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Lecture 14: The Poisson Arrival Process

Relevant textbook passages:
Pitman [13]: Sections 2.4,3.5, 4.2
Larsen–Marx [12]: Sections 4.2, 4.6

14.1 Waiting times and arrivals

In this lecture we discuss the following random experiment: waiting repeatedly in continuous
real time for the occurrence of a phenomenon that happens at random times. Each occurrence
is called an arrival or a death and the intervals between successive arrivals are called waiting
times. Before we can proceed there are a number of preliminaries.

Consider the random experiment of waiting for something to die or fail. For instance, run a
disk drive until it fails, or a human body till it fails, or wait until a uranium atom disintegrates.
This gives rise to a random variable called a lifetime or duration or waiting time. Pitman [13]:

§ 4.2For a lifetime or duration T with cumulative distribution function F (t), define the survival
function by

G(t) = P (T > t) = 1 − F (t).

When T is the (random) time to failure, the survival function G(t) at epoch t gives the
probability of surviving (not failing) until at least t.

Note the convention that the present is time t = 0, and durations are measured as times after
that.
Aside: If you’ve ever done any programming involving a calendar, you know the difference between
a point in time or date, called an epoch by probabilists, and a duration, which is the elapsed time
between two epochs.

Pitman [13]:
§ 4.3

For a lifetime T with a density f on [0, ∞) and cumulative distribution function F , the
hazard rate λ(t) is defined by

λ(t) = lim
h↓0

P
(
T ∈ (t, t + h]

∣∣ T > t
)

h
.

Or
λ(t) = f(t)

G(t)
.

Proof : By definition,

P
(
T ∈ (t, t + h]

∣∣ T > t
)

= P (T ∈ (t, t + h))
P (T > t)

= P (T ∈ (t, t + h])
G(t)

.

Moreover P (T ∈ (t, t + h]) = F (t + h) − F (t), so the limit is just F ′(t)/G(t) = f(t)/G(t).

The hazard rate f(t)/G(t) is often thought of as the “instantaneous” probability of death
or failure.
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14.2 The Exponential Distribution

The Exponential(λ) is widely used to model random durations or times. It is another name
for the Gamma(1, λ) distribution. (See Section 14.12 below.)

14.2.1 Definition A random time T has an Exponential(λ) distribution if it has density

f(t) = λe−λt (t ⩾ 0),

and cdf
F (t) = 1 − e−λt,

which gives survival function
G(t) = e−λt,

and hazard rate
λ(t) = λ.

See Figure 14.1.
It is the constant hazard rate that makes the exponential family a good model for certain

kinds of waiting or arrival times.

The only distribution with a constant hazard rate λ > 0 is the Exponential(λ) distribution.

To see this, look at the survival function G. If the hazard rate is constant at λ, then G satisfies
the differential equation G′(t)/G(t) = −λ, so G(t) = ce−λt for some constant c, and c = 1 is the
only constant that satisfies G(0) = 1.

The mean of an Exponential(λ) random variable is given by∫ ∞

0
λte−λt dt = 1

λ
.

Proof : Use the integration by parts formula:∫
h′g = hg −

∫
g′h,

with h′(t) = λe−λt and g(t) = t (so that h(t) = −e−λt and g′(t) = 1) to get

E T =
∫ ∞

0
λte−λt dt

= −te−λt
∣∣∣∞

0
+

∫ ∞

0
e−λt dt

= −te−λt
∣∣∣∞

0
+ −1

λ
e−λt

∣∣∣∞

0

= −e−λt

λ

∣∣∣∞

0

= 1
λ

.

v. 2020.10.21::10.28 KC Border



Ma 3/103 Winter 2021
KC Border The Poisson Arrival Process 14–3

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

����������� ������� ���������

● λ=0.5
■ λ=1
◆ λ=2

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

����������� ����

● λ=0.5
■ λ=1
◆ λ=2

Figure 14.1.
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The variance of an Exponential(λ) is 1
λ2 .

Proof :

Var T = E(T 2) − (E T )2

=
∫ ∞

0
t2λe−λt dt − 1

λ2 .

Setting h′(t) = λe−λt and g(t) = t2 and integrating by parts, we get

= t2e−λt
∣∣∣∞

0︸ ︷︷ ︸
=0

+2
∫ ∞

0
te−λt dt︸ ︷︷ ︸

=E T/λ

− 1
λ2

= 0 + 2
λ2 − 1

λ2

= 1
λ2 .

14.3 The Exponential is Memoryless
Pitman [13]:
p. 279 A property that is closely related to having a constant hazard rate is that the exponential

distribution is memoryless in that for an Exponential random variable T ,

P
(
T > t + s

∣∣ T > t
)

= P (T > s), (s > 0).

