwer Fixed Point
Theorem says that whenever a continuous function maps a nonempty closed bounded convex
subset of Rm into itself, it must have a fixed point. That is, there is an x̄ satisfying x̄P = x̄.

The gap in the above argument is the Brouwer theorem. For a simple proof of the Brouwer
Theorem, I’m partial to Border [3], but Franklin [10] and Milnor [13] provide alternate proofs
that you may prefer.) There is also a proof based on linear algebra, specifically the Perron–
Frobenius Theorem, see, e.g., Debreu and Herstein [7] or Wielandt [16].

Is the invariant distribution unique? Not necessarily.

16.8.2 Example (Non-uniqueness) For the two-state transition matrix

P =
[
1 0
0 1

]
every distribution is invariant. The graph of this chain is given in Figure 16.3.

11 2 1

Figure 16.3. A reducible Markov chain.

An interesting aspect of this example is that each state is absorbing. More generally, if a
chain has two closed classes, it will not have a unique invariant distribution, since you can find
an invariant for each class viewed as a chain in its own right, and then randomize between
these. □

N.B. Proposition 16.8.1 used the fact that the are only finitely many states. For infinite
state Markov chains, there may be no invariant distribution.

16.8.3 Example (Infinite state chain with no invariant distribution) For instance, if
the set of states is N = {0, 1, 2, 3, . . . }, the transition probabilities

pij =

{
1 if j = i + 1
0 otherwise

do not admit an invariant distribution—for each n, after n + 1 steps the probability of being
in state n is zero. The conditions for the existence of an invariant distribution in the general
(infinite state space) case are beyond the scope of this course. But if you want a good starting
point, try the book by Caltech alumnus Leo Breiman [4]. □

KC Border v. 2020.10.21::10.29
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16.8.1 Google’s PageRank™ ranking

Ching and Ng [5, pp. 47–59] report that Google’s PageRank™ is based on stationary distribu-
tions of a transition matrix. The method is named after Larry Page, one of Google’s co-founders
and was first described in [15]. The state space is the set of web pages. Assume each page has
hyperlink to itself. If page i has hyperlinks to ni pages (including itself), assume the probability
of transitioning from page i to a hyperlinked page is 1/ni. If this transition matrix is irreducible,
it has a stationary distribution π. The rank of page i is πi, the stationary probability of page i.
(My colleague Omer Tamuz tells me this idea had been used before as a measure of centrality
in graph theory. Google’s contribution was to actually compute it for the web.) Ching and Ng
have lots of details on computational techniques, as well as what to do if the transition matrix
is not irreducible.

16.9 ⋆ Invariant distributions as limits

Consider the transition matrix

P =


0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

 .

Its graph is shown in Figure 16.4. It has the unique invariant distribution π = [1/3, 1/3, 1/3].

1

2

1

2

1

2

1

2

1

2

1

2

1

2

3

Figure 16.4.

Let δ1 be the distribution that gives state 1 for sure, δ1 = [1, 0, 0]. Now consider the sequence
δ1P , δ1P 2, δ1P 3, . . . . Some of the terms are reproduced here:

δ1P =

 0
0.5
0.5

 , δ1P 2 =

 0.5
0.25
0.25

 , δ1P 3 =

 0.25
0.375
0.375

 , . . . , δ1P 20 =

0.33333
0.33333
0.33333


This sequence is indeed converging to the invariant distribution. But this does not happen for
every transition matrix.

16.9.1 Example (P n does not converge) The transition matrix

P =
[
0 1
1 0

]
v. 2020.10.21::10.29 KC Border
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has period 2. This is easily seen by inspecting its transition graph, see Figure 16.5. This matrix

1

1

2

1

Figure 16.5. A Markov chain of period 2.

has the unique invariant distribution [1/2, 1/2], but P n does not converge:

P 2 =
[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
,

so

P k =

{
P for k odd,

I for k even.

So setting δ1 = [1, 0] gives

δ1P k =

{
δ2 for k odd,

δ1 for k even.

These sequences oscillate rather than converge. The problem is that this Markov chain is not
aperiodic. □

16.9.2 Definition In a Markov chain the period of state i is the greatest common divisor of
{n : p

(n)
ii > 0}. If for every n we have p

(n)
ii = 0, we say i has period zero.

A Markov chain is aperiodic if every state has period one.

In Example 16.9.1, for each state i = 1, 2,

p
(n)
ii =

{
1 n even
0 n odd

so every state has period 2.
You may find the following theorem in Breiman [4, Theorem 6.20, p. 172] or Norris [14,

Theorem 1.8.3, p. 41–42].

16.9.3 Theorem (Convergence to the invariant distribution) For a Markov chain
with transition matrix P , if the chain is irreducible and aperiodic, then the invariant dis-
tribution π is unique, and for any initial distribution λ, the sequence λP n converges to
π.

In particular, for any states i and j

p
(n)
ij → πj as n → ∞.