To see this, recall that by definition,

P
(
T > t + s

∣∣ T > t
)

= P ((T > t + s)(T > t))
P (T > t)

= P (T > t + s)
P (T > t)

as (T > t + s) ⊂ (T > t)

= G(t + s)
G(t)

= e−λ(t+s)

e−λt

= e−λs

= G(s) = P (T > s).

In fact, the only continuous memoryless distributions are Exponential.

Proof : Rewrite memorylessness as

G(t + s)
G(t)

= G(s),

or
G(t + s) = G(t)G(s) (t, s > 0).
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It is well known that this last property (plus the assumption of continuity at one point) is
enough to prove that G must be an exponential (or identically zero) on the interval (0, ∞). See
J. Aczél [1, Theorem 1, p. 30]. 1

14.4 Comparison of independent exponential random variables

Let X ∼ Exponential(λ) and Y ∼ Exponential(µ) be independent. What is

P (X < Y )?
Pitman [13]:
p. 352The joint density is

f(x, y) = λe−λxµe−µy = λµe−λx−µy,

so

P (X < Y ) =
∫ ∞

0

∫ y

0
λe−λxµe−µy dx dy

=
∫ ∞

0
µe−µy

(∫ y

0
λe−λx dx

)
dy

=
∫ ∞

0
µe−µy

(
−e−λx

∣∣∣y

0

)
dy

=
∫ ∞

0
µe−µy

(
1 − e−λy

)
dy

=
∫ ∞

0
µe−µy dy︸ ︷︷ ︸

=1

−
∫ ∞

0
µe−(λ+µ)y dy

= 1 − µ

λ + µ

∫ ∞

0
(λ + µ)e−(λ+µ)y dy︸ ︷︷ ︸

=1

= 1 − µ

λ + µ

= λ

λ + µ
.

14.5 The sum of i.i.d. exponential random variables

Let X and Y be independent and identically distributed Exponential(λ) random variables. The Pitman [13]:
pp. 373—375density of the sum for t > 0 is given by the convolution:

fX+Y (t) =
∫ ∞

0
fX(t − y)fY (y) dy

=
∫ t

0
λe−λ(t−y)λe−λy dy since fY (t − y) = 0 if y > t

=
∫ t

0
λ2e−λt dy

= tλ2e−λt.

This is a Gamma(2, λ) distribution. See Section 14.12 below.
1 Aczél [1] points out that there is another kind of solution to the functional equation when we extend the�

domain to [0, ∞), namely G(0) = 1 and G(t) = 0 for t > 0.
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More generally, the sum of n independent and identically distributed Exponential(λ) random
variables has a Gamma(n, λ) distribution, given by

f(t) = λne−λt tn−1

(n − 1)!
.

14.6 The Weibull distribution

The Weibull distribution generalizes the exponential distribution as a model of waiting times.
It allows for the hazard rate to be age-dependent. There are two parameters of the Weibull
distribution, usually denoted λ and α. α is a shape parameter and λ is a transformed scale
parameter. The density is given by

f(t) = αλtα−1e−λtα

and the cumulative distribution function is

F (t) = 1 − e−λtα

,

so the survival function is
G(t) = e−λtα

and the hazard rate is
λ(t) = f(t)

G(t)
= αλtα−1.

Note that when α = 1, this reduces to the Exponential(λ) distribution. When α > 1, the
hazard rate is increasing with age, and when α < 1, the hazard rate is decreasing with age. See
Figure 14.2. N.B. Some authors refer to the parameters of the Weibull as α and β, where α is
the same as I use, but β is a scale parameter related to λ. Mathematica, R, and Jacod and
Protter [11, Example 6, p. 43] use β to mean my 1/λ1/α. I am using the terminology used by
Pitman [13, Exercise 4, p. 301], and Forbes, et al. [9, p. 193].

If T has a Weibull(λ, α) distribution its moments are given by

E T n = Γ
(

1 + n

α

)
λ−n/α.

14.7 Survival functions and moments

For a nonnegative random variable with a continuous density f , integration by parts allows us
to prove the followin generalization of Proposition 6.4.2.

14.7.1 Proposition Let F be a cumulative distribution function with continuous density f on
[0, ∞). Then the nth moment can be calculated as∫ ∞

0
xnf(x) dx =

∫ ∞

0
nxn−1(

1 − F (x)
)

dx =
∫ ∞

0
nxn−1G(x) dx.

Proof : Use the integration by parts formula:∫
h′g = hg −

∫
g′h,

v. 2020.10.21::10.28 KC Border
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with h′(x) = f(x) and g(x) = xn (so that h(x) = F (x) and g′(x) = nxn−1) to get∫ b

0
xnf(x) dx = xnF (x)

∣∣b

0 −
∫ b

0
nxn−1F (x) dx

= bnF (b) −
∫ b

0
nxn−1F (x) dx

= F (b)
∫ b

0
nxn−1 dx −

∫ b

0
nxn−1F (x) dx

=
∫ b

0
nxn−1(

F (b) − F (x)
)

dx,

and let b → ∞.

In particular, the first moment, the mean, is given by the area under the survival function:

E =
∫ ∞

0

(
1 − F (x)

)
dx =

∫ ∞

0
G(x) dx.

14.8 The Poisson Arrival Process
Pitman [13]:
§ 4.2; and
pp. 283–285

The “Poisson arrival process” is a mathematical model that is useful in modeling the number of
occurrences (called arrivals) of a phenomenon over a continuous time period. For instance the
number of telephone calls per minute, the number of Google queries in a second, the number of
radioactive decays in a minute, the number of earthquakes per year, etc. In these phenomena,
the events are rare enough to be counted, and to have measurable delays between them. 2

(Interestingly, the Poisson model is not a good description of LAN traffic, see [3, 14].)
The Poisson arrival process with parameter λ works like this:

Let W1, W2, . . . be a sequence of independent and identically distributed Exponential(λ)
random variables, representing waiting times for an arrival, on the sample space (Ω,F, P ).
At each ω ∈ Ω, the first arrival happens at time W1(ω), the second arrival happens a duration
W2(ω) later, at W1(ω) + W2(ω). The third arrival happens at W1(ω) + W2(ω) + W3(ω).
Define

Tn = W1 + W2 + · · · + Wn.

This is the epoch when the nth event occurs. The sequence Tn of random variables is a
nondecreasing sequence.

For each ω we can associate a step function of time, N(t) defined by

N(t) = the number of arrivals that have occurred at a time ⩽ t

= the number of indices n such that Tn ⩽ t.

14.8.1 Remark Since the function N depends on ω, I should probably write

N(t, ω) = the number of indices n such that Tn(ω) ⩽ t.

But that is not traditional. Something a little better than no mention of ω that you can find,
say in Doob’s book [7] is a notation like Nt(ω). But most of the time we want to think of N as
a random function of time, and putting t in the subscript disguises this.

2 An exception is the 1952 Kern County earthquake cluster, where the number and size of aftershocks over-
whelmed the recording equipment, so an accurate count of aftershocks could not be made [10, pp. 437, 439].
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14.8.2 Definition The random function N is called the Poisson process with parame-
ter λ.

So why is this called a Poisson Process? Because N(t) has a Poisson(λt) distribution. There
is nothing special about starting at time t = 0. The Poisson process looks the same over every
time interval.

The Poisson process has the property that for any interval of length t, the distribution of
the number of “arrivals” is Poisson(λt).

14.9 The Poisson Arrival Process is also a Poisson Scatter

Another way to describe the Poisson arrival process is as a one-dimensional Poisson scatter of
arrivals over a time interval. Here is an argument to convince you of this, but it has a gap. In a
one-dimensional Poisson scatter, the number of hits/arrivals in an interval of length t is a Poisson
random variable with parameter λt, and the random counts are stochastically independent for
disjoint intervals. We can use this to calculate the distribution of waiting times between hits.
If the nth hit occurs at time w, the probability that no hit occurs in the interval (w, w + t] is a
Poisson probability with rate λt, namely

pλt(0) = e−λt (λt)0

0!
= e−λt.

Let Wn+1 be the n+1st waiting time. Then Wn+1 > t if and only if no hit occurs in the interval
(w, w + t]. We have just seen that the probability of this is

P (Wn+1 > t) = e−λt.

But this is just the survival function for an Exponential(λ) distribution. In other words,

A one-dimensional Poisson scatter with intensity λ generates waiting times that are inde-
pendent with Exponential(λ) distributions. That is, it generates a Poisson arrival process.

Aside: So where is the gap in the argument? I implicitly used something called the Strong Markov
Property (which will be discussed in Section 17.7 ⋆) without justifying it. But you probably didn’t
notice.

14.10 ⋆ Renewal processes

**********************
To be added.
A renewal process is like a Poisson arrival process where the waiting times need not be

exponential.
**********************

14.11 ⋆ The Inspection Paradox

**********************
To be added.
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If machines are replaced with new one when the old ones fail (a renewal process), then if
you select a time at random to inspect a machine, the expected lifetime of the machine you are
examining is greater than the expected lifetime of a machine. The intuition is that lifetimes
divide the interval from [0, T ] into subintervals. If you choose a time at random in [0, T ], it is
more likely to land in long interval than a short interval. There is some math that goes along
with this intuition.

**********************

14.12 Appendix: The Gamma family of distributions

14.12.1 Definition For r, λ > 0, Gamma(r, λ) distribution has a density given byPitman [13]:
Exer-
cise 4.2.12,
p. 294; p. 481 f(t) = λr

Γ(r)
tr−1e−λt (t > 0), (1)

where
Γ(r) =

∫ ∞

0
zr−1e−z dz

is the Gamma function. (See Appendix 14.13.)