At times it seems that the ratio of definitions to theorems regarding Markov chains is un-
usually high. Some accessible resources are Breiman [4, Chapter 6], Karlin [11], or Norris [14].
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16.10 ⋆ Transience and recurrence

16.10.1 Definition A state i in a Markov chain is recurrent if starting in state i, the chain
returns to state i infinitely often with probability one. That is,

Pi (Xt = i i.o.) = 1.

A state i in a Markov chain is transient if

Pi (Xt = i i.o.) = 0.

A transient state is one that eventually never reoccurs. Note that recurrence depends only
on the transition matrix. It turns out that every state is either recurrent or transient. To frame
the proper theorem I need one more definition.

16.10.2 Definition For a state i in a Markov chain, the first passage time to i, denoted Ti

is defined to be
Ti(ω) = inf{t : Xt(ω) = i},

where inf ∅ = ∞.

16.10.3 Theorem (Recurrence and transience are class properties) If i is recurrent
and i communicates with j, then j is recurrent. If i is transient and i communicates with j,
then j is transient.

We now have the following theorem, which may be found, e.g, in Norris [14, Theorem 1.5.2,
p. 26] or Karlin [11, Theorem 5.1, p. 48].

16.10.4 Theorem For a Markov chain, either

1. Pi (Ti < ∞) = 1, in which case i is recurrent and
∑∞

n=1 p
(n)
ii = ∞, or else

2. Pi (Ti < ∞) < 1, in which case i is transient and
∑∞

n=1 p
(n)
ii < ∞.

Consequently, every state is either recurrent or transient, and

Pi (Ti < ∞) = 1 ⇐⇒
∞∑

n=1
p

(n)
ii = ∞.

Bibliography

[1] C. D. Aliprantis and K. C. Border. 2006. Infinite dimensional analysis: A hitchhiker’s guide,
3d. ed. Berlin: Springer–Verlag.

[2] D. Bayer and P. Diaconis. 1992. Trailing the dovetail shuffle to its lair. Annals of Applied
Probability 2(2):294–313. http://www.jstor.org/stable/2959752

[3] K. C. Border. 1985. Fixed point theorems with applications to economics and game theory.
New York: Cambridge University Press.

[4] L. Breiman. 1986. Probability and stochastic processes: With a view toward applications,
2d. ed. Palo Alto, California: Scientific Press.

v. 2020.10.21::10.29 KC Border

http://www.jstor.org/stable/2959752


Ma 3/103 Winter 2021
KC Border Introduction to Markov Chains 16–13

[5] W.-K. Ching and M. K. Ng. 2006. Markov chains: Models, algorithms and applications.
International Series in Operations Research and Management Science. New York: Springer.

[6] T. M. Cover and J. A. Thomas. 2006. Elements of information theory, 2d. ed. Hoboken,
New Jersey: Wiley–Interscience.

[7] G. Debreu and I. N. Herstein. 1953. Nonnegative square matrices. Econometrica 21(4):597–
607. http://www.jstor.org/stable/1907925

[8] J. L. Doob. 1953. Stochastic processes. New York: Wiley.

[9] W. Feller. 1968. An introduction to probability theory and its applications, 3d. ed., vol-
ume 1. New York: Wiley.

[10] J. Franklin. 1980. Methods of mathematical economics. Undergraduate Texts in Mathe-
matics. New York: Springer–Verlag.

[11] S. Karlin. 1969. A first course in stochastic processes. New York & London: Academic
Press.

[12] J. G. Kemeny and J. L. Snell. 1960. Finite Markov chains. The University Series in
Undergraduate Mathematics. Princeton, New Jersey: D. Van Nostrand.

[13] J. W. Milnor. 1969. Topology from the differentiable viewpoint, corrected second printing.
ed. Charlottesville: University Press of Virginia. Based on notes by David W. Weaver.

[14] J. R. Norris. 1998. Markov chains. Number 2 in Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge: Cambridge University Press.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. 1998. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford University.

[16] H. Wielandt. 1950. Unzerlegbare, nicht negative Matrizen. Mathematische Zeitschrift
52:642–648. DOI: 10.1007/BF02230720

KC Border v. 2020.10.21::10.29

http://www.jstor.org/stable/1907925
http://dx.doi.org/10.1007/BF02230720



	Order Statistics; Conditional Expectation
	Order statistics
	Marginal Distribution of Order Statistics
	Marginal Density of Order Statistics
	Joint Density of Order Statistics
	Joint distribution of pairs of order statistics
	Some special order statistics
	The range of a sample
	Uniform order statistics and the Beta function
	The war of attrition
	The Winner's Curse
	Extreme value distributions
	Conditioning on a random variable
	Conditional Expectation
	Conditional Expectation, Part 2
	Conditional Expectation is a Positive Linear Operator Too
	Iterated Conditional Expectation
	Conditional Expectation is an Orthogonal Projection
	Conditional Expectation and Densities
	Conditioning with Several Variables
	Conditional Independence
	Bibliography