To very that this is indeed a density with support [0, ∞), use the change of variable z = λt
to see that

∫ ∞
0 λ(λt)r−1e−λt dt =

∫ ∞
0 zr−1e−z dz = Γ(r).

The parameter r is referred to as the shape parameter or index and λ is a scale param-
eter.

Why is it called the scale parameter?

T ∼ Gamma(r, λ) ⇐⇒ λT ∼ Gamma(r, 1)

Wait. Shouldn’t we call 1/λ the scale parameter on this basis? Probably, and some people do
(see the sidebar on page 14–14). But Pitman [13] and Larsen–Marx [12] are not among them.

The Gamma(r, λ) distribution has mean and variance given by

E X = r

λ
, Var X = r

λ2 .

According to Pitman [13, p. 291], “In applications, the distribution of a random variable
may be unknown, but reasonably well approximated by some gamma distribution.”
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Hey: Read Me
There are (at least) three incompatible, but easy to translate, naming conventions for the
Gamma distribution.

Pitman [13, p. 286] and Larsen and Marx [12, Defn. 4.6.2, p. 272] refer to their parameters
as r and λ, and call the function in equation (1) the Gamma(r, λ) density. Note that the
shape parameter is the first parameter and the scale parameter is the second parameter for
Pitman and Larsen and Marx. This is the convention that I used above in equation (1).

Feller [p. 47][8] calls the scale parameter α instead of λ, and he calls the shape parameter
ν instead of r. Cramér [p. 126][5] also calls the scale parameter α instead of λ, but the
shape parameter he calls λ instead of r. Other than that they agree that equation (1) is the
Gamma density, but they list the parameters in reverse order. That is, they list the scale
parameter first, and the shape parameter second.

Casella and Berger [4, eq. 3.3.6, p. 99] call the scale parameter β and the shape parameter
α, and list the shape parameter first and the scale parameter second. But here is the
confusing part, their scale parameter β is our 1/λ. a Mathematica and R also invert
the scale parameter. To get my Gamma(r, λ) density in Mathematica, you have to call
PDF[GammaDistribution[r, 1/λ], t]; to get it in R, you would call dgamma(t, r, rate
= 1/λ).

I feel sorry for you, but it’s not my fault. But you do have to be careful to know what
naming convention is being used.

aThat is, C–B write the Gamma(α, β) density as
1

Γ(α)βα
tα−1e−t/β .

14.13 Appendix: The Gamma Function
Larsen–
Marx [12]:
Section 4.6,
pp. 270–274.
Pitman [13]:
p. 291

14.13.1 Definition The Gamma function is defined by

Γ(t) =
∫ ∞

0
zt−1e−z dz for t > 0.

Clearly Γ(t) > 0 for t > 0.

See Figure 14.3.
The value at t = 1 is relatively easy to compute:

Γ(1) =
∫ ∞

0
e−z dz =

∥∥1
0 − e−a = 1.

The next result enables us to use this to recursively compute Γ(n) for any natural number n.

14.13.2 Proposition The Gamma function is a continuous version of the factorial, and has
the property that

Γ(t + 1) = tΓ(t) (t > 0).

Proof : Let v(z) = zt and u(z) = −e−z. Then integrating by parts yields

Γ(t) =
∫ ∞

0
v(z)u′(z) dz = uv

∣∣∞
0 −

∫ ∞

0
u(z)v′(z) dz

= (0 − 0) +
∫ ∞

0
tzt−1e−z dz = t

∫ ∞

0
zt−1e−z dz = tΓ(t − 1).
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Consequently,
Γ(2) = Γ(1) = 1,

and for every natural number m,
Γ(m) = (m − 1)!

In light of this, it would seem to make more sense to define a function f(t) =
∫ ∞

0 zte−z dz,
so that f(m) = m!. According to Davis [6, fn., p 855] the current definition was formulated
by Legendre, while Gauss advocated the alternative. Was this another example of VHS vs.
Betamax? (Do you even know what that refers to?)

We also have
Γ(1/2) =

√
π.

To see this, note that
Γ(1/2) =

∫ ∞

0
z−1/2e−z dz.

Make the change of variable u(z) =
√

2z, so u′(z) = 1/
√

2z, and note that∫ ∞

0
z−1/2e−z dz = 1√

2

∫ ∞

0
e−u2/2 du =

√
π,

where the last equality follows from the normal density integral, see Proposition 10.9.1.
There is no closed form formula for the Gamma function except at integer multiples of 1/2.
See, for instance, Pitman [13, pp. 290–291] or Apostol [2, pp. 419–421] for more.
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